Computational Materials: Difference between revisions
(38 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
== Our vision, goal and what we do == | == Our vision, goal and what we do == | ||
[[File:multiscale.png|200px|thumb|right| Simulations heat transfer and mechanical stress of FCC metal in multiscale framework.]] | [[File:multiscale.png|200px|thumb|right| Simulations heat transfer and mechanical stress of FCC metal in multiscale framework.]] | ||
Computer simulations are | Computer simulations are some of the most fascinating tools made available due to the development of modern computational technology. Simulations in physics, chemistry, materials science, engineering etc. allow us to obtain detailed information of the phenomena of interest and provide often complete 3D and time dependent information of quantities like electromagnetic fields, temperature, forces and mechanical stresses, deformations. Such information leads to deep insights and understanding of nature around us, opening ways to understand complex physical and chemical processes and to the development of novel technologies and applications. | ||
The simulation activities conducted in the lab involve all levels from atomistic to macroscopic (DFT -> Molecular Dynamics -> Monter Carlo -> Finite Elements), including combinations of these methods i.e. multi scale simulations. The core capacity involves both, computational studies of materials and development of new methodology. | The simulation activities conducted in the lab involve all levels from atomistic to macroscopic (DFT -> Molecular Dynamics -> Monter Carlo -> Finite Elements), including combinations of these methods i.e. multi scale simulations. The core capacity involves both, computational studies of materials and development of new methodology. | ||
Some examples of applications: | Some examples of applications: | ||
* Mechanics | |||
* CFD (turbulent & laminar) | |||
* Heat transport | |||
* Electric and magnetic fields | |||
* Chemical reactions | |||
* Acoustics | |||
* Multiphysics combinations of these phenomena! | |||
=== Image gallery === | === Image gallery === | ||
<gallery mode="packed-hover"> | <gallery mode="packed-hover"> | ||
file:multiscale.png|'' | file:multiscale.png|''Multiscaling with FEM in nano-contact'' | ||
file:strainsfinal_facebook.jpg|"Shear strain field around nanovoid in MD and FEM" | file:strainsfinal_facebook.jpg|"Shear strain field around nanovoid in MD and FEM" | ||
file:tension2.gif|"Animation of stress and deformation in Cu during tensile testing" | file:tension2.gif|"Animation of stress and deformation in Cu during tensile testing" | ||
file: | file:Foam_Graphical_abstract_png.png|"Ionic transport in 3D microbattery." | ||
</gallery> | </gallery> | ||
=== Tools we use === | === Tools we use === | ||
Line 53: | Line 32: | ||
* OpenFOAM CFD [https://www.openfoam.com/] | * OpenFOAM CFD [https://www.openfoam.com/] | ||
* FEMOCS (https://github.com/veskem/femocs) | * FEMOCS (https://github.com/veskem/femocs) | ||
<!-- This is end of section --> | <!-- This is end of section --> | ||
== Research Projects == | == Research Projects == | ||
=== Ongoing Activities === | === Ongoing Activities === | ||
* [https://edukad.etag.ee/project/4359 Horizon 2020 ERA Chair MATTER] | |||
* [[PUT 1372 - Mechanisms of vacuum arching in high electric field systems]] | |||
* [[ | === Ongoing PhD Projects === | ||
* [[Computer assisted design and development of tailored nanostructures]] | |||
* [[Mechanisms of vacuum arching in high electric field systems]] | |||
* [[Development and optimization of flow electrode capacitor technology]] | |||
=== Glory and Success === | === Glory and Success === | ||
* [https://novaator.err.ee/944778/mis-suunas-areneb-nanotehnoloogia Novaator - mis suunas areneb nanotehnoloogia] | |||
* [http://bonnier2b.ee/trykised/innovatiiv_2017.pdf Arvutisimulatsioonid ja nende rakendused disainis] | |||
* [https://www.uttv.ee/naita?id=26381 Tartu Ülikooli demopäev - Arvutisimulatsioonid tootearenduses] | |||
