Student projects: Difference between revisions

From Intelligent Materials and Systems Lab

No edit summary
 
(101 intermediate revisions by 11 users not shown)
Line 2: Line 2:


''Siin on mõned tegemised, mide meie uurimisgrupi juures on võimalik teha. Tegemist pole lõpliku nimekirjaga ning head tegijad on alati oodatud huvitavate ideedega. Kõikidest teemadest on võimalik edasi minna kuni PhD kaitsmiseni.''
''Siin on mõned tegemised, mide meie uurimisgrupi juures on võimalik teha. Tegemist pole lõpliku nimekirjaga ning head tegijad on alati oodatud huvitavate ideedega. Kõikidest teemadest on võimalik edasi minna kuni PhD kaitsmiseni.''
''Tegijad, kes teevad oma töö hindele A, saavad ka väärilise töötasu.'' ''Huvi korral [[User:Alvo#Contacts|võta ühendust]]''. Mõnede teemade kirjeldused on inglise keeles. Nende teemade juhendajateks on külalisteadlased ja -õppejõud.
''Huvi korral [[User:Alvo#Contacts|võta ühendust]]''. Mõnede teemade kirjeldused on inglise keeles.  


='''Üldine info bakalaureuse- ja magistritöö tegijatele'''=


<!-- This is a comment --->
Teil on kaks juhendajat. Eeldame, et te vähemalt kord nädalas võtate vähemalt ühe juhendajaga kontakti ja arutate läbi oma mured ja tegemised. Lisaks ootame tudengitelt aktiivset osavõttu kord nädalas toimuvast labori seminarist ja journal club'ist, kus harjutatakse avalikku esinemist, et kaitsmisel oleks lihtsam.
= '''Eksperimentaalne materjaliteadus''' =
== Süsinikelektroodidega polümeersed täiturid==


Kunstlihaseid ehk elektroaktiivseid polümeerseid komposiitmaterjale on väga palju erinevaid. Meie tegeleme madalpingel töötavate ioonsete materjalidega, millel on mitmed eelised kasutamiseks mikroseadmetes ja meditsiinis. Hetkel on uurimisel kaks suunda. Esimese eesmärk on arendada kunstlihasetes kasutatavaid ioonvedelik-süsinik-polümeer komposiite, kasutades selleks erinevaid süsinikke— süsinikaerogeeli, karbiidset süsinikku, süsiniknanotorusid jpt. Teine suund keskendub uute kunstlihase valmistamise tehnoloogiate rakendamisele. Töö eesmärgiks on valmistada erinevad aktuaator-sensormaterjalid, uurida nende valmistamise võimalusi ja nende omadusi.
Tudeng sõlmib juhendajatega individuaalse juhendamise lepingu, kus täpsustatakse töökorraldus ja oodatavad tulemused


==Kunstlihased kosmoserakendustes==
Töö esimene versioon peab olema esitatud hiljemalt 1. maiks.
Esimene version peab sisaldama:
# sissejuhatust, mis räägib, miks projekti tulemus on vajalik ja mida teised selles valdkonnas maailmas teinud on;
# projekti teoreetilisi/matemaatilisi/mudeli aluseid lahti kirjutatuna;
# tehtud tegevuse detailset kirjeldust (detaile pole kunagi liiga palju, delete on lihtsaim funktsioon, mida juhendaja teie kirjaliku töö ümber kirjutamisel :) teha saab);
# töö tulemusi, st kas mõõtmistulemusi või seadme töötava! prototüübi tehniline kirjeldust ja seadet ennast;
# hinnangut oma tööle, st töö tulemuste edasise arengu analüüsi, tulemuste analüüsi ja hinnangut töö tulemuse kvaliteedile.


Meie poolt valmistatavad materjalid on kerged ning juhitavad madalate elektripingetega. Seetõttu pakuvad nad huvi kosmosetehnoloogia seadmete valmistajatele.
'''Töö kaitsmisele lubamiseks on kohustuslik läbida laborisisene eelkaitsmine, vajadusel korduv'''. Eelkaitsmiste ajagraafik kuulutatakse välja igal aastal aprillis. Arvestada tuleb ajaliste piirangutega-  Eelkaitsmisele õigeaegne registreerumine on tudengi kohustus.
Töö eesmärgiks on uurida kiirguse, temperatuuri jpt kosmoses materjalidele mõjuvate kahjustavate toimete mõju.


==Juhtivpolümeeridel põhinevate mitmekihiliste kunstlihaste valmistamine ja iseloomustamine==


Kunstlihased, sensorid ja energiahõiveseadmed on elektritjuhtivate orgaaniliste polümeeride uudsemateks ja põnevamateks arengusuundadeks.  Neid loodetakse kasutada meditsiinis, robootikas,  kosmose- ja militaartööstuses.  Enne laiaulatuslikku kasutuselevõttu on siiski vaja veel teha hulk arendustööd.  Mitmekihilise disain loob eeldused juhtivpolümeerse materjali paremaks kontrollimiseks ning tema omaduste parandamiseks. TÜ IMS laboris on välja töötatud uudsed sünteesimeetodid metallivabade kunstlihaste valmistamiseks.  Senistel lihtsa ühekihilise struktuuriga materjalidel on mitmeid puudusi (juhtuvuse langus, tundlikus väliskeskkonna mõjudele). Aktuatsiooni tekitavale polümeerikihile vastupidise ioonliikuvusega kihtide lisamine loob eelduse neid puudusi vältida.
<!-- This is a comment --->
= ''' Koostööprojektid ettevõtetega (BSC/MSC theses in collaboration with companies)'''=
== ABB Eesti / ABB Estonia ==
Lõputööde teemad mis on seotud koostööga ABB AS Eestiga. Töö läbi viimisel on kaasatud kaasjuhendaja ABB poolelt koos praktiseerimisvõimalusega ABB-s.


==Design of actuator performance ==
Following topics are conducted in collaboration with ABB Estonian branch. All the topics include co-supervision from ABB.
(EAP development, technology), Master or bachelor student
The focus of actuator research mainly based on actuator preparation in view of  new devices. Carbide derived carbon materials is applied as actuator and conductive material to deposit conducting polymer on it. The interaction between these materials are object of the actuator studies with main goal to optimize actuator strain and stress. Improvement of actuator devices over additional chemical modification (hydrophobic or hydrophilic coatings) are included in the new design of actuator performance.


* [[Utilization of Virtual Reality in Product Development of a VSD cabinet]]
* [[Electric and magnetic field analyses in ALT tester]]
* [[Creation of accurate contact modelling technique for linear FEM-analysis]]


== Flexible autofocus fluid lens device development for application at invisible shirt technology==
==Materjalide arendus tööstusele==
IT, Technology andmaterial scientist, PhD student or 1 Master student
Autofocus fluid lens device based on a formed interface between oil and water forming a lens, which change their form (concave  or convex) under applied electric field. A new design based on conducting polymer actuators and modification thereof, changing the interface between oil and electrolyte over membrane actuation, which required less energy for application in portable devices (cell phone, laptops).  The device was constructed for testing the membrane actuator. To apply different EAP actuators on it and minimize the device, different work need to be done in installing electronic control and testing actuator membranes. Flexible fluid lens is the next step to integrate it in smart shirt technology obtaining invisible shirts (optical effect).


