Birch-Murnaghani võrrandi lähenduse tuletamine: Difference between revisions

From Intelligent Materials and Systems Lab

No edit summary
No edit summary
Line 21: Line 21:
<math> E(\alpha) = a + b \cdot \alpha^2 + c \cdot \alpha^\frac{4}{3} + d \cdot \alpha^\frac{2}{3} \;\; (7)</math>
<math> E(\alpha) = a + b \cdot \alpha^2 + c \cdot \alpha^\frac{4}{3} + d \cdot \alpha^\frac{2}{3} \;\; (7)</math>


Teeme lisaks veel ühemuutuja vahetuse <math>\alpha = \epsilon + 1 </math> ning grupeerime saadud võrrandi <math>\epsilon<\math> järgi.
Teeme lisaks veel ühemuutuja vahetuse <math>\alpha = \epsilon + 1 </math> ning arendame saadud võrrandit ritta <math>\epsilon=0</math> ümbruses.


<math> <\math>
<math> A^' + B^' \cdot \epsilon + C^' \cdot \epsilon^2 \;\;(8)\;\;, kus </math>
 
<math>A^' = a + b + c + d</math>
 
<math>B^' = 2 b + \frac{4}{3} c + \frac{2}{3} d</math>
 
<math>C^' = b + \frac{2}{9} c - \frac{1}{9} d</math>

Revision as of 11:03, 28 November 2008

Vaatleme võrrandit:

[math] E(V) = E_0 + \frac{9 V_0 B_0 }{16} \left\{ \left[ \left(\frac{V_0}{V}\right)^{\frac{2}{3}} -1 \right]^3 B_0^' + \left[ \left( \frac{V_0}{V}\right)^{\frac{2}{3}} -1 \right]^2 \left[ 6 - 4 \left( \frac{V_0}{V} \right)^{\frac{2}{3}} \right] \right\} \;\; (1) [/math]

Gruppeerides võrrandis (1) liikmed [math] \frac{V_0}{V}[/math] astmete järgi saame järgmise võrrandi:

[math] E(V) = a + b \cdot \left(\frac{V_0}{V}\right)^2 + c \cdot \left(\frac{V_0}{V}\right)^\frac{4}{3} + d \cdot \left(\frac{V_0}{V}\right)^\frac{2}{3} \;\; (2) \;\; , kus [/math]


[math]a = E_0 + \frac{9}{16} \cdot V_0 \cdot B_0 \cdot ( 6 - B_0^') \;\;(3)[/math]

[math]b = \frac{9}{16} \cdot V_0 \cdot B_0 \cdot (B_0^' - 4) \;\;(4)[/math]

[math]c = \frac{9}{16} \cdot V_0 \cdot B_0 \cdot (14 - 3 B_0^') \;\;(5)[/math]

[math]d = \frac{9}{16} \cdot V_0 \cdot B_0 \cdot (3 B_0^' - 16) \;\;(6)[/math]

Teeme muutuja vahetuse [math] \alpha = \frac{V_0}{V} [/math] ning võrrand (2) omandab järgneva kuju:

[math] E(\alpha) = a + b \cdot \alpha^2 + c \cdot \alpha^\frac{4}{3} + d \cdot \alpha^\frac{2}{3} \;\; (7)[/math]

Teeme lisaks veel ühemuutuja vahetuse [math]\alpha = \epsilon + 1 [/math] ning arendame saadud võrrandit ritta [math]\epsilon=0[/math] ümbruses.

[math] A^' + B^' \cdot \epsilon + C^' \cdot \epsilon^2 \;\;(8)\;\;, kus [/math]

[math]A^' = a + b + c + d[/math]

[math]B^' = 2 b + \frac{4}{3} c + \frac{2}{3} d[/math]

[math]C^' = b + \frac{2}{9} c - \frac{1}{9} d[/math]