User:Vahur: Difference between revisions

From Intelligent Materials and Systems Lab

No edit summary
Line 1: Line 1:
== Vahur Zadin ==
{{UserProfile |
fullname=Vahur Zadin |
picture=VahurZadin.jpg |
mobile=+372 55-544-178 |
email=zadin@ut.ee |
skype=vahur_zadin |
orcid=0000-0003-0590-2583
}}


== PhD thesis ==


*'''Mobiil Rootsis''': +46700964647
* [http://dspace.utlib.ee/dspace/bitstream/handle/10062/25375/zadin_vahur.pdf?sequence=1 Modeling the 3D-microbattery]
*'''Mobiil Eestis''': +372 55 544 178
* Doktoritööga seonduv [[Secure:VahursPhDWork]]
*'''E-mail''': zadin [ät] ut.ee
*'''MSN''': vahurz [ät] hotmail.com
*'''Skype''': vahur_zadin


----
[[Category:PI]]


== Liitium-ioon akude arhitektuuri optimeerimine arvutisimulatsioonide abil ==
== Publications ==
Kaasaskantav mikroakutoide on oluliseks faktoriks paljudes arenevates tehnoloogiasuundades, kuna mikroelektroonika mõõtmete [[Image:3d_battery_v_low.jpg|right]]
vähenemine on jätnud kaugele seljataha väikesemõõduliste vooluallikate arengu. Sobivate kaasaskantavate vooluallikate puudus  on saamas takistuseks mitmete  tehnoloogiasuundade nagu mikroelektromehaaniliste seadmete (MEMS) ja biomeditsiiniliste mikromasinate arengus. MEMS-idel baseeruva seadme näiteks võiks olla akutoitel autonoomne seade, mis koosneb ühest või mitmest sensorist, arvutus- ja kommunikatsiooniahelatest ning mille mõõtmed jäävad 1 mm piiresse. Sellise konfiguratsiooni juures tulevad ilmsiks olemasolevate, olemuselt kahemõõtmeliste (2D) liitium-ioonakude puudused – nii väikeste ruum- ja pindalade puhul ei ole võimalik saavutada piisavaid energiatihedusi. Seda probleemi võimaldab lahendada 3D mikroakude (MB) kasutusele võtmine [1].
Töö liitiumioonakude arhitektuuri optimeerimisega toimub koostöös Uppsala Ülikooli poolt koordineeritava projekti  „Superior Energy and Power Density Li-Ion Microbatteries“, eesmärgiga  valmistada töötav 3D-MB, mille energiatihedus ning mahtuvus on vähemalt suurusjärgu võrra suuremad praegu kasutusel olevate akude omadest. Toimiva 3D-MB välja töötamiseks arendatakse ja uuritakse erinevaid mikroaku  arhitektuure, neist sobiva väljavalimist ning optimeerimist lihtsustavad oluliselt teoreetilised, arvutisimulatsioonidega läbi viidavad uuringud, mis võimaldavad:


*: testida erinevaid 3D-MB arhitektuure


*: lahendada optimeerimisülesandeid elektroodide optimaalse geomeetria leidmiseks, mis tähendab sisuliselt laengukandjate käitumise simuleerimist aku tühjenemisel ja laadimisel elektroodis
=== Journal Articles ===