==Scanning ionic conductance microscopy (SICM)==
Projekti raames lahendatakse erinevate tööstuspartnerite tehnoloogilisi probleeme või arendatakse neile uusi tooteid. Mõned näited:
1 PhD or 2 master/bachelor students, IT, physics, material science, technology
* mittepõlev silikoonvaht istmepolstrite jm pehmenduste jaoks;
SICM is a new instrument to measure ion movement on surface of conductive material. Double micro pipettes filled with electrolyte connecting the conductive sample and current in nano and pico level are possible to obtain. We are looking for students to make the SICM instrument applicable for actuator measurements to obtain more information of charging/discharging mechanism. With implementing electrochemical method on SICM we also want to establish micro-polymerization of conducting polymers on new smart devices. The main part for IT students is to help us to get the SICM instrument in operation mode. For a student in material science, chemistry or physics we want to investigate in situ actuation modes of actuator sample to get more information how ions trnsport inside of the electro active polymers.
* mikroarmatuuriga poorbetoon, mis oleks korraga konstruktsiooni- ja isolatsioonimaterjal;
* kiirbetooni omaduste optimeerimine
* šlakigraanulite taaskasutus
* klaasi keemiline karastamine


==Nanobubble formation mini device construction==
= '''Liitium- ja naatriumakud (Li-Ion and Na-Ion batteries)''' =
Technology, Surface science, PhD or Master or Bachelor student
Nanobubbles (oxygen or ozone) in aqueous solution can be obtained over bursting of micro-bubbles and the goal of this project is to obtain such device which can be deducted between a water stream. The application of this device is focus on cleaning purpose of solar cells which is still a not solved topic in the market. The harvest of energy in solar cells decrease after 5 years in the range between 20-40 percent of unclean solar panels (dust and dirt). To find a simple not environmental damaging method is one of the reason applying just water and air in Nanobubble formation and cleaning functionality. The project focus on future collaboration with solar-companies, cleaning and fumigations purpose.


==Süsinikelektroodidega täiturmaterjali tööstusliku tootmise ettevalmistamine==
Kaasaskantav mikroakutoide on oluliseks faktoriks paljudes arenevates tehnoloogiasuundades, kuna mikroelektroonika mõõtmete vähenemine on jätnud kaugele seljataha väikesemõõduliste vooluallikate arengu. Sobivate kaasaskantavate vooluallikate vähene energiamahtuvus on saamas takistuseks mitmete tehnoloogiasuundade nagu kaasaskantavate arvutusseadmete (Weareable Computing Technology e. WCT), mikroelektromehaaniliste seadmete (MEMS), biomeditsiiniliste mikromasinate arengus. Üheks võtmeprobleemiks selliste seadmete edukaks toimimiseks on nende varustamine vooluallikatega, mis ühelt küljelt tagavad seadme piisava energiahulgaga varustamise ning teiselt küljelt, on võimalikult väikesemõõduised ning kergekaalulised. Sellise konfiguratsiooni juures tulevad ilmsiks olemasolevate, olemuselt kahemõõtmeliste (2D) liitium-ioonakude puudused – nii väikeste ruum- ja pindalade puhul ei ole võimalik saavutada piisavaid energiatihedusi. Seda probleemi võimaldab lahendada 3D mikroakude (MB) kasutusele võtmine. Liitiumioonakude arhitektuuri optimeerimise eesmärgiks on valmistada töötav 3D-MB, mille energiatihedus ning mahtuvus on vähemalt suurusjärgu võrra suuremad praegu kasutusel olevate akude omadest. Toimiva 3D-MB välja töötamiseks arendatakse ja uuritakse erinevaid mikroaku arhitektuure, neist sobiva väljavalimist ning optimeerimist lihtsustavad oluliselt teoreetilised, arvutisimulatsioonidega läbi viidavad uuringud, mis võimaldavad testida erinevaid 3D-MB arhitektuure, lahendada optimeerimisülesandeid elektroodide optimaalse geomeetria leidmiseks; optimeerida elektroodi pinda; uurida terve aku käitumist laadimisel-tühjakslaadimisel; optimeerida sobivaid mikroaku arhitektuure. Meetodid makrotasandis, mida selliste uuringute läbiviimiseks kasutatakse on lõplike elementide meetod (LEM) ning mikrotasandil molekulaardünaamilise simulatsiooni meetod (MD). Simulatsioonide läbiviimiseks kasutatakse LEM-i puhul tarkvarapakette COMSOL Multiphysics ja Elmer ning MD puhul tarkvarapaketti dl_poly.


Projekti sisuks on välja töötada materjal ja metoodika kuidas valmistada süsinikelektroodidega täitureid tööstuslikke protsesse kasutades. Töö laiem eesmärk on selliste materjalide masstootmine.
* [[3D-mikroakud]]
* [[Akude valmistamine printimistehnoloogia abil]]


= '''Arvutieksperimendid ja materjalide simuleerimine''' =
='''Materials science in CERN'''=


==Materjalidefektide simuleerimine kõrgsageduslikes elektriväljades==
CERN is one of the leading research centres in the Europe, responsible for several key science and technology breakthroughs such as confirmation of Higgs boson and internet. It boosts constant research and development in many different fields next to fundamental particle or nuclear physics, such as materials science. One of the resent developments is new CLIC accelerator, intended for both, precise measurements of Higgs boson and probing new, beyond standard model physics. However, development of CLIC has significant materials science related issues: it utilizes huge electric fields to accelerate particles and suffers significant electric field related material surface damage([[Electrical breakdowns in CLIC accelerator]] ).
[[Image:Reklaamposter.png|right|thumb|400px]]
Nutikas tudeng, kes sa tunned huvi tänapäeva tippteaduse vastu ning soovid oma lõputööd teha CERN-iga seotud teemal ning tegutsedes CERN-is! Võta ühendust ning osale uue CERN-is baseeruva kiirendi väljatöötamisel! '''(Doktoritöö võimalus!)'''


Kompaktne lineaarpõrguti (CLIC) on CERN-is arendatav uue põlvkonna lineaarkiirendi, kus osakeste kiirendamine toimub sirgjoonelistel trajektooridel. Planeeritav seade on 50 km pikk ning sellega jõutakse  energiateni 0.5 TeV - 5 TeV. Saavutamaks sellist energiat, kasutatakse kiirendavat elektrivälja, mis ulatub 100-150 MV/m. Sellistes kõrgetes elektriväljades avaldub olulise probleemina aga sage elektriliste läbilöökide tekkimine kiirendi elektroodidel.  
The work conducted during this project is part of larger international collaboration including CERN, Finland, Sweden, Israel and more. Participation will include a lot of challenging work, but offers possibilities to take part from CERN summer student projects, have visits to collaborating groups and publish cutting edge research results early on. For example, so far, all related masters theses have yielded at least one research paper! These topics have not only opened up opportunities for follow up PhD studies in Tartu University but also in Helsinki University and EMPA (part of ETH domain in Switzerland).


Läbilöögid avalduvad vaakumkaartena (kaarlahendus vaakumis), ning  üldiselt eeldatakse, et vaakumkaar algab elektrivälja võimendavate nanoskaalas olevatelt nõelasarnastelt pinnadefektidelt, nende pinnadefektide tekkemehhanism on ebaselge. '''Elektriliste läbilöökide kahandamine alla kriitilise piiri on keskse tähtsusega probleemiks CLIC-i ehitamisel!'''
Üks lubavamaid meetodeid kiirendi struktuuri parandamiseks on uute materjalide leidmine, mis suudavad taluda kõrgeid elektrivälju ning kiireid elektriväljade muutusi. Võtmeprobleemiks uute materjalide leidmisel on arusaamine füüsikalistest protsessidest, mis toimuvad materjalis läbilöögi eel ning ajal. Uurimustöös kasutatakse erinevaid arvutusmeetodeid, nagu '''molekulaardünaamika, lõplike elementide meetod ja kineetiline Monte-Carlo''', selgitamaks elektriliste läbilöökideni viivate pinnadefektide tekkepõhjuseid. Töös vajalike aruvutisimulatsioonide läbiviimine tähendab, et suures plaanis kasutatakse nn. '''„multiscale“ simulatsioone''', millega kaetakse materjalide simuleerimine alates atomistlikust skaalast kuni makroskaalani. 


Lineaarkiirendi rakendusvaldkondadeks on näiteks  standardmudeli järgne füüsika (physics beyond the standard model), Higgsi bosoni täppismõõtmised ning meditsiinilised valdkonnad, nagu näiteks vähiravi.
'''Only some examples of current extremely interesting topics are presented below.''' While some topics are more physics focused, others are more suitable for Computer Engineering curricula students!


==Kunstlihaste materjalide uurimine erinevate arvutisimulatsioonimeetodite abil==
(We are always open to your own ideas and suggestions considering possible thesis topic!!!!)


