Soft Robotics: Difference between revisions

From Intelligent Materials and Systems Lab

No edit summary
No edit summary
Line 40: Line 40:


== Possible topics for students' projects ==
== Possible topics for students' projects ==
* Bioinspired microrobots propelled by artificial muscles
* Bioinspired micro-robots propelled by artificial muscles
The locomotion and object manipulation mechanisms in nature are much different from those commonly used in robots. Put in another way, the toolbox available for the today’s roboticists is limited to a rather narrow range of achievable actuation modes (typically combinations of rotary and linear actuations), resulting in the today’s robots being effectively only in modes that are easily achievable by the available techniques. In contrast, soft robotics offers a practically infinite range of achievable actuation modes, enabling mimicking most locomotion modes known from the nature. Previously in the IMS lab, gait of an inchworm and a walking insect have been demonstrated as first instances. For next advancement, a water strider is suggested as a model to be mimicked. This research direction involves development of highly miniaturized and superlight electronics and mechanics, using high-end materials and components. The projected size of the robots is such that it is best viewed (this implies, also assembled) under the microscope. Knowledge in electronics and preparedness for precise work at small scale are beneficial.
* Variable-stiffness soft robotics materials
Soft robots introduce the need for modulating the stiffness of the materials. In fact, the perspective applications in bioinspired soft robots are not possible without stiffness control. In this package, several robotics concepts are designed and evaluated for stiffness modulation (intrinsic or extrinsic heating, …).
* Electroactive textiles and textile electronics
* Electroactive textiles and textile electronics
* Robotic concepts specific for artificial muscles
The evolutionary development of artificial muscles at IMS Lab has recently crossed with embedding a textile reinforcement into the structure for more efficient assembly process Evidently, the gain of this additional step is not limited to more repeatable fabrication, but it effectively stitched together two major industrial development directions: soft robotics (represented by the artificial muscle) and wearable electronics (inseparable from utilizing a textile platform). This newfound crossing point creates fascinating opportunities: the artificial muscles are readily embedded into textiles and can be rendered as a true artificial skin. The perspective applications include healthcare, sports, and fashion. This activity involves tuning the material preparation and prototyping of the wearable technologies.
* Measurement methods and instruments for soft materials
Several subdirections are available:
* Electronic control for artificial muscles
- The electroactive textile can be used as an actuator as well as a deformation sensor. However, the optimization criteria are much different. As actuator is already optimized by multiple iterations, the task is to experimentally verify the fabrication parameters for the most efficient sensor. Additionally, a direct one-to-one benchmarking of an electroactive textile based on ionic and electronic effects is an attractive task.
- New proof-of-concept wearable devices with soft textile-base actuators
- Distributed electronics specific for large-scale ionic smart textiles
[Kaasik, Friedrich, et al. "Scalable fabrication of ionic and capacitive laminate actuators for soft robotics." Sensors and Actuators B: Chemical 246 (2017): 154-163].
* Perception of wearable robots
Soft robotics enables perspective wearable applications for human health monitoring and improvement. More specifically, the mechanical properties of soft robot components can be tuned to closely match the properties of human tissues. This concept is very different from the conventional approach, typically involving a rigid probe touching the human tissue. The aspects of user perception of wearable robots in direct contact with the human body, involving moving or morphing components, is not clear in detail. Aimed at futuristic health improvement technologies, the work involves the design of a soft morphing embodiment attached on the skin and registering the perception by the user. Skills and interests in electronics prototyping and data analysis are desired.
* Soft vacuum-compatible manipulator
Scanning electron microscopy (SEM) offers real-time visualization of nanoscale objects at a resolution beyond the optically achievable. Concurrently, in-situ manipulation of soft samples with SEM feedback is needed. Our soft shape-changing actuators made of an electromechanically active ionic and capacitive laminate (ICL) are attractive as SEM micromanipulators specifically for soft (also biological) samples, gels and liquids. Although the ICLs do contain a liquid electrolyte that traditionally has been considered incompatible, the non-evaporative characteristic of the ionic liquid electrolyte enables stable operation even in vacuum environment. As an important asset, the ICL micromanipulator can be attached with sensors for getting multiscale perception of the soft objects at microscale. This work involves mechanical and electrical design of the micromanipulator, design and integration of a control system (e.g. a haptic glove), assembly, and testing.


== Porfolio ==
== Porfolio ==

Revision as of 07:42, 24 August 2018

IMS Soft robotics

Miniature energy-autonomous robots with soft actuators

Our vision and goal

Soft robotics bridges life and robotics. Soft robots demonstrate qualities similar to natural beings, thus allowing to automate tasks previously considered exclusive for humans and other living nature. We design a framework for robots with natural-like interactions with unstructured environments and with delicate objects such as human bodies. First, we develop novel electroactive materials as robotic actuators and sensors. Next, we identify and implement function-specific movement mechanisms that are effective and specific for shape-morphing materials and structures, often finding inspiration from the nature. Finally, we develop applications in the fields of personal medicine, minimally invasive medical instruments, wearable devices, surveillance and rescue.