*: uurida elektroodide vahekauguse varieerimise mõju juhtivusele ja väljadele
* Guodong Meng, Yimeng Li, Roni Aleksi Koitermaa, Veronika Zadin, Yonghong Cheng, Andreas Kyritsakis (2024) [https://doi.org/10.1103/PhysRevLett.132.176201 <nowiki>In Situ Observation of Field-Induced Nanoprotrusion Growth on a Carbon-Coated Tungsten Nanotip</nowiki>], ''Physical Review Letters''. [https://doi.org/10.1103/PhysRevLett.132.176201 https://doi.org/10.1103/PhysRevLett.132.176201]
* Sergei Vlassov, Sven Oras, Annamarija Trausa, Tauno Tiirats, Edgars Butanovs, Boris Polyakov, Veronika Zadin, Andreas Kyritsakis (2024) [https://doi.org/10.1002/smll.202304614 <nowiki>Reshaping Covalent Nanowires by Exploiting an Unexpected Plasticity Mediated by Deformation Twinning</nowiki>], ''Small''. [https://doi.org/10.1002/smll.202304614 https://doi.org/10.1002/smll.202304614]
* Roni Koitermaa, Andreas Kyritsakis, Tauno Tiirats, Veronika Zadin, Flyura Djurabekova (2024) [https://doi.org/10.1016/j.vacuum.2024.113176 <nowiki>Simulating vacuum arc initiation by coupling emission, heating and plasma processes</nowiki>], ''Vacuum''. [https://doi.org/10.1016/j.vacuum.2024.113176 https://doi.org/10.1016/j.vacuum.2024.113176]
* Ye Wang, Ehsan Moradpur-Tari, Veronika Zadin, Andreas Kyritsakis (2024) [https://doi.org/10.1016/j.apsusc.2023.158632 <nowiki>Unraveling the atomic structure of the R(15×12) reconstruction of carburized W(110) based on ab initio calculations</nowiki>], ''Applied Surface Science''. [https://doi.org/10.1016/j.apsusc.2023.158632 https://doi.org/10.1016/j.apsusc.2023.158632]
* Edgars Butanovs, Martins Zubkins, Ramunas Nedzinskas, Veronika Zadin, Boris Polyakov (2023) [https://doi.org/10.1016/j.jcrysgro.2023.127319 <nowiki>Comparison of two methods for one-dimensional Ga2O3-ZnGa2O4 core–shell heterostructure synthesis</nowiki>], ''Journal of Crystal Growth''. [https://doi.org/10.1016/j.jcrysgro.2023.127319 https://doi.org/10.1016/j.jcrysgro.2023.127319]
* Boris Polyakov, Aleksandrs Novikovs, Madara Leimane, Kevon Kadiwala, Martins Zubkins, Edgars Butanovs, Sven Oras, Elyad Damerchi, Veronika Zadin, Sergei Vlassov (2023) [https://doi.org/10.1016/j.tsf.2023.140087 <nowiki>Comparison of the resistivities of nanostructured films made from silver, copper-silver and copper nanoparticle and nanowire suspensions</nowiki>], ''Thin Solid Films''. [https://doi.org/10.1016/j.tsf.2023.140087 https://doi.org/10.1016/j.tsf.2023.140087]
* Butanovs, Edgars, Zubkins, Martins, Nedzinskas, Ramunas, Zadin, Veronika, Polyakov, Boris (2023) [https://doi.org/10.1016/J.JCRYSGRO.2023.127319 <nowiki>Comparison of two methods for one-dimensional Ga2O3-ZnGa2O4 core-shell heterostructure synthesis</nowiki>], ''Journal of Crystal Growth''. [https://doi.org/10.1016/J.JCRYSGRO.2023.127319 https://doi.org/10.1016/J.JCRYSGRO.2023.127319]
* Sergei Vlassov, Dmitry Bocharov, Boris Polyakov, Mikk Vahtrus, Andris Šutka, Sven Oras, Veronika Zadin, Andreas Kyritsakis (2023) [https://doi.org/10.1515/ntrev-2022-0505 <nowiki>Critical review on experimental and theoretical studies of elastic properties of wurtzite-structured ZnO nanowires</nowiki>], ''Nanotechnology Reviews''. [https://doi.org/10.1515/ntrev-2022-0505 https://doi.org/10.1515/ntrev-2022-0505]