* Tegemist on materjaliga, mida välise elektriväljaga on võimalik panna kuju muutma: painduma, punduma, kokku tõmbuma - nagu teeb reaalne lihas
* DFT simulations of Cu under external electric field
* kunstlihase materjal võib ka reageerida välisele mehaanilisele kujumuutusele elektrilise signaaliga
* Electric field influence to the interatomic potentials in Molecular Dynamics studies
* kunstlihas tegutseb hääletult, olles ise mõõtmetelt väga väike
* Nanoscale metal surface under RF electriomagnetic field
* kunstlihase materjalidena uuritakse selliseid "hitte" nagu grafeen ja ioonvedelik
* Influence of nanoscale surface defects to the electron emission and electrical conductivity of the material
* arvutisimulatsioonid viivad sind materjali "sisse", võimaldades näha seda, mis katses jääb varju, anda infot toimuvate protsesside kohta ja näpunäiteid materjalide parendamiseks
* Influence of the electric field to the generation of surface defects using in situ SEM and computer simulations
* tahad teda, kuidas liigutab 2 cm pikkune riba kunstlihast? võta lõplike lementide meetod ja sa näed ära pinged ja deformatsioonid kujumuutmisel
* [[Thermal runaway simulation with Femocs code and Poisson solver]]
* tahad teada, kuidas elektroodide kuju muutmine mõjutab liitiumioonaku mahtuvust - seda, kui kaua sinu elektriauto mööda Tartu-Tallinna maanteed suudaks kihutada? võta lõplike elementide meetod ja sa saad välja arvutada aku tühjenemise kiiruse sinu elektriauto toitmisel
* tahad teada, kuidas liiguvad ja mõjutavad üksteist aatomid ja molekulid kunstlihases ja liitiumioonaku elektroodides ning elektrolüüdis? võta molekulaardünaamiline simulatsioon ja sa saad siseneda maailma, mis on 10000 korda väiksem sinu juuksekarva läbimõõdust
* tahad virtuaalselt istuda iga aatomi peal ja näha, kuidas ühe aatomi elektronpilv lööb teise oma segamini? võta kvantkeemiline molekulaardünaamika ja sinu sõit lainefunktsioonide harjadel on pöörasem kui Ristna neemel Katja ajal.


==Liitium-ioon akude arhitektuuri optimeerimine arvutisimulatsioonide abil==


Kaasaskantav mikroakutoide on oluliseks faktoriks paljudes arenevates tehnoloogiasuundades, kuna mikroelektroonika mõõtmete vähenemine on jätnud kaugele seljataha väikesemõõduliste vooluallikate arengu. Sobivate kaasaskantavate vooluallikate vähene energiamahtuvus on saamas takistuseks mitmete tehnoloogiasuundade nagu kaasaskantavate arvutusseadmete (Weareable Computing Technology e. WCT), mikroelektromehaaniliste seadmete (MEMS), biomeditsiiniliste mikromasinate arengus. Üheks võtmeprobleemiks selliste seadmete edukaks toimimiseks on nende varustamine vooluallikatega, mis ühelt küljelt tagavad seadme piisava energiahulgaga varustamise ning teiselt küljelt, on võimalikult väikesemõõduised ning kergekaalulised. Sellise konfiguratsiooni juures tulevad ilmsiks olemasolevate, olemuselt kahemõõtmeliste (2D) liitium-ioonakude puudused – nii väikeste ruum- ja pindalade puhul ei ole võimalik saavutada piisavaid energiatihedusi. Seda probleemi võimaldab lahendada 3D mikroakude (MB) kasutusele võtmine.
Software devfelopment related to [https://github.com/veskem/femocs Femocs] development ('''suitable also for computer engineering students'''):
Liitiumioonakude arhitektuuri optimeerimise eesmärgiks on valmistada töötav 3D-MB, mille energiatihedus ning mahtuvus on vähemalt suurusjärgu võrra suuremad praegu kasutusel olevate akude omadest. Toimiva 3D-MB välja töötamiseks arendatakse ja uuritakse erinevaid mikroaku arhitektuure, neist sobiva väljavalimist ning optimeerimist lihtsustavad oluliselt teoreetilised, arvutisimulatsioonidega läbi viidavad uuringud, mis võimaldavad testida erinevaid 3D-MB arhitektuure, lahendada optimeerimisülesandeid elektroodide optimaalse geomeetria leidmiseks; optimeerida elektroodi pinda; uurida terve aku käitumist laadimisel-tühjakslaadimisel; optimeerida sobivaid mikroaku arhitektuure.
* implement new physics into [https://github.com/veskem/femocs Femocs] code such as elastisity, stresses, fluid dynamics for simulating molten nanotips
Meetodid makrotasandis, mida selliste uuringute läbiviimiseks kasutatakse on lõplike elementide meetod (LEM) ning mikrotasandil molekulaardünaamilise simulatsiooni meetod (MD). Simulatsioonide läbiviimiseks kasutatakse LEM-i puhul tarkvarapakette COMSOL Multiphysics ja Elmer ning MD puhul tarkvarapaketti dl_poly.
* implement 2nd order tetrahedral FEM solver
* implement Voronoi FEM solver
* implement mesh builder that uses previous mesh as starting point
* implement more advanced (and parallel) mesh smoothing
* increase parallelization (look / implement parallel mesh generators, parallelize coordination calculation that uses splitted nborlist, parallelize & optimize tet->hex conversion)


= '''Aktuaatorid, seadmed ja nende juhtimine''' =
Contact: Vahur Zadin (vahur.zadin@ut.ee)
==IPMC elektromehhaanilisi omadusi uuriva seadme juhtimine==


Töö eesmärgiks on koostada eksperimentaalne seade, mis mõõdab elektroaktiivsete polümeeride elektromehaanilisi omadusi. Materjale kasutatakse kunstlihastena erinevates rakendustes. Töö tulemuseks peab valmima moodul, mis võimaldab seadet juhtuda USB kaudu.
= '''Eksperimentaalne materjaliteadus''' =


==IPMC täitureid kasutava autonoomse seadme konstrueerimine==
==Bioühilduvad elektroaktiivsed polümeerid==


Eesmärgiks on nn kunstlihaeid kasutavate materjalide abil liikuvate autonoomsete seadmete konstrueerimine ning töö kirjeldamine. Valik ideid: "putukas", ratas, minipurilennuk, mikrohumanoid jne.
(23.08.2018)


==Süsinik-polümeermaterjalidest täiturite juhtimine==
Bioinspireeritud robootika on tänapäeva inseneritehnoloogia ja teaduse peamisi arengusuundi. Traditsioonilised aktuaatorid ei ole pehmetes ja painduvates seadmetes rakendatavad, seega on juba aastakümneid uuritud elektroaktiivseid polümeerseid täitureid (''electroactive polymer'' - EAP). EAP-de silmapaistvaks omaduseks on nende multifunktsionaalsus: materjali saab rakendada nii aktuaatori (omadused muutuvad elektrivälja toimel) kui ka sensorina (muutus keskkonna tingimustes põhjustab detekteeritavat elektrivoolu). Elektroaktiivsete polümeeride ühe rakendusena on välja pakutud mitmesugused meditsiiniseadmed (implanteeritavad sensorid, drug delivery seadmed, ...). Nõudmised materjalile on kõrged: ideaalne aktuaator omab laia liigutusulatust juba madalal pingel, on kiire, kerge, vastupidav ning lihtsalt ja odavalt toodetav. Lisaks peab materjal olema bioühilduv.


Töö eesmärgiks on parametriseerida ning uurida materjaliteadlaste poolt laboris loodud uudsete materjalide elektromehaanilisi omadusi. St. vajalike elektromehaaniliste ja füüsikaliskeemiliste mudelite loomine, nende mudelite kirjeldamine ning eksperimentaalsete tulemuste vastu kinnitamine. Töö sobib (erinevates mahtudes) bakalaureus, magistri ja doktoritöödeks. Vajalik on võõrkeele oskus ning soov ja võimalus töötada aegajalt erinevates laborites välismaa ülikoolides.
Antud projekti eesmärk on välja töötada bioühilduv ioonne elektromehaaniline polümeerne täitur (''ionic electroactive polymer'' - IEAP). Uuritav materjal koosneb juhtivpolümeersete või süsinikelektroodide vahele paigutatud biopolümeersest membraanist, elektrolüüdina kasutatakse madala toksilisusega looduslikku päritolu ioonseid vedelikke. Bakalaureuse ja magistritöö teemasid on välja pakkuda projekti erinevates etappides:
* Ioonsete vedelike süntees ja karakteriseerimine
* Ioonsete vedelike segude uurimine nii eksperimentaalselt kui arvutuskeemia meetodeid kasutades
* Süsinikelektroodidega IEAP valmistamine pihustusmeetodil kasutades lähteainetena mitmesuguseid biopolümeere ja madala toksilisusega ioonseid vedelikke
* Erinevate ioonsete vedelike testimine juhtivpolümeersete (polüpürrool) elektroodidega IEAPs: optimaalse polüpürrooli struktuuri ja sünteesiparameetrite otsimine erinevate ioonsete vedelike jaoks
* Biopolümeersete membraanide valmistamine elektrospinnimise teel ja saadud materjalide testimine juhtivpolümeersete IEAP-de valmistamiseks
* ''deep eutectic solvents'' kui alternatiiv ioonsetele vedelikele: kas on rakendatav IEAP-des?