* [[PUT 57 - Multiscale simulations of dislocation generation in rf electric fields in the linear accelerator design (01.01.2013 - 31.12.2016)]] | * [[PUT 57 - Multiscale simulations of dislocation generation in rf electric fields in the linear accelerator design (01.01.2013 - 31.12.2016)]] | ||
* [[ETF 9216 - Development and optimization of 3D-microbatteries (01.01.2012-31.21.2015)]] | * [[ETF 9216 - Development and optimization of 3D-microbatteries (01.01.2012-31.21.2015)]] | ||
Line 69: | Line 53: | ||
=== Student projects === | === Student projects === | ||
* [[Materjalidefektide simuleerimine kõrgetes elektriväljades]] | * [[Materjalidefektide simuleerimine kõrgetes elektriväljades]] | ||
* [[Järgmise generatsiooni bioreaktorid]] | |||
* [[Ehitiste konstruktsioonielementide multiskaala mudelite arendamine]] | |||
* [[Virtuaalreaalsus keskkonnad teaduarvutusteks ja andmeanalüüsiks]] | |||
<!-- This is end of section --> | <!-- This is end of section --> | ||
== Members == | == Members == | ||
{{Team| | |||
{{TeamMember|Vahur|Vahur Zadin|senior researcher (finite element modelling, molecular dynamics, high electric fields, CERN))}} | |||
{{TeamMember|Tarmo|Tarmo Tamm|seniour researcher}} | |||
{{TeamMember|Heiki|Heiki Kasemägi|senior researcher (ion-conducting polymer, computer simulations) & Computer engineering study programme manager}} | |||
{{TeamMember|Alvo|Alvo Aabloo| professor, head of the IMS lab}} | |||
{{TeamMember|Kristiankuppart|Kristian Kuppart|PhD student (MD in high electric fields)}} | |||
{{TeamMember|Faiza|Faiza Summer|PhD student (Flow-capacitor)}} | |||
{{TeamMember|Ats.aasmaa|Ats Aasmaa|student (modelling of microbatteries)}} | |||
{{TeamMember|Mihkel.Veske|Mihkel Veske|in Helsinki University}} | |||
{{TeamMember|ye.wang|Ye Wang|PhD student (Design and development of tailored nanostructures)}} | |||
}} | |||
=== Friends and collaborators === | |||
* Flyura Djurabekova (Helsinki University) | |||
* Ville Jansson (Helsinki University) | |||
* Walter Wuench (CERN) | |||
* Daniel Brandell (Uppsala University) | |||
* Sergei Vlassov (UT, Institute of Physics) | |||
<!-- This is end of section --> | <!-- This is end of section --> | ||
Line 124: | Line 106: | ||
#Zadin, V., Pohjonen, A., Aabloo, A., Nordlund, K. and Djurabekova, F., 2014. Electrostatic-elastoplastic simulations of copper surface under high electric fields. Physical Review Special Topics-Accelerators and Beams, 17(10), p.103501. | #Zadin, V., Pohjonen, A., Aabloo, A., Nordlund, K. and Djurabekova, F., 2014. Electrostatic-elastoplastic simulations of copper surface under high electric fields. Physical Review Special Topics-Accelerators and Beams, 17(10), p.103501. | ||
#Zadin, V., Brandell, D., Kasemägi, H., Lellep, J. and Aabloo, A., 2013. Designing the 3D-microbattery geometry using the level-set method. Journal of Power Sources, 244, pp.417-428. | #Zadin, V., Brandell, D., Kasemägi, H., Lellep, J. and Aabloo, A., 2013. Designing the 3D-microbattery geometry using the level-set method. Journal of Power Sources, 244, pp.417-428. | ||
<!-- This is end of section --> | <!-- This is end of section --> | ||
Line 135: | Line 114: | ||
* Kristian Kuppart | * Kristian Kuppart | ||
* Robert Aare | * Robert Aare | ||
<!-- This is end of section --> | <!-- This is end of section --> | ||
Line 145: | Line 120: | ||
* [[Kristjan Eimre - title]] | * [[Kristjan Eimre - title]] | ||
* [[Kristian Kuppart - title]] | * [[Kristian Kuppart - title]] | ||
<!-- This is end of section --> |
Latest revision as of 13:42, 21 November 2019
Our vision, goal and what we do
Computer simulations are some of the most fascinating tools made available due to the development of modern computational technology. Simulations in physics, chemistry, materials science, engineering etc. allow us to obtain detailed information of the phenomena of interest and provide often complete 3D and time dependent information of quantities like electromagnetic fields, temperature, forces and mechanical stresses, deformations. Such information leads to deep insights and understanding of nature around us, opening ways to understand complex physical and chemical processes and to the development of novel technologies and applications.