Highlights

  • UT was first to demonstrate power-autonomous terrestrial robots propelled by artificial muscles
  • We have developed a method for building ionic artificial muscles on textile substrate
  • We can build soft laminated materials that actuate and sense motion

Capabilities

We develop soft robots in three stages

  1. New bottom-up fabrication methods for robotic materials
  2. Tailoring the interactions between the robotic materials and the environment
  3. Prototyping of soft electro-ionic devices

Tools we use

  • Additive fabrication methods for building soft electroactive laminates
  • Electrochemical and electromechanical impedance spectroscopy
  • Microelectronic control of soft actuators

Equipment

  • Customized spray-coating set-up
  • Electromechanical testbenches with full electronic control
  • Computer vision set-up for robotics materials characterization
  • In-situ characterization of robotic materials using scanning electron microscopy
  • Dynamic mechanical analysis of robotic materials in a controlled atmosphere
  • Thermal imaging of robot's action

Primary contacts

Some completed student projects

  • A self-rolling wheel based on artificial muscles
  • An insect-inspored walking robot with artificial muscles
  • Spray-fabrication of artificial muscles on glass fiber cloth
  • Measurement device for characterization of mechano-sensing laminates
  • Measurement device for mechanical properties of soft laminates

Possible topics for students' projects

  • Bioinspired micro-robots propelled by artificial muscles

The locomotion and object manipulation mechanisms in nature are much different from those commonly used in robots. Put in another way, the toolbox available for the today’s roboticists is limited to a rather narrow range of achievable actuation modes (typically combinations of rotary and linear actuations), resulting in the today’s robots being effectively only in modes that are easily achievable by the available techniques. In contrast, soft robotics offers a practically infinite range of achievable actuation modes, enabling mimicking most locomotion modes known from the nature. Previously in the IMS lab, gait of an inchworm and a walking insect have been demonstrated as first instances. For next advancement, a water strider is suggested as a model to be mimicked. This research direction involves development of highly miniaturized and superlight electronics and mechanics, using high-end materials and components. The projected size of the robots is such that it is best viewed (this implies, also assembled) under the microscope. Knowledge in electronics and preparedness for precise work at small scale are beneficial.

  • Variable-stiffness soft robotics materials

Soft robots introduce the need for modulating the stiffness of the materials. In fact, the perspective applications in bioinspired soft robots are not possible without stiffness control. In this package, several robotics concepts are designed and evaluated for stiffness modulation (intrinsic or extrinsic heating, …).

  • Electroactive textiles and textile electronics

The evolutionary development of artificial muscles at IMS Lab has recently crossed with embedding a textile reinforcement into the structure for more efficient assembly process Evidently, the gain of this additional step is not limited to more repeatable fabrication, but it effectively stitched together two major industrial development directions: soft robotics (represented by the artificial muscle) and wearable electronics (inseparable from utilizing a textile platform). This newfound crossing point creates fascinating opportunities: the artificial muscles are readily embedded into textiles and can be rendered as a true artificial skin. The perspective applications include healthcare, sports, and fashion. This activity involves tuning the material preparation and prototyping of the wearable technologies. Several subdirections are available: - The electroactive textile can be used as an actuator as well as a deformation sensor. However, the optimization criteria are much different. As actuator is already optimized by multiple iterations, the task is to experimentally verify the fabrication parameters for the most efficient sensor. Additionally, a direct one-to-one benchmarking of an electroactive textile based on ionic and electronic effects is an attractive task. - New proof-of-concept wearable devices with soft textile-base actuators - Distributed electronics specific for large-scale ionic smart textiles

[Kaasik, Friedrich, et al. "Scalable fabrication of ionic and capacitive laminate actuators for soft robotics." Sensors and Actuators B: Chemical 246 (2017): 154-163].
  • Perception of wearable robots

Soft robotics enables perspective wearable applications for human health monitoring and improvement. More specifically, the mechanical properties of soft robot components can be tuned to closely match the properties of human tissues. This concept is very different from the conventional approach, typically involving a rigid probe touching the human tissue. The aspects of user perception of wearable robots in direct contact with the human body, involving moving or morphing components, is not clear in detail. Aimed at futuristic health improvement technologies, the work involves the design of a soft morphing embodiment attached on the skin and registering the perception by the user. Skills and interests in electronics prototyping and data analysis are desired.

  • Soft vacuum-compatible manipulator

Scanning electron microscopy (SEM) offers real-time visualization of nanoscale objects at a resolution beyond the optically achievable. Concurrently, in-situ manipulation of soft samples with SEM feedback is needed. Our soft shape-changing actuators made of an electromechanically active ionic and capacitive laminate (ICL) are attractive as SEM micromanipulators specifically for soft (also biological) samples, gels and liquids. Although the ICLs do contain a liquid electrolyte that traditionally has been considered incompatible, the non-evaporative characteristic of the ionic liquid electrolyte enables stable operation even in vacuum environment. As an important asset, the ICL micromanipulator can be attached with sensors for getting multiscale perception of the soft objects at microscale. This work involves mechanical and electrical design of the micromanipulator, design and integration of a control system (e.g. a haptic glove), assembly, and testing.

Porfolio

Selected Publications

Must, Indrek, et al. "Ionic and capacitive artificial muscle for biomimetic soft robotics." Advanced Engineering Materials 17.1 (2015): 84-94.]

Kaasik, Friedrich, et al. "Scalable fabrication of ionic and capacitive laminate actuators for soft robotics." Sensors and Actuators B: Chemical 246 (2017): 154-163.]

Outreach