==IPMC/süsinik polümeermaterjalidest energiakogujate uurimine==
== Süsinikelektroodidega polümeersed täiturid==


Töö eesmärgiks on parametriseerida ning uurida materjaliteadlaste poolt laboris loodud uudsete materjalide elektromehaanilisi omadusi eesmärgiga vinkeskkonnas olevate vibratsioonidest saadav energia muundada elektrienergiaks. Töö kujutab endast vajalike elektromehaaniliste ja füüsikaliskeemiliste mudelite loomist, nende mudelite kirjeldamine nin eksperimentaalsete tulemuste vastu kinnitamine. Töö sobib (erinevates mahtudes) bakalaureuse, magistri ja doktoritöödeks. Vajalik on võõrkeele oskus ning soov ja võimalus töötada aegajalt erinevates laborites välismaa ülikoolides.
Kunstlihaseid ehk elektroaktiivseid polümeerseid täitureid on väga palju erinevaid. Nanopoorsest süsinikust elektroodidega ioonsed täiturid töötavad madalpingel ning neil on mitmed eelised kasutamiseks mikroseadmetes ja meditsiinis. Hetkel on uurimisel kaks suunda. Esimese eesmärk on arendada kunstlihasetes kasutatavaid ioonvedelik-süsinik-polümeer komposiite, kasutades selleks erinevaid süsinikmaterjale (süsinikaerogeeli, karbiidset süsinikku, süsiniknanotorusid jpt), ioonseid vedelikke, polümeere. Teine suund keskendub uute kunstlihase valmistamise tehnoloogiate rakendamisele. Uurime materjalide omadusi ja toimimismehhanisme, et kasutada neid aktuaatorite ning sensoritena. Bakalaureuse- ja magistritööks on teemasid mõlemast suunast:
* uut tüüpi nanomaterjali kasutamine täituri elektroodina
* süsinik-kserogeeli valmistamine ja struktuur-omadus seoste uurimine
* täituri valmistamine vurrkatmise meetodil (spin-coating)


== Lahedad ideed kunstlihaste rakendamiseks==
==Kunstlihased kosmoserakendustes==
=== Ilmekas uksekoputi ===


Teha kunstlihastest ilmekas uksekoputi, vt. http://www.youtube.com/watch?feature=player_detailpage&v=-Kee7iyp_3U&list=TLC5Famb33RxE
Meie poolt valmistatavad materjalid on kerged ning juhitavad madalate elektripingetega. Seetõttu pakuvad nad huvi kosmosetehnoloogia seadmete valmistajatele.
Töö eesmärgiks on uurida kiirguse, temperatuuri jpt kosmoses materjalidele mõjuvate kahjustavate toimete mõju.


===Fokuseeritava läätsesüsteemi konstrueerimine ja prototüüpimine===
==Juhtivpolümeeridel põhinevate mitmekihiliste kunstlihaste valmistamine ja iseloomustamine==


Eesmärgiks on ehitada lihtne prototüüp, mis suudab vedeliku rõhuga manipuleerides muuta pehme läätse fooksukaugust. Aktiivseks elemendiks on süsinik-polümeer materjalist valmistatud täitur ehk nn kunstlihas.
Kunstlihased, sensorid ja energiahõiveseadmed on elektritjuhtivate orgaaniliste polümeeride uudsemateks ja põnevamateks arengusuundadeks.  Neid loodetakse kasutada meditsiinis, robootikas, kosmose- ja militaartööstuses.  Enne laiaulatuslikku kasutuselevõttu on siiski vaja veel teha hulk arendustööd.  Mitmekihilise disain loob eeldused juhtivpolümeerse materjali paremaks kontrollimiseks ning tema omaduste parandamiseks.  TÜ IMS laboris on välja töötatud uudsed sünteesimeetodid metallivabade kunstlihaste valmistamiseks. Senistel lihtsa ühekihilise struktuuriga materjalidel on mitmeid puudusi (juhtuvuse langus, tundlikus väliskeskkonna mõjudele). Aktuatsiooni tekitavale polümeerikihile vastupidise ioonliikuvusega kihtide lisamine loob eelduse neid puudusi vältida.


=== Tigu===
==Süsinikelektroodidega täiturmaterjali tööstusliku tootmise ettevalmistamine==


Ehitada lihtne prototüüp, mis liigub teo põhimõttel.
Projekti sisuks on välja töötada materjal ja metoodika kuidas valmistada süsinikelektroodidega täitureid tööstuslikke protsesse kasutades. Töö laiem eesmärk on selliste materjalide masstootmine.


==Biokütuseelement==


= '''Signal and Image Processing''' ''(Signaali ja Pilditöötluse)'' =
Biokütuseelement on bioreaktor, mis muundab orgaaniliste ühendite keemiliste sidemete energia elektrienergiaks. Näiteks glükoosil ja hapnikul töötavad biokütuseelemendid, mis on võimelised energiat korjama erinevates bioloogilistest vedelikest, on paljulubavad seadmed rakendamiseks energiaallikatena mitmesugustes bioelektrilistes implantaatides nagu insuliinipumbad, ravimidosaatorid, närvistimulaatorid, südamestimulaatorid. Antud projekt tegeleb uudse elektroodimaterjali väljatöötamisega biokütuseelemendi jaoks.


==Image Processing Apps for Andriod Devices==


Converting the camera of your Android device to a cool semi-professional camera, by introducing various image processing tools and options, such as '''filtering''', '''illumination enhancement''', '''histogram representation for better shots''', and many more options. In line with this application, we will develop a '''photo slide player''' which will smartly choose and plays some musics which fits the photo.
==Pehmed kantavad sensorid==


You should have ''good knowledge of programming Android devices'' before you start the project.
Kõikvõimaliku kantava elektroonika populaarsuse kasv on suurendanud huvi pehmete sensorite vastu, mis mõõdaksid objektide (näiteks inimese keha) kuju ja asendit ilma liikumist takistamata. Senise uurimistöö käigus on välja töötatud sensortald, mis võimaldab sportlasel jälgida jala aluse rõhu jaotust aga ka igal sammul rakendatavat võimsust. Mitmekihiliste elastsete sensorite võrgustik suudab jälgida kehakuju muutust või liikumist, mõõtes korraga nii pikenemist kui painet. Uurimistöö jätkub erinevate uudsete jala- ja keha sensorite väljatöötamiseks.