The simulation activities conducted in the lab involve all levels from atomistic to macroscopic (DFT -> Molecular Dynamics -> Monter Carlo -> Finite Elements), including combinations of these methods i.e. multi scale simulations. The core capacity involves both, computational studies of materials and development of new methodology.
Some examples of applications:
- Mechanics
- CFD (turbulent & laminar)
- Heat transport
- Electric and magnetic fields
- Chemical reactions
- Acoustics
- Multiphysics combinations of these phenomena!
Image gallery
Tools we use
- Comsol Multiphysics [1]
- LAMMPS [2]
- DEAL.II open source finite element library [3]
- OpenFOAM CFD [4]
- FEMOCS (https://github.com/veskem/femocs)
Research Projects
Ongoing Activities
- Horizon 2020 ERA Chair MATTER
- PUT 1372 - Mechanisms of vacuum arching in high electric field systems
Ongoing PhD Projects
- Computer assisted design and development of tailored nanostructures
- Mechanisms of vacuum arching in high electric field systems
- Development and optimization of flow electrode capacitor technology
Glory and Success
- Novaator - mis suunas areneb nanotehnoloogia
- Arvutisimulatsioonid ja nende rakendused disainis
- Tartu Ülikooli demopäev - Arvutisimulatsioonid tootearenduses
- PUT 57 - Multiscale simulations of dislocation generation in rf electric fields in the linear accelerator design (01.01.2013 - 31.12.2016)
- ETF 9216 - Development and optimization of 3D-microbatteries (01.01.2012-31.21.2015)
Student projects
- Materjalidefektide simuleerimine kõrgetes elektriväljades
- Järgmise generatsiooni bioreaktorid
- Ehitiste konstruktsioonielementide multiskaala mudelite arendamine
- Virtuaalreaalsus keskkonnad teaduarvutusteks ja andmeanalüüsiks
Members
Friends and collaborators
- Flyura Djurabekova (Helsinki University)
- Ville Jansson (Helsinki University)
- Walter Wuench (CERN)
- Daniel Brandell (Uppsala University)
- Sergei Vlassov (UT, Institute of Physics)
Publications
(All references in Harvard style from Google Scholar)
- Baibuz, E., Vigonski, S., Lahtinen, J., Zhao, J., Jansson, V., Zadin, V. and Djurabekova, F., 2018. Data sets of migration barriers for atomistic Kinetic Monte Carlo simulations of Cu self-diffusion via first nearest neighbour atomic jumps. Data in Brief, 17, pp.739-743
- Zadin, V., Veske, M., Vigonski, S., Jansson, V., Muszynski, J., Parviainen, S., Aabloo, A. and Djurabekova, F., 2018. Simulations of surface stress effects in nanoscale single crystals. Modelling and Simulation in Materials Science and Engineering.
- Metspalu, T., Jansson, V., Zadin, V., Avchaciov, K., Nordlund, K., Aabloo, A. and Djurabekova, F., 2018. Cu self-sputtering MD simulations for 0.1–5 keV ions at elevated temperatures. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 415, pp.31-40.
- Vigonski, S., Jansson, V., Vlassov, S., Polyakov, B., Baibuz, E., Oras, S., Aabloo, A., Djurabekova, F. and Zadin, V., 2017. Au nanowire junction breakup through surface atom diffusion. Nanotechnology, 29(1), p.015704.
- Kyritsakis, A., Veske, M., Eimre, K., Zadin, V. and Djurabekova, F., 2017. Thermal runaway and evaporation of metal nano-tips during intense electron emission. arXiv preprint arXiv:1710.00050.
- Priimägi, P., Kasemägi, H., Aabloo, A., Brandell, D. and Zadin, V., 2017. Thermal Simulations of Polymer Electrolyte 3D Li-Microbatteries. Electrochimica Acta, 244, pp.129-138.