* Summer, Faiza, Torop, Janno, Aabloo, Alvo, Kyritsakis, Andreas, Zadin, Veronika (2022) [https://doi.org/10.3390/APP12041887 <nowiki>Particle Dynamics-Based Stochastic Modeling of Carbon Particle Charging in the Flow Capacitor Systems</nowiki>], ''Applied Sciences''. [https://doi.org/10.3390/APP12041887 https://doi.org/10.3390/APP12041887]
* Vlassov, Sergei, Oras, Sven, Timusk, Martin, Zadin, Veronika, Tiirats, Tauno, Sosnin, Ilya M., Lohmus, Runno, Linarts, Artis, Kyritsakis, Andreas, Dorogin, Leonid M. (2022) [https://doi.org/10.3390/MA15051652 <nowiki>Thermal, Mechanical, and Acoustic Properties of Polydimethylsiloxane Filled with Hollow Glass Microspheres</nowiki>], ''Materials''. [https://doi.org/10.3390/MA15051652 https://doi.org/10.3390/MA15051652]
* Vlassov, Sergei, Oras, Sven, Polyakov, Boris, Butanovs, Edgars, Kyritsakis, Andreas, Zadin, Veronika (2022) [https://doi.org/10.1021/ACS.CGD.1C00802 <nowiki>Kinking in Semiconductor Nanowires: A Review</nowiki>], ''Crystal Growth &amp; Design''. [https://doi.org/10.1021/ACS.CGD.1C00802 https://doi.org/10.1021/ACS.CGD.1C00802]
* Jyri Kimari, Ye Wang, Andreas Kyritsakis, Veronika Zadin, Flyura Djurabekova (2022) [https://doi.org/10.1088/1361-6463/ac91dd <nowiki>Biased self-diffusion on Cu surface due to electric field gradients</nowiki>], ''Journal of Physics D: Applied Physics''. [https://doi.org/10.1088/1361-6463/ac91dd https://doi.org/10.1088/1361-6463/ac91dd]
* Rinne, Pille, Poldsalu, Inga, Zadin, Veronika, Johanson, Urmas, Tamm, Tarmo, Pohako-Esko, Kaija, Punning, Andres, van den Ende, Daan, Aabloo, Alvo (2022) [https://doi.org/10.1038/S41598-022-26056-7 <nowiki>Dip-coating electromechanically active polymer actuators with SIBS from midblock-selective solvents to achieve full encapsulation for biomedical applications</nowiki>], ''Scientific Reports''. [https://doi.org/10.1038/S41598-022-26056-7 https://doi.org/10.1038/S41598-022-26056-7]
* Kristian Kuppart, Simon Vigonski, Alvo Aabloo, Ye Wang, Flyura Djurabekova, Andreas Kyritsakis, Veronika Zadin (2021) [https://doi.org/10.3390/mi12101178 <nowiki>Mechanism of Spontaneous Surface Modifications on Polycrystalline Cu Due to Electric Fields</nowiki>], ''Micromachines''. [https://doi.org/10.3390/mi12101178 https://doi.org/10.3390/mi12101178]
* A. Kyritsakis, V. Zadin (2021) [https://doi.org/10.1063/5.0050516 <nowiki>Comment on “A coordinate system invariant formulation for space-charge limited current in vacuum” [Appl. Phys. Lett. 115, 054101 (2019)]</nowiki>], ''Applied Physics Letters''. [https://doi.org/10.1063/5.0050516 https://doi.org/10.1063/5.0050516]
* Oras, Sven, Vlassov, Sergei, Vigonski, Simon, Polyakov, Boris, Antsov, Mikk, Zadin, Vahur, Lohmus, Runno, Mougin, Karine (2020) [https://doi.org/10.3762/BJNANO.11.6 <nowiki>The effect of heat treatment on the morphology and mobility of Au nanoparticles</nowiki>], ''Beilstein Journal of Nanotechnology''. [https://doi.org/10.3762/BJNANO.11.6 https://doi.org/10.3762/BJNANO.11.6]
* Veske, Mihkel, Kyritsakis, Andreas, Djurabekova, Flyura, Sjobak, Kyrre Ness, Aabloo, Alvo, Zadin, Vahur (2020) [https://doi.org/10.1103/PHYSREVE.101.053307 <nowiki>Dynamic coupling between particle-in-cell and atomistic simulations</nowiki>], ''Physical Review E''. [https://doi.org/10.1103/PHYSREVE.101.053307 https://doi.org/10.1103/PHYSREVE.101.053307]