= '''Arvutieksperimendid ja materjalide simuleerimine''' =


==TMS320C6713 DSP Board==
==Kunstlihaste materjalide uurimine erinevate arvutisimulatsioonimeetodite abil==


The TMS320C6713 device composes the floating-point DSP generation in the TMS320C6000™ DSP platform. The C6713 device is based on the high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making this DSP an excellent choice for multichannel and multifunction applications. The C6713 has a rich peripheral set that includes two Multichannel Audio Serial Ports (McASPs), two Multichannel Buffered Serial Ports (McBSPs), two Inter-Integrated Circuit (I2C) buses, one dedicated General-Purpose Input/Output (GPIO) module, two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface (EMIF) capable of interfacing to SDRAM, SBSRAM, and asynchronous peripherals.  
* Tegemist on materjaliga, mida välise elektriväljaga on võimalik panna kuju muutma: painduma, punduma, kokku tõmbuma - nagu teeb reaalne lihas
* kunstlihase materjal võib ka reageerida välisele mehaanilisele kujumuutusele elektrilise signaaliga
* kunstlihas tegutseb hääletult, olles ise mõõtmetelt väga väike
* kunstlihase materjalidena uuritakse selliseid "hitte" nagu grafeen ja ioonvedelik
* arvutisimulatsioonid viivad sind materjali "sisse", võimaldades näha seda, mis katses jääb varju, anda infot toimuvate protsesside kohta ja näpunäiteid materjalide parendamiseks
* tahad teda, kuidas liigutab 2 cm pikkune riba kunstlihast? võta lõplike lementide meetod ja sa näed ära pinged ja deformatsioonid kujumuutmisel
* tahad teada, kuidas elektroodide kuju muutmine mõjutab liitiumioonaku mahtuvust - seda, kui kaua sinu elektriauto mööda Tartu-Tallinna maanteed suudaks kihutada? võta lõplike elementide meetod ja sa saad välja arvutada aku tühjenemise kiiruse sinu elektriauto toitmisel
* tahad teada, kuidas liiguvad ja mõjutavad üksteist aatomid ja molekulid kunstlihases ja liitiumioonaku elektroodides ning elektrolüüdis? võta molekulaardünaamiline simulatsioon ja sa saad siseneda maailma, mis on 10000 korda väiksem sinu juuksekarva läbimõõdust
* tahad virtuaalselt istuda iga aatomi peal ja näha, kuidas ühe aatomi elektronpilv lööb teise oma segamini? võta kvantkeemiline molekulaardünaamika ja sinu sõit lainefunktsioonide harjadel on pöörasem kui Ristna neemel Katja ajal.


You can ''design'' your own highpass, lowpass, bandpass, and bandstop ''filter'', ''denoise'' your input voice signal, add or cancel ''echo'', as well as introduce positive and negative ''feedback'' to your voice signal.
= '''Aktuaatorid, seadmed ja nende juhtimine''' =


==IPMC täitureid kasutava autonoomse seadme konstrueerimine==


==Iris Recognition System Using Different Colour Channel Statistics==
Eesmärgiks on nn kunstlihaseid kasutavate materjalide abil liikuvate autonoomsete seadmete konstrueerimine ning töö kirjeldamine. Valik ideid: "putukas", ratas, minipurilennuk, mikrohumanoid jne.


The proposed project introduces a novel system for person identification using iris recognition. The system is fast, efficient and reliable, which uses the data acquired from the iris images for the identification purposes. The system uses not only the luminance but also the chrominance information of the iris images. Irises of different people contain distinctive patterns both in luminance and chrominance domains. The proposed system explores the pixel statistics of these distinctive patterns for high performance iris recognition. The system contains image acquisition devices such as cameras and necessary interface cards, as well as, a computer system that accommodates the developed algorithms for the recognition of persons based on their iris patterns. The proposed system differs in methodology and performance from the existing iris recognition systems which are mainly using the algorithm introduced by John Daugman. Most of the presented methods in the literature follow the approach of Daugman which consider only the luminance information of the iris images, however we propose to include the chrominance information acquired from different colour channels such as Hue and Saturation. The proposed system can be used for security systems including secure entrance into the important buildings such as banks, treasury and airports to increase the security. The system can easily be used at the border check points to speed up the unnecessary queues at the check points.
==Süsinik-polümeermaterjalidest täiturite juhtimine==


= '''Robootika''' =
Töö eesmärgiks on parametriseerida ning uurida materjaliteadlaste poolt laboris loodud uudsete materjalide elektromehaanilisi omadusi. St. vajalike elektromehaaniliste ja füüsikaliskeemiliste mudelite loomine, nende mudelite kirjeldamine ning eksperimentaalsete tulemuste vastu kinnitamine. Töö sobib (erinevates mahtudes) bakalaureus, magistri ja doktoritöödeks. Vajalik on võõrkeele oskus ning soov ja võimalus töötada aegajalt erinevates laborites välismaa ülikoolides.


= '''Robotics''' =
<big>Click [[student projects in robotics|here]] for [[student projects in robotics]]</big>


==Aldebaran Nao rakendamine==
= '''Soft Robotics''' =
[[soft robotics student projects|Currently active and relevant topics for soft robotics]]


Aldebaran Nao on poolemeetrine humanoidrobot, kes on varustatud mitmete andurite ja mootoritega. Ülesandeks on Nao rakendamine erinevate vajalike ja huvitavate ülesannete täitmiseks: suhtlemine, jalgpalli mängimine jne. RM/Intel Atom baasil töötav miniarvuti.
= '''Partneritega seotud teemad''' =


=== Robocup 2014 SPL ===
==Kõrgkoolide õppekavade masinõppel põhinev analüüs==
Team Philosopher is planning to participate in the upcoming Robocup in the standard platform league. RoboCup is an international robotics competition founded in 1997. The aim is to promote robotics and AI research, by offering a publicly appealing, but formidable challenge [http://en.wikipedia.org/wiki/RoboCup].
SPL league consists of several competitions which include: 5 vs. 5 soccer, drop-in soccer and technical challenges. 
Members: Gholamreza Anbarjafari, Kristian Hunt, Roland Pihlakas, Viljar Puusepp, and Siim Schults.
Contact: siimsch@ut.ee


Projekti eesmärgiks on arendada masinõppel põhinev tarkvara, mis suudaks automaatselt analüüsida ja kaardistada Tartu Ülikooli õppekavade ning nendes loetavate ainete sisu viisil, et oleks jooksvalt võimalik hinnata õppekvaliteeti ja selle vastavust tööturu reaalsetele vajadustele. '''Eriti sobilik tudengitele,''' kellel on lisaks erialasele huvile soov kokkupuutuda '''startup''' ja tehnoloogia ettevõttlusega.


== Glasses for Blind People: An aumatic way of Interacting with Environment for Blind People ==
The Project consists of several stages and a research folower can focus on of the following modules.
'''Image Processing Modules:'''
In this section the captured image via camera will be analysed. Specialy the faces will be detected and extracted, if it is one the faces in the database it will be recognized. In paralel the facial expression of the person will be also extracted. This will help the blid people to find out whether the person who is infront of him/her is happy or sad. This wil increase the quality of communication. Also various image pre-processing such image illumination enhancement is required at this stage which can be proposed and employeed.
'''GPS Modules:'''
Using GPS and also possible wireless data communication with a server can help the blind citizens to locate their current location and by using mapping systems such as Google Map they can go to their destination.
'''Sensor Modules:'''
In order to speed up some recations such as avoiding obstacle, ultrasonic or optic sensors are being used in this project. The sensors are working independently from the visual systems as their only task is to help the blid person to walk. The project is open various new window in the research, e.g. new algorithms can be added to the computer vision section such as facial expression recognition so a commander voice can inform the blind person current expression of the person in front of him/her. The benefits that this project brings to the society are also significant as communication between blind people.


'''Bakalaureuse- või magistritöö käigus loodav praktiline tarkvaralahendus:'''
* analüüsib õppekavade terviklikkust, erinevate moodulite ja õppeainete vaheliste seoste sidusust, vastavust õppekava ja mooduli üldeesmärkidele,
* analüüsib jooksvalt õppekavade vastavust tööturu vajadustele lähtuvalt töötajatele reaalselt esitatavatest kvalifikatsiooni nõuetest,
* annab õppejõududele ja programmijuhtidele infot võimalikest kattuvustest, puuduvatest eelteadmistest õppeainetele ja arenguvajadustest,
* võimaldab arendada ühismooduleid ja õppeaineid erinevate õppekavade vahel eeldusteadmiste lünkadeta ja kattuvusteta,
* võimaldab hinnata ja võrrelda juba olemasolevate ja veel loodavate õppekavade konkurentsivõimet teiste koolide sarnaste õppekavadega.