- Baibuz, E., Vigonski, S., Lahtinen, J., Zhao, J., Jansson, V., Zadin, V. and Djurabekova, F., 2017. Migration barriers for surface diffusion on a rigid lattice: challenges and solutions. arXiv preprint arXiv:1707.05765.
- Veske, M., Kyritsakis, A., Eimre, K., Zadin, V., Aabloo, A. and Djurabekova, F., 2017. Dynamic coupling of a finite element solver to large-scale atomistic simulations. arXiv preprint arXiv:1706.09661.
- Yanagisawa, H., Zadin, V., Kunze, K., Hafner, C., Aabloo, A., Kim, D.E., Kling, M.F., Djurabekova, F., Osterwalder, J. and Wuensch, W., 2016. Laser-induced asymmetric faceting and growth of a nano-protrusion on a tungsten tip. APL Photonics, 1(9), p.091305.
- Mets, M., Antsov, M., Zadin, V., Dorogin, L.M., Aabloo, A., Polyakov, B., Lõhmus, R. and Vlassov, S., 2016. Structural factor in bending testing of fivefold twinned nanowires revealed by finite element analysis. Physica Scripta, 91(11), p.115701.
- CLIC, T., Boland, M.J., Felzmann, U., Giansiracusa, P.J., Lucas, T.G., Rassool, R.P., Balazs, C., Charles, T.K., Afanaciev, K., Emeliantchik, I. and Ignatenko, A., 2016. Updated baseline for a staged Compact Linear Collider. arXiv preprint arXiv:1608.07537.
- Priimägi, P., Brandell, D., Srivastav, S., Aabloo, A., Kasemägi, H. and Zadin, V., 2016. Optimizing the design of 3D-pillar microbatteries using finite element modelling. Electrochimica Acta, 209, pp.138-148.
- Veske, M., Kyritsakis, A., Djurabekova, F., Aare, R., Eimre, K. and Zadin, V., 2016, July. Atomistic modeling of metal surfaces under high electric fields: Direct coupling of electric fields to the atomistic simulations. In Vacuum Nanoelectronics Conference (IVNC), 2016 29th International (pp. 1-2). IEEE.
- Veske, M., Parviainen, S., Zadin, V., Aabloo, A. and Djurabekova, F., 2016. Electrodynamics—molecular dynamics simulations of the stability of Cu nanotips under high electric field. Journal of Physics D: Applied Physics, 49(21), p.215301.
- Vigonski, S., Veske, M., Aabloo, A., Djurabekova, F. and Zadin, V., 2015. Verification of a multiscale surface stress model near voids in copper under the load induced by external high electric field. Applied Mathematics and Computation, 267, pp.476-486.
- Zadin, V., Kasemägi, H., Valdna, V., Vigonski, S., Veske, M. and Aabloo, A., 2015. Application of multiphysics and multiscale simulations to optimize industrial wood drying kilns. Applied Mathematics and Computation, 267, pp.465-475.
- Eimre, K., Parviainen, S., Aabloo, A., Djurabekova, F. and Zadin, V., 2015. Application of the general thermal field model to simulate the behaviour of nanoscale Cu field emitters. Journal of Applied Physics, 118(3), p.033303.
- Vigonski, S., Djurabekova, F., Veske, M., Aabloo, A. and Zadin, V., 2015. Molecular dynamics simulations of near-surface Fe precipitates in Cu under high electric fields. Modelling and Simulation in Materials Science and Engineering, 23(2), p.025009.
- Zadin, V., Krasheninnikov, A.V., Djurabekova, F. and Nordlund, K., 2015. Simulations of electromechanical shape transformations of Au nanoparticles. physica status solidi (b), 252(1), pp.144-148.
- Zadin, V., Pohjonen, A., Aabloo, A., Nordlund, K. and Djurabekova, F., 2014. Electrostatic-elastoplastic simulations of copper surface under high electric fields. Physical Review Special Topics-Accelerators and Beams, 17(10), p.103501.
- Zadin, V., Brandell, D., Kasemägi, H., Lellep, J. and Aabloo, A., 2013. Designing the 3D-microbattery geometry using the level-set method. Journal of Power Sources, 244, pp.417-428.
Defended theses
Masters Theses