Birch-Murnaghani võrrandi lähenduse tuletamine: Difference between revisions
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
<math>d = \frac{9}{16} \cdot V_0 \cdot B_0 \cdot (3 B_0^' - 16) \;\;(6)</math> | <math>d = \frac{9}{16} \cdot V_0 \cdot B_0 \cdot (3 B_0^' - 16) \;\;(6)</math> | ||
Teeme muutuja vahetuse <math> \alpha = \frac{V_0}{V} </math> | Teeme muutuja vahetuse <math> \alpha = \frac{V_0}{V} </math> ning võrrand (2) omandab järgneva kuju: | ||
<math> E(\alpha) = a + b \cdot \alpha^2 + c \cdot \alpha^\frac{4}{3} + d \cdot \alpha^\frac{2}{3} </math> |
Revision as of 10:52, 28 November 2008
Vaatleme võrrandit:
[math] E(V) = E_0 + \frac{9 V_0 B_0 }{16} \left\{ \left[ \left(\frac{V_0}{V}\right)^{\frac{2}{3}} -1 \right]^3 B_0^' + \left[ \left( \frac{V_0}{V}\right)^{\frac{2}{3}} -1 \right]^2 \left[ 6 - 4 \left( \frac{V_0}{V} \right)^{\frac{2}{3}} \right] \right\} \;\; (1) [/math]
Gruppeerides võrrandis (1) liikmed [math] \frac{V_0}{V}[/math] astmete järgi saame järgmise võrrandi:
[math] E(V) = a + b \cdot \left(\frac{V_0}{V}\right)^2 + c \cdot \left(\frac{V_0}{V}\right)^\frac{4}{3} + d \cdot \left(\frac{V_0}{V}\right)^\frac{2}{3} \;\; (2) \;\; , kus [/math]
[math]a = E_0 + \frac{9}{16} \cdot V_0 \cdot B_0 \cdot ( 6 - B_0^') \;\;(3)[/math]
[math]b = \frac{9}{16} \cdot V_0 \cdot B_0 \cdot (B_0^' - 4) \;\;(4)[/math]
[math]c = \frac{9}{16} \cdot V_0 \cdot B_0 \cdot (14 - 3 B_0^') \;\;(5)[/math]
[math]d = \frac{9}{16} \cdot V_0 \cdot B_0 \cdot (3 B_0^' - 16) \;\;(6)[/math]
Teeme muutuja vahetuse [math] \alpha = \frac{V_0}{V} [/math] ning võrrand (2) omandab järgneva kuju:
[math] E(\alpha) = a + b \cdot \alpha^2 + c \cdot \alpha^\frac{4}{3} + d \cdot \alpha^\frac{2}{3} [/math]