==Õpperobotid==


Eesmärgiks on arendada välja meelalahutuslike robootika teemalisi vahendeid lastele nii AHHAA teaduskeskuse kui nn robotiteatri tarbeks. Töö sisaldab seadme konstrueerimist,ning realiseerimist töötava prototüübi kujul. Konkreetseid ideid on mitmeid, kuid uued ideed on oodatud.
'''Antud lõputöö kontekstis olulised märksõnad on:'''
* suurandmed ja andmekaeve (big data & data mining)
* masinõppe algoritmid (machine learning)
* andmete visualiseerimine (data visualization)


= '''Partneritega seotud teemad''' =


==Mehhanoelektriliste andurite uurimine==
Lõputööd juhendab Aleksander Tõnnisson, kes on teinud üle 40-ne investeeringu iduettevõtetesse.
 
Töö eesmärgiks on eksperimentaalselt uurida erinevate mehaanilist liigutust elektriliseks muundavate materjalide omadusi. Töö hõlmab eksperimendi konstrueerimist ja arvutijuhitavate mõõtmiste teostamist LabVIEW keskkonnas. Sobib hästi arvutitehnika, füüsika ja materjaliteaduse tudengitele.
 
==Robotmannekeen rõivatööstusele==
 
Projekti eesmärgiks on arendada välja inimkeha kujuline mannekeeni alakeha rõivatööstusele kiirendamaks ning parendamaks disainerrõivaste väljatöötamist.
Projektis on vaja konstrueerida mehaanika sõlmed, realiseerida elektroonika juhtsõlmed, modeleerida ning luua algoritmid mannekeeni välispinna juhtimiseks ning arendada välja süsteemi kontroll tarkvara. Samuti on vaja arendada välja kasutajatarkvara. Projekti käigus tuleb  koostööd teha mitmete põnevate inimestega, kes on aktiivsed moe- ja rõivatööstuse vallas.
Sobib mitmeteks bakalaureuse ja magistritöödeks, sõltuvalt tasemest on ka töö maht erinev.
 
Projektil on ka konkreetne rakendus vt [http://www.fits.me www.fits.me]
 
==Puutetundlik sensor robotmannekeenile ==
 
Projekti eesmärgiks on arendada  inimkeha kujuline mannekeenile puutetundlike "naha" välja arendamine.
Projektis on vaja uurida ja testida erinevaid sensoreid, Leida olulised mõõtevahemikud ja mõõtetäpsused vastavalt vajadusele rakenduses. Projekti käigus tuleb  koostööd teha mitmete põnevate inimestega, kes on aktiivsed moe- ja rõivatööstuse vallas.
Sobib mitmeteks bakalaureuse ja magistritöödeks, sõltuvalt tasemest on ka töö maht erinev.


= '''Õppetööga seotud''' =
= '''Õppetööga seotud''' =
==Sensori-anduri töö uurimine ja juhendmaterjali koostamine==
Töö eesmärgiks on eksperimentaalselt parametriseerida robootikas/automaatikas kasutatav sensor/täitur ning tulemuse põhjal koostada protokoll ja metoodika selle kasutamiseks.
== Juhendmaterjali koostamine koolirobootika tarbeks==
== Juhendmaterjali koostamine koolirobootika tarbeks==
 
Töö eesmärgiks on koostada õpetajatele juhendmaterjale ja põnevaid tööülesandeid robootikast, aga samuti ülesandeid, mis aitavad lastel õppida füüsikat, matemaatikat, keemiat ja bioloogiat.
Töö eesmärgiks on koostada õpetajatele juhendmaterjale ja põnevaid tööülesandeid, aga samuti ülesandeid, mis aitavad lastel õppida füüsikat, matemaatikat, keemiat ja bioloogiat.
-->
-->


=Üldine info bakalaureuse- ja magistritöö tegijatele=
Teil on kaks juhendajat. Eeldame, et te vähemalt kord nädalas võtate vähemalt ühe juhendajaga kontakti ja arutate läbi oma mured ja tegemised.


Töö esimene versioon peab olema esitatud hiljemalt 1. maiks. Hilinemiseks sobivad ainult dokumentaalselt tõestatavad meditsiinilised põhjused. Esimene version peab sisaldama:
# sissejuhatust, mis räägib, miks projekti tulemus on vajalik ja mida teised selles valdkonnas maailmas teinud on;
# projekti teoreetilisi/matemaatilisi/mudeli aluseid lahti kirjutatuna;
# tehtud tegevuse detailset kirjeldust (detaile pole kunagi liiga palju, delete on lihtsaim funktsioon, mida juhendaja teie kirjaliku töö ümber kirjutamisel :) teha saab);
# töö tulemusi, st kas mõõtmistulemusi või seadme töötava! prototüübi tehniline kirjeldust ja seadet ennast;
# hinnangut oma tööle, st töö tulemuste edasise arengu analüüsi, tulemuste analüüsi ja hinnangut töö tulemuse kvaliteedile.





Latest revision as of 07:56, 25 September 2018

IMS poster.png

Siin on mõned tegemised, mide meie uurimisgrupi juures on võimalik teha. Tegemist pole lõpliku nimekirjaga ning head tegijad on alati oodatud huvitavate ideedega. Kõikidest teemadest on võimalik edasi minna kuni PhD kaitsmiseni. Huvi korral võta ühendust. Mõnede teemade kirjeldused on inglise keeles.

Üldine info bakalaureuse- ja magistritöö tegijatele

Teil on kaks juhendajat. Eeldame, et te vähemalt kord nädalas võtate vähemalt ühe juhendajaga kontakti ja arutate läbi oma mured ja tegemised. Lisaks ootame tudengitelt aktiivset osavõttu kord nädalas toimuvast labori seminarist ja journal club'ist, kus harjutatakse avalikku esinemist, et kaitsmisel oleks lihtsam.

Tudeng sõlmib juhendajatega individuaalse juhendamise lepingu, kus täpsustatakse töökorraldus ja oodatavad tulemused

Töö esimene versioon peab olema esitatud hiljemalt 1. maiks. Esimene version peab sisaldama:

  1. sissejuhatust, mis räägib, miks projekti tulemus on vajalik ja mida teised selles valdkonnas maailmas teinud on;
  2. projekti teoreetilisi/matemaatilisi/mudeli aluseid lahti kirjutatuna;
  3. tehtud tegevuse detailset kirjeldust (detaile pole kunagi liiga palju, delete on lihtsaim funktsioon, mida juhendaja teie kirjaliku töö ümber kirjutamisel :) teha saab);
  4. töö tulemusi, st kas mõõtmistulemusi või seadme töötava! prototüübi tehniline kirjeldust ja seadet ennast;
  5. hinnangut oma tööle, st töö tulemuste edasise arengu analüüsi, tulemuste analüüsi ja hinnangut töö tulemuse kvaliteedile.

Töö kaitsmisele lubamiseks on kohustuslik läbida laborisisene eelkaitsmine, vajadusel korduv. Eelkaitsmiste ajagraafik kuulutatakse välja igal aastal aprillis. Arvestada tuleb ajaliste piirangutega- Eelkaitsmisele õigeaegne registreerumine on tudengi kohustus.


Koostööprojektid ettevõtetega (BSC/MSC theses in collaboration with companies)

ABB Eesti / ABB Estonia

Lõputööde teemad mis on seotud koostööga ABB AS Eestiga. Töö läbi viimisel on kaasatud kaasjuhendaja ABB poolelt koos praktiseerimisvõimalusega ABB-s.

Following topics are conducted in collaboration with ABB Estonian branch. All the topics include co-supervision from ABB.