* Ville Jansson, Ekaterina Baibuz, Andreas Kyritsakis, Simon Vigonski, Vahur Zadin, Stefan Parviainen, Alvo Aabloo, Flyura Djurabekova (2020) [https://doi.org/10.1088/1361-6528/ab9327 <nowiki>Growth mechanism for nanotips in high electric fields</nowiki>], ''Nanotechnology''. [https://doi.org/10.1088/1361-6528/ab9327 https://doi.org/10.1088/1361-6528/ab9327]
* Kimari, Jyri, Jansson, Ville, Vigonski, Simon, Baibuz, Ekaterina, Domingos, Roberto, Zadin, Vahur, Djurabekova, Flyura (2020) [https://doi.org/10.1016/J.COMMATSCI.2020.109789 <nowiki>Application of artificial neural networks for rigid lattice kinetic Monte Carlo studies of Cu surface diffusion</nowiki>], ''Computational Materials Science''. [https://doi.org/10.1016/J.COMMATSCI.2020.109789 https://doi.org/10.1016/J.COMMATSCI.2020.109789]
* Summer, Faiza, Zadin, Vahur, Nakshatharan, S. Sunjai, Aabloo, Alvo, Torop, Janno (2020) [https://doi.org/10.1016/J.EST.2020.101304 <nowiki>Optimization of Electrochemical Flow Capacitor (EFC) design via finite element modeling</nowiki>], ''Journal of Energy Storage''. [https://doi.org/10.1016/J.EST.2020.101304 https://doi.org/10.1016/J.EST.2020.101304]
* Ville Jansson, Andreas Kyritsakis, Simon Vigonski, Ekaterina Baibuz, Vahur Zadin, Alvo Aabloo, Flyura Djurabekova (2020) [https://doi.org/10.1088/1361-651X/ab7151 <nowiki>Tungsten migration energy barriers for surface diffusion: a parameterization for KMC simulations</nowiki>], ''Modelling and Simulation in Materials Science and Engineering''. [https://doi.org/10.1088/1361-651X/ab7151 https://doi.org/10.1088/1361-651X/ab7151]
* Antsov, Mikk, Polyakov, Boris, Zadin, Vahur, Mets, Magnus, Oras, Sven, Vahtrus, Mikk, Lohmus, Runno, Dorogin, Leonid, Vlassov, Sergei (2019) [https://doi.org/10.1016/J.MICRON.2019.102686 <nowiki>Mechanical characterisation of pentagonal gold nanowires in three different test configurations: A comparative study</nowiki>], ''Micron''. [https://doi.org/10.1016/J.MICRON.2019.102686 https://doi.org/10.1016/J.MICRON.2019.102686]
* Davide Grazioli, Osvalds Verners, Vahur Zadin, Daniel Brandell, Angelo Simone (2019) [https://doi.org/10.1016/j.electacta.2018.07.234 <nowiki>Electrochemical-mechanical modeling of solid polymer electrolytes: Impact of mechanical stresses on Li-ion battery performance</nowiki>], ''Electrochimica Acta''. [https://doi.org/10.1016/j.electacta.2018.07.234 https://doi.org/10.1016/j.electacta.2018.07.234]
* Vlassov, Sergei, Mets, Magnus, Polyakov, Boris, Bian, Jianjun, Dorogin, Leonid, Zadin, Vahur (2019) [https://doi.org/10.3762/BJNANO.10.237 <nowiki>Abrupt elastic-to-plastic transition in pentagonal nanowires under bending</nowiki>], ''Beilstein Journal of Nanotechnology''. [https://doi.org/10.3762/BJNANO.10.237 https://doi.org/10.3762/BJNANO.10.237]
* Toijala, H., Eimre, K., Kyritsakis, A., Zadin, V, Djurabekova, F. (2019) [https://doi.org/10.1103/PHYSREVB.100.165421 <nowiki>Ab initio calculation of field emission from metal surfaces with atomic-scale defects</nowiki>], ''Physical Review B''. [https://doi.org/10.1103/PHYSREVB.100.165421 https://doi.org/10.1103/PHYSREVB.100.165421]
* Torop, Janno, Summer, Faiza, Zadin, Vahur, Koiranen, Tuomas, Janes, Alar, Lust, Enn, Aabloo, Alvo (2019) [https://doi.org/10.1140/EPJE/I2019-11766-2 <nowiki>Low concentrated carbonaceous suspensions assisted with carboxymethyl cellulose as electrode for electrochemical flow capacitor</nowiki>], ''The European Physical Journal E''. [https://doi.org/10.1140/EPJE/I2019-11766-2 https://doi.org/10.1140/EPJE/I2019-11766-2]