Materjalide arendus tööstusele

Projekti raames lahendatakse erinevate tööstuspartnerite tehnoloogilisi probleeme või arendatakse neile uusi tooteid. Mõned näited:

  • mittepõlev silikoonvaht istmepolstrite jm pehmenduste jaoks;
  • mikroarmatuuriga poorbetoon, mis oleks korraga konstruktsiooni- ja isolatsioonimaterjal;
  • kiirbetooni omaduste optimeerimine
  • šlakigraanulite taaskasutus
  • klaasi keemiline karastamine

Liitium- ja naatriumakud (Li-Ion and Na-Ion batteries)

Kaasaskantav mikroakutoide on oluliseks faktoriks paljudes arenevates tehnoloogiasuundades, kuna mikroelektroonika mõõtmete vähenemine on jätnud kaugele seljataha väikesemõõduliste vooluallikate arengu. Sobivate kaasaskantavate vooluallikate vähene energiamahtuvus on saamas takistuseks mitmete tehnoloogiasuundade nagu kaasaskantavate arvutusseadmete (Weareable Computing Technology e. WCT), mikroelektromehaaniliste seadmete (MEMS), biomeditsiiniliste mikromasinate arengus. Üheks võtmeprobleemiks selliste seadmete edukaks toimimiseks on nende varustamine vooluallikatega, mis ühelt küljelt tagavad seadme piisava energiahulgaga varustamise ning teiselt küljelt, on võimalikult väikesemõõduised ning kergekaalulised. Sellise konfiguratsiooni juures tulevad ilmsiks olemasolevate, olemuselt kahemõõtmeliste (2D) liitium-ioonakude puudused – nii väikeste ruum- ja pindalade puhul ei ole võimalik saavutada piisavaid energiatihedusi. Seda probleemi võimaldab lahendada 3D mikroakude (MB) kasutusele võtmine. Liitiumioonakude arhitektuuri optimeerimise eesmärgiks on valmistada töötav 3D-MB, mille energiatihedus ning mahtuvus on vähemalt suurusjärgu võrra suuremad praegu kasutusel olevate akude omadest. Toimiva 3D-MB välja töötamiseks arendatakse ja uuritakse erinevaid mikroaku arhitektuure, neist sobiva väljavalimist ning optimeerimist lihtsustavad oluliselt teoreetilised, arvutisimulatsioonidega läbi viidavad uuringud, mis võimaldavad testida erinevaid 3D-MB arhitektuure, lahendada optimeerimisülesandeid elektroodide optimaalse geomeetria leidmiseks; optimeerida elektroodi pinda; uurida terve aku käitumist laadimisel-tühjakslaadimisel; optimeerida sobivaid mikroaku arhitektuure. Meetodid makrotasandis, mida selliste uuringute läbiviimiseks kasutatakse on lõplike elementide meetod (LEM) ning mikrotasandil molekulaardünaamilise simulatsiooni meetod (MD). Simulatsioonide läbiviimiseks kasutatakse LEM-i puhul tarkvarapakette COMSOL Multiphysics ja Elmer ning MD puhul tarkvarapaketti dl_poly.

Materials science in CERN

CERN is one of the leading research centres in the Europe, responsible for several key science and technology breakthroughs such as confirmation of Higgs boson and internet. It boosts constant research and development in many different fields next to fundamental particle or nuclear physics, such as materials science. One of the resent developments is new CLIC accelerator, intended for both, precise measurements of Higgs boson and probing new, beyond standard model physics. However, development of CLIC has significant materials science related issues: it utilizes huge electric fields to accelerate particles and suffers significant electric field related material surface damage(Electrical breakdowns in CLIC accelerator ).

The work conducted during this project is part of larger international collaboration including CERN, Finland, Sweden, Israel and more. Participation will include a lot of challenging work, but offers possibilities to take part from CERN summer student projects, have visits to collaborating groups and publish cutting edge research results early on. For example, so far, all related masters theses have yielded at least one research paper! These topics have not only opened up opportunities for follow up PhD studies in Tartu University but also in Helsinki University and EMPA (part of ETH domain in Switzerland).


Only some examples of current extremely interesting topics are presented below. While some topics are more physics focused, others are more suitable for Computer Engineering curricula students!

(We are always open to your own ideas and suggestions considering possible thesis topic!!!!)

  • DFT simulations of Cu under external electric field
  • Electric field influence to the interatomic potentials in Molecular Dynamics studies
  • Nanoscale metal surface under RF electriomagnetic field
  • Influence of nanoscale surface defects to the electron emission and electrical conductivity of the material
  • Influence of the electric field to the generation of surface defects using in situ SEM and computer simulations
  • Thermal runaway simulation with Femocs code and Poisson solver


Software devfelopment related to Femocs development (suitable also for computer engineering students):

  • implement new physics into Femocs code such as elastisity, stresses, fluid dynamics for simulating molten nanotips
  • implement 2nd order tetrahedral FEM solver
  • implement Voronoi FEM solver
  • implement mesh builder that uses previous mesh as starting point
  • implement more advanced (and parallel) mesh smoothing
  • increase parallelization (look / implement parallel mesh generators, parallelize coordination calculation that uses splitted nborlist, parallelize & optimize tet->hex conversion)

Contact: Vahur Zadin (vahur.zadin@ut.ee)

Eksperimentaalne materjaliteadus

Bioühilduvad elektroaktiivsed polümeerid

(23.08.2018)

Bioinspireeritud robootika on tänapäeva inseneritehnoloogia ja teaduse peamisi arengusuundi. Traditsioonilised aktuaatorid ei ole pehmetes ja painduvates seadmetes rakendatavad, seega on juba aastakümneid uuritud elektroaktiivseid polümeerseid täitureid (electroactive polymer - EAP). EAP-de silmapaistvaks omaduseks on nende multifunktsionaalsus: materjali saab rakendada nii aktuaatori (omadused muutuvad elektrivälja toimel) kui ka sensorina (muutus keskkonna tingimustes põhjustab detekteeritavat elektrivoolu). Elektroaktiivsete polümeeride ühe rakendusena on välja pakutud mitmesugused meditsiiniseadmed (implanteeritavad sensorid, drug delivery seadmed, ...). Nõudmised materjalile on kõrged: ideaalne aktuaator omab laia liigutusulatust juba madalal pingel, on kiire, kerge, vastupidav ning lihtsalt ja odavalt toodetav. Lisaks peab materjal olema bioühilduv.

Antud projekti eesmärk on välja töötada bioühilduv ioonne elektromehaaniline polümeerne täitur (ionic electroactive polymer - IEAP). Uuritav materjal koosneb juhtivpolümeersete või süsinikelektroodide vahele paigutatud biopolümeersest membraanist, elektrolüüdina kasutatakse madala toksilisusega looduslikku päritolu ioonseid vedelikke. Bakalaureuse ja magistritöö teemasid on välja pakkuda projekti erinevates etappides:

  • Ioonsete vedelike süntees ja karakteriseerimine
  • Ioonsete vedelike segude uurimine nii eksperimentaalselt kui arvutuskeemia meetodeid kasutades
  • Süsinikelektroodidega IEAP valmistamine pihustusmeetodil kasutades lähteainetena mitmesuguseid biopolümeere ja madala toksilisusega ioonseid vedelikke
  • Erinevate ioonsete vedelike testimine juhtivpolümeersete (polüpürrool) elektroodidega IEAPs: optimaalse polüpürrooli struktuuri ja sünteesiparameetrite otsimine erinevate ioonsete vedelike jaoks
  • Biopolümeersete membraanide valmistamine elektrospinnimise teel ja saadud materjalide testimine juhtivpolümeersete IEAP-de valmistamiseks
  • deep eutectic solvents kui alternatiiv ioonsetele vedelikele: kas on rakendatav IEAP-des?

Süsinikelektroodidega polümeersed täiturid

Kunstlihaseid ehk elektroaktiivseid polümeerseid täitureid on väga palju erinevaid. Nanopoorsest süsinikust elektroodidega ioonsed täiturid töötavad madalpingel ning neil on mitmed eelised kasutamiseks mikroseadmetes ja meditsiinis. Hetkel on uurimisel kaks suunda. Esimese eesmärk on arendada kunstlihasetes kasutatavaid ioonvedelik-süsinik-polümeer komposiite, kasutades selleks erinevaid süsinikmaterjale (süsinikaerogeeli, karbiidset süsinikku, süsiniknanotorusid jpt), ioonseid vedelikke, polümeere. Teine suund keskendub uute kunstlihase valmistamise tehnoloogiate rakendamisele. Uurime materjalide omadusi ja toimimismehhanisme, et kasutada neid aktuaatorite ning sensoritena. Bakalaureuse- ja magistritööks on teemasid mõlemast suunast:

  • uut tüüpi nanomaterjali kasutamine täituri elektroodina
  • süsinik-kserogeeli valmistamine ja struktuur-omadus seoste uurimine
  • täituri valmistamine vurrkatmise meetodil (spin-coating)

Kunstlihased kosmoserakendustes

Meie poolt valmistatavad materjalid on kerged ning juhitavad madalate elektripingetega. Seetõttu pakuvad nad huvi kosmosetehnoloogia seadmete valmistajatele. Töö eesmärgiks on uurida kiirguse, temperatuuri jpt kosmoses materjalidele mõjuvate kahjustavate toimete mõju.

Juhtivpolümeeridel põhinevate mitmekihiliste kunstlihaste valmistamine ja iseloomustamine

Kunstlihased, sensorid ja energiahõiveseadmed on elektritjuhtivate orgaaniliste polümeeride uudsemateks ja põnevamateks arengusuundadeks. Neid loodetakse kasutada meditsiinis, robootikas, kosmose- ja militaartööstuses. Enne laiaulatuslikku kasutuselevõttu on siiski vaja veel teha hulk arendustööd. Mitmekihilise disain loob eeldused juhtivpolümeerse materjali paremaks kontrollimiseks ning tema omaduste parandamiseks. TÜ IMS laboris on välja töötatud uudsed sünteesimeetodid metallivabade kunstlihaste valmistamiseks. Senistel lihtsa ühekihilise struktuuriga materjalidel on mitmeid puudusi (juhtuvuse langus, tundlikus väliskeskkonna mõjudele). Aktuatsiooni tekitavale polümeerikihile vastupidise ioonliikuvusega kihtide lisamine loob eelduse neid puudusi vältida.

Süsinikelektroodidega täiturmaterjali tööstusliku tootmise ettevalmistamine

Projekti sisuks on välja töötada materjal ja metoodika kuidas valmistada süsinikelektroodidega täitureid tööstuslikke protsesse kasutades. Töö laiem eesmärk on selliste materjalide masstootmine.

Biokütuseelement

Biokütuseelement on bioreaktor, mis muundab orgaaniliste ühendite keemiliste sidemete energia elektrienergiaks. Näiteks glükoosil ja hapnikul töötavad biokütuseelemendid, mis on võimelised energiat korjama erinevates bioloogilistest vedelikest, on paljulubavad seadmed rakendamiseks energiaallikatena mitmesugustes bioelektrilistes implantaatides nagu insuliinipumbad, ravimidosaatorid, närvistimulaatorid, südamestimulaatorid. Antud projekt tegeleb uudse elektroodimaterjali väljatöötamisega biokütuseelemendi jaoks.


Pehmed kantavad sensorid

Kõikvõimaliku kantava elektroonika populaarsuse kasv on suurendanud huvi pehmete sensorite vastu, mis mõõdaksid objektide (näiteks inimese keha) kuju ja asendit ilma liikumist takistamata. Senise uurimistöö käigus on välja töötatud sensortald, mis võimaldab sportlasel jälgida jala aluse rõhu jaotust aga ka igal sammul rakendatavat võimsust. Mitmekihiliste elastsete sensorite võrgustik suudab jälgida kehakuju muutust või liikumist, mõõtes korraga nii pikenemist kui painet. Uurimistöö jätkub erinevate uudsete jala- ja keha sensorite väljatöötamiseks.

Arvutieksperimendid ja materjalide simuleerimine

Kunstlihaste materjalide uurimine erinevate arvutisimulatsioonimeetodite abil

  • Tegemist on materjaliga, mida välise elektriväljaga on võimalik panna kuju muutma: painduma, punduma, kokku tõmbuma - nagu teeb reaalne lihas
  • kunstlihase materjal võib ka reageerida välisele mehaanilisele kujumuutusele elektrilise signaaliga
  • kunstlihas tegutseb hääletult, olles ise mõõtmetelt väga väike
  • kunstlihase materjalidena uuritakse selliseid "hitte" nagu grafeen ja ioonvedelik
  • arvutisimulatsioonid viivad sind materjali "sisse", võimaldades näha seda, mis katses jääb varju, anda infot toimuvate protsesside kohta ja näpunäiteid materjalide parendamiseks
  • tahad teda, kuidas liigutab 2 cm pikkune riba kunstlihast? võta lõplike lementide meetod ja sa näed ära pinged ja deformatsioonid kujumuutmisel
  • tahad teada, kuidas elektroodide kuju muutmine mõjutab liitiumioonaku mahtuvust - seda, kui kaua sinu elektriauto mööda Tartu-Tallinna maanteed suudaks kihutada? võta lõplike elementide meetod ja sa saad välja arvutada aku tühjenemise kiiruse sinu elektriauto toitmisel
  • tahad teada, kuidas liiguvad ja mõjutavad üksteist aatomid ja molekulid kunstlihases ja liitiumioonaku elektroodides ning elektrolüüdis? võta molekulaardünaamiline simulatsioon ja sa saad siseneda maailma, mis on 10000 korda väiksem sinu juuksekarva läbimõõdust
  • tahad virtuaalselt istuda iga aatomi peal ja näha, kuidas ühe aatomi elektronpilv lööb teise oma segamini? võta kvantkeemiline molekulaardünaamika ja sinu sõit lainefunktsioonide harjadel on pöörasem kui Ristna neemel Katja ajal.

Aktuaatorid, seadmed ja nende juhtimine

IPMC täitureid kasutava autonoomse seadme konstrueerimine

Eesmärgiks on nn kunstlihaseid kasutavate materjalide abil liikuvate autonoomsete seadmete konstrueerimine ning töö kirjeldamine. Valik ideid: "putukas", ratas, minipurilennuk, mikrohumanoid jne.

Süsinik-polümeermaterjalidest täiturite juhtimine

Töö eesmärgiks on parametriseerida ning uurida materjaliteadlaste poolt laboris loodud uudsete materjalide elektromehaanilisi omadusi. St. vajalike elektromehaaniliste ja füüsikaliskeemiliste mudelite loomine, nende mudelite kirjeldamine ning eksperimentaalsete tulemuste vastu kinnitamine. Töö sobib (erinevates mahtudes) bakalaureus, magistri ja doktoritöödeks. Vajalik on võõrkeele oskus ning soov ja võimalus töötada aegajalt erinevates laborites välismaa ülikoolides.

Robotics

Click here for student projects in robotics

Soft Robotics

Currently active and relevant topics for soft robotics

Partneritega seotud teemad

Kõrgkoolide õppekavade masinõppel põhinev analüüs

Projekti eesmärgiks on arendada masinõppel põhinev tarkvara, mis suudaks automaatselt analüüsida ja kaardistada Tartu Ülikooli õppekavade ning nendes loetavate ainete sisu viisil, et oleks jooksvalt võimalik hinnata õppekvaliteeti ja selle vastavust tööturu reaalsetele vajadustele. Eriti sobilik tudengitele, kellel on lisaks erialasele huvile soov kokkupuutuda startup ja tehnoloogia ettevõttlusega.


Bakalaureuse- või magistritöö käigus loodav praktiline tarkvaralahendus:

  • analüüsib õppekavade terviklikkust, erinevate moodulite ja õppeainete vaheliste seoste sidusust, vastavust õppekava ja mooduli üldeesmärkidele,
  • analüüsib jooksvalt õppekavade vastavust tööturu vajadustele lähtuvalt töötajatele reaalselt esitatavatest kvalifikatsiooni nõuetest,
  • annab õppejõududele ja programmijuhtidele infot võimalikest kattuvustest, puuduvatest eelteadmistest õppeainetele ja arenguvajadustest,
  • võimaldab arendada ühismooduleid ja õppeaineid erinevate õppekavade vahel eeldusteadmiste lünkadeta ja kattuvusteta,
  • võimaldab hinnata ja võrrelda juba olemasolevate ja veel loodavate õppekavade konkurentsivõimet teiste koolide sarnaste õppekavadega.


Antud lõputöö kontekstis olulised märksõnad on:

  • suurandmed ja andmekaeve (big data & data mining)
  • masinõppe algoritmid (machine learning)
  • andmete visualiseerimine (data visualization)


Lõputööd juhendab Aleksander Tõnnisson, kes on teinud üle 40-ne investeeringu iduettevõtetesse.

Õppetööga seotud

Juhendmaterjali koostamine koolirobootika tarbeks

Töö eesmärgiks on koostada õpetajatele juhendmaterjale ja põnevaid tööülesandeid robootikast, aga samuti ülesandeid, mis aitavad lastel õppida füüsikat, matemaatikat, keemiat ja bioloogiat. -->