* Davide Grazioli, Vahur Zadin, Daniel Brandell, Angelo Simone (2019) [https://doi.org/10.1016/j.electacta.2018.07.146 <nowiki>Electrochemical-mechanical modeling of solid polymer electrolytes: Stress development and non-uniform electric current density in trench geometry microbatteries</nowiki>], ''Electrochimica Acta''. [https://doi.org/10.1016/j.electacta.2018.07.146 https://doi.org/10.1016/j.electacta.2018.07.146]
* V Zadin, M Veske, S Vigonski, V Jansson, J Muszinsky, S Parviainen, A Aabloo, F Djurabekova (2018) [https://doi.org/10.1088/1361-651X/aaa928 <nowiki>Simulations of surface stress effects in nanoscale single crystals</nowiki>], ''Modelling and Simulation in Materials Science and Engineering''. [https://doi.org/10.1088/1361-651X/aaa928 https://doi.org/10.1088/1361-651X/aaa928]
* Baibuz, Ekaterina, Vigonski, Simon, Lahtinen, Jyri, Zhao, Junlei, Jansson, Ville, Zadin, Vahur, Djurabekova, Flyura (2018) [https://doi.org/10.1016/J.DIB.2018.01.066 <nowiki>Data sets of migration barriers for atomistic Kinetic Monte Carlo simulations of Cu self-diffusion via first nearest neighbour atomic jumps</nowiki>], ''Data in Brief''. [https://doi.org/10.1016/J.DIB.2018.01.066 https://doi.org/10.1016/J.DIB.2018.01.066]
* Metspalu, Tarvo, Jansson, Ville, Zadin, Vahur, Avchaciov, Konstantin, Nordlund, Kai, Aabloo, Alvo, Djurabekova, Flyura (2018) [https://doi.org/10.1016/J.NIMB.2017.11.001 <nowiki>Cu self-sputtering MD simulations for 0.1-5 keV ions at elevated temperatures</nowiki>], ''Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms''. [https://doi.org/10.1016/J.NIMB.2017.11.001 https://doi.org/10.1016/J.NIMB.2017.11.001]
* Veske, Mihkel, Kyritsakis, Andreas, Eimre, Kristjan, Zadin, Vahur, Aabloo, Alvo, Djurabekova, Flyura (2018) [https://doi.org/10.1016/J.JCP.2018.04.031 <nowiki>Dynamic coupling of a finite element solver to large-scale atomistic simulations</nowiki>], ''Journal of Computational Physics''. [https://doi.org/10.1016/J.JCP.2018.04.031 https://doi.org/10.1016/J.JCP.2018.04.031]
* Baibuz, Ekaterina, Vigonski, Simon, Lahtinen, Jyri, Zhao, Junlei, Jansson, Ville, Zadin, Vahur, Djurabekova, Flyura (2018) [https://doi.org/10.1016/J.COMMATSCI.2017.12.054 <nowiki>Migration barriers for surface diffusion on a rigid lattice: Challenges and solutions</nowiki>], ''Computational Materials Science''. [https://doi.org/10.1016/J.COMMATSCI.2017.12.054 https://doi.org/10.1016/J.COMMATSCI.2017.12.054]
* Simon Vigonski, Ville Jansson, Sergei Vlassov, Boris Polyakov, Ekaterina Baibuz, Sven Oras, Alvo Aabloo, Flyura Djurabekova, Vahur Zadin (2018) [https://doi.org/10.1088/1361-6528/aa9a1b <nowiki>Au nanowire junction breakup through surface atom diffusion</nowiki>], ''Nanotechnology''. [https://doi.org/10.1088/1361-6528/aa9a1b https://doi.org/10.1088/1361-6528/aa9a1b]
* Baibuz, Ekaterina, Vigonski, Simon, Lahtinen, Jyri, Zhao, Junlei, Jansson, Ville, Zadin, Vahur, Djurabekova, Flyura (2018) [https://doi.org/10.1016/J.DIB.2018.04.060 <nowiki>Data sets of migration barriers for atomistic Kinetic Monte Carlo simulations of Fe self-diffusion</nowiki>], ''Data in Brief''. [https://doi.org/10.1016/J.DIB.2018.04.060 https://doi.org/10.1016/J.DIB.2018.04.060]
* Priimagi, Priit, Asfaw, Habtom D., Srivastav, Shruti, Kasemagi, Heiki, Aabloo, Alvo, Brandell, Daniel, Zadin, Vahur (2018) [https://doi.org/10.1016/J.ELECTACTA.2018.05.179 <nowiki>Modeling 3D-microbatteries based on carbon foams</nowiki>], ''Electrochimica Acta''. [https://doi.org/10.1016/J.ELECTACTA.2018.05.179 https://doi.org/10.1016/J.ELECTACTA.2018.05.179]
* Kyritsakis, A., Veske, M., Eimre, K., Zadin, V, Djurabekova, F. (2018) [https://doi.org/10.1088/1361-6463/AAC03B <nowiki>Thermal runaway of metal nano-tips during intense electron emission</nowiki>], ''Journal of Physics D: Applied Physics''. [https://doi.org/10.1088/1361-6463/AAC03B https://doi.org/10.1088/1361-6463/AAC03B]
* Priimägi, P., Kasemägi, H., Aabloo, A., Brandell, D., Zadin, V. (2017) [http://doi.org/10.1016/j.electacta.2017.05.055 <nowiki>Thermal Simulations of Polymer Electrolyte 3D Li-Microbatteries</nowiki>], ''Electrochimica Acta''. [http://doi.org/10.1016/j.electacta.2017.05.055 http://doi.org/10.1016/j.electacta.2017.05.055]
* Zadin, Vahur, Brandell, Daniel (2016) [https://doi.org/10.1142/9789814651905_0021 <nowiki>Electrochemical Simulations of 3D-Battery Architectures</nowiki>], ''HANDBOOK OF GREEN MATERIALS, VOL 3: SELF - AND DIRECT - ASSEMBLING OF BIONANOMATERIALS''. [https://doi.org/10.1142/9789814651905_0021 https://doi.org/10.1142/9789814651905_0021]
* Mets, M., Antsov, M., Zadin, V., Dorogin, L.M., Aabloo, A., Polyakov, B., Lõhmus, R., Vlassov, S. (2016) [http://doi.org/10.1088/0031-8949/91/11/115701 <nowiki>Structural factor in bending testing of fivefold twinned nanowires revealed by finite element analysis</nowiki>], ''Physica Scripta''. [http://doi.org/10.1088/0031-8949/91/11/115701 http://doi.org/10.1088/0031-8949/91/11/115701]
* Yanagisawa, Hirofumi, Zadin, Vahur, Kunze, Karsten, Hafner, Christian, Aabloo, Alvo, Kim, Dong Eon, Kling, Matthias F., Djurabekova, Flyura, Osterwalder, Juerg, Wuensch, Walter (2016) [https://doi.org/10.1063/1.4967494 <nowiki>Laser-induced asymmetric faceting and growth of a nano-protrusion on a tungsten tip</nowiki>], ''APL Photonics''. [https://doi.org/10.1063/1.4967494 https://doi.org/10.1063/1.4967494]
* Priimägi, P., Brandell, D., Srivastav, S., Aabloo, A., Kasemägi, H., Zadin, V. (2016) [http://doi.org/10.1016/j.electacta.2016.05.047 <nowiki>Optimizing the design of 3D-pillar microbatteries using finite element modelling</nowiki>], ''Electrochimica Acta''. [http://doi.org/10.1016/j.electacta.2016.05.047 http://doi.org/10.1016/j.electacta.2016.05.047]
* Veske, M., Parviainen, S., Zadin, V., Aabloo, A., Djurabekova, F. (2016) [http://doi.org/10.1088/0022-3727/49/21/215301 <nowiki>Electrodynamics - Molecular dynamics simulations of the stability of Cu nanotips under high electric field</nowiki>], ''Journal of Physics D: Applied Physics''. [http://doi.org/10.1088/0022-3727/49/21/215301 http://doi.org/10.1088/0022-3727/49/21/215301]
* Vigonski, S., Veske, M., Aabloo, A., Djurabekova, F., Zadin, V. (2015) [http://doi.org/10.1016/j.amc.2015.01.102 <nowiki>Verification of a multiscale surface stress model near voids in copper under the load induced by external high electric field</nowiki>], ''Applied Mathematics and Computation''. [http://doi.org/10.1016/j.amc.2015.01.102 http://doi.org/10.1016/j.amc.2015.01.102]
* Zadin, V., Krasheninnikov, A.V., Djurabekova, F., Nordlund, K. (2015) [http://doi.org/10.1002/pssb.201400140 <nowiki>Simulations of electromechanical shape transformations of Au nanoparticles</nowiki>], ''Physica Status Solidi (B) Basic Research''. [http://doi.org/10.1002/pssb.201400140 http://doi.org/10.1002/pssb.201400140]
* Zadin, V., Kasemägi, H., Valdna, V., Vigonski, S., Veske, M., Aabloo, A. (2015) [http://doi.org/10.1016/j.amc.2015.01.104 <nowiki>Application of multiphysics and multiscale simulations to optimize industrial wood drying kilns</nowiki>], ''Applied Mathematics and Computation''. [http://doi.org/10.1016/j.amc.2015.01.104 http://doi.org/10.1016/j.amc.2015.01.104]
* Eimre, K., Parviainen, S., Aabloo, A., Djurabekova, F., Zadin, V. (2015) [http://doi.org/10.1063/1.4926490 <nowiki>Application of the general thermal field model to simulate the behaviour of nanoscale Cu field emitters</nowiki>], ''Journal of Applied Physics''. [http://doi.org/10.1063/1.4926490 http://doi.org/10.1063/1.4926490]
* Vigonski, S., Djurabekova, F., Veske, M., Aabloo, A., Zadin, V. (2015) [http://doi.org/10.1088/0965-0393/23/2/025009 <nowiki>Molecular dynamics simulations of near-surface Fe precipitates in Cu under high electric fields</nowiki>], ''Modelling and Simulation in Materials Science and Engineering''. [http://doi.org/10.1088/0965-0393/23/2/025009 http://doi.org/10.1088/0965-0393/23/2/025009]
* Zadin, V., Pohjonen, A., Aabloo, A., Nordlund, K., Djurabekova, F. (2014) [http://doi.org/10.1103/PhysRevSTAB.17.103501 <nowiki>Electrostatic-elastoplastic simulations of copper surface under high electric fields</nowiki>], ''Physical Review Special Topics - Accelerators and Beams''. [http://doi.org/10.1103/PhysRevSTAB.17.103501 http://doi.org/10.1103/PhysRevSTAB.17.103501]
* Zadin, V., Brandell, D., Kasemägi, H., Lellep, J., Aabloo, A. (2013) [http://doi.org/10.1016/j.jpowsour.2012.12.004 <nowiki>Designing the 3D-microbattery geometry using the level-set method</nowiki>], ''Journal of Power Sources''. [http://doi.org/10.1016/j.jpowsour.2012.12.004 http://doi.org/10.1016/j.jpowsour.2012.12.004]
* Zadin, V., Danilov, D., Brandell, D., Notten, P.H.L., Aabloo, A. (2012) [http://doi.org/10.1016/j.electacta.2012.01.039 <nowiki>Finite element simulations of 3D ionic transportation properties in Li-ion electrolytes</nowiki>], ''Electrochimica Acta''. [http://doi.org/10.1016/j.electacta.2012.01.039 http://doi.org/10.1016/j.electacta.2012.01.039]
* Zadin, V., Brandell, D. (2011) [http://doi.org/10.1016/j.electacta.2011.03.026 <nowiki>Modelling polymer electrolytes for 3D-microbatteries using finite element analysis</nowiki>], ''Electrochimica Acta''. [http://doi.org/10.1016/j.electacta.2011.03.026 http://doi.org/10.1016/j.electacta.2011.03.026]
* Zadin, V., Brandell, D., Kasemägi, H., Aabloo, A., Thomas, J.O. (2011) [http://doi.org/10.1016/j.ssi.2010.02.007 <nowiki>Finite element modelling of ion transport in the electrolyte of a 3D-microbattery</nowiki>], ''Solid State Ionics''. [http://doi.org/10.1016/j.ssi.2010.02.007 http://doi.org/10.1016/j.ssi.2010.02.007]
* Zadin, V., Kasemägi, H., Aabloo, A., Brandell, D. (2010) [http://doi.org/10.1016/j.jpowsour.2010.02.056 <nowiki>Modelling electrode material utilization in the trench model 3D-microbattery by finite element analysis</nowiki>], ''Journal of Power Sources''. [http://doi.org/10.1016/j.jpowsour.2010.02.056 http://doi.org/10.1016/j.jpowsour.2010.02.056]


*: optimeerida elektroodi pinda
=== Conference Papers ===


*: uurida terve aku käitumist laadimisel-tühjakslaadimisel
* Kyritsakis, A., Veske, M., Djurabekova, F., Zadin, V. (2017) [https://publons.com/wos-op/publon/29286563/ <nowiki>Nanotip evaporation under high electric field</nowiki>], ''International Vacuum Nanoelectronics Conference (IVNC)''.
* Veske, M., Kyritsakis, A., Djurabekova, F., Aare, R., Eimre, K., Zadin, V. (2016) [http://doi.org/10.1109/IVNC.2016.7551501 <nowiki>Atomistic modeling of metal surfaces under high electric fields: Direct coupling of electric fields to the atomistic simulations</nowiki>], ''2016 29th International Vacuum Nanoelectronics Conference, IVNC 2016''. [http://doi.org/10.1109/IVNC.2016.7551501 http://doi.org/10.1109/IVNC.2016.7551501]
* Zadin, V., Skaburskas, K., Vedru, J. (2007) [http://www.scopus.com/inward/record.url?eid=2-s2.0-78649938402&amp;partnerID=MN8TOARS <nowiki>Influence of breathing on Foucault cardiogram origination</nowiki>], ''IFMBE Proceedings''.


*: optimeerida sobivaid mikroaku arhitektuure.
=== Other ===


Meetodid makrotasandis, mida selliste uuringute läbiviimiseks kasutatakse on lõplike elementide meetod (LEM) ning juhul, kui tähelepanu keskendub mikrotasandile, siis molekulaardünaamilise simulatsiooni meetod (MD). Simulatsioonide läbiviimiseks kasutatakse LEM-i puhul tarkvarapakette COMSOL Multiphysics ja Elmer ning MD puhul tarkvarapaketti dl_poly.
* (1970) [https://doi.org/10.23731/CYRM-2018-002 <nowiki>CERN Yellow Reports: Monographs, Vol 2 (2018): The Compact Linear e+e− Collider (CLIC) : 2018 Summary Report</nowiki>]. [https://doi.org/10.23731/CYRM-2018-002 https://doi.org/10.23731/CYRM-2018-002]
LEM-i põhiideeks on uuritava objekti mingit omadust väljendava pideva funktsiooni lähendamises diskreetse, tükiti pidevatest funktsioonidest, mis on määratud igaüks mingis alampiirkonnas ning millede arv on lõplik, koosneva mudeliga. Otsitavate funktsioonide väärtused on kõigis punktides, välja arvatud etteantud väärtustega rajapunktides tundmatud. Funktsiooni väärtuste leidmiseks üle uuritava piirkonna paigutatud üksikpunktides (edaspidi sõlmedes) ongi LEM-i rakendamine sõlmedes tarvis siduda mingi funktsionaali minimeerimisega, mis annab vajaliku võrrandisüsteemi tundmatute sõlmväärtuste leidmiseks. Võrrandisüsteemi koostamiseks jagatakse uuritav objekt lõplikuks arvuks alampiirkondadeks, mis ei tohi teineteisega kattuda ning millede kogusumma peab andma kokku uuritava objekti. Elementideks jagatud uuritavat objekti nimetatakse tihti võrguks. Uuritava objekti mõõtmed võivad ulatuda mikromeetrist kuni meetriteni, ajaskaalad mikrosekunditest tundide, vahel isegi päevadeni.
Molekulaardünaamilise simulatsiooni meetodi puhul modelleeritakse aatomite ruumilist liikumist Newtoni seaduste järgi – igal simulatsioonisammul arvutatakse süsteemi kõikidele aatomitele selle süsteemi teiste aatomite poolt mõjuvad jõud. Saadud jõudude põhjal leitakse aatomitele mõjuvad kiirendused. Meetod on rakendatav süsteemidele, mis koosnevad tuhandest kunia paarikümnest tuhandest aatomist, süsteemi mõõtmed on kümnete nanomeetrite suurusjärgus ning ajaskaala ulatub kuni sadade nanosekunditeni.
 
----
 
 
 
== Põhieesmärgid ja uurimishüpoteesid ==
Doktoritöö eesmärgid on:
 
'''1.''' Leida arvutisimulatsioonide abil sobivaim arhitektuur 3D mikroakude jaoks.
 
'''2.''' Arendada olemasoleva tarkvara baasil mikroaku modelleerimiseks võimalikult optimaalsed ja täpsed simulatsioonimeetodid.
 
 
Põhilised tegevused eesmärkide saavutamiseks on:
 
'''1.''' Tarkvara ettevalmistamine efektiivseks simulatsioonide läbi viimiseks LEM-iga:
 
*: probleemi matemaatiline formuleerimine
 
*: tarkvara seadistamine
 
*: võrgu genereerimine
 
'''2.''' LEM-il läbi viidavad simulatsioonid mikroakude uurimiseks:
 
*: algmudeli paikapanek ning häälestamine, tagamaks edasistes arvutustes õigete lahendite saamist
 
*: erinevate  mikroaku arhitektuuride modelleerimine ning optimaalse arhitektuuri otsimine
 
*: mikroaku arhitektuuri optimeerimine
 
 
'''3.''' Molekulaardünaamika (MD) simulatsioonid LEM-il läbi viidavate arvutuste jaoks ainet iseloomustavate parameetrite leidmiseks (n. difusioonitegur, juhtivus).
 
 
== Töö ise ==
Kättesaadav neile, kes asjasse puutuvad [[Secure:VahursPhDWork]]

Revision as of 04:01, 21 November 2024

PhD thesis

Publications

Journal Articles

Conference Papers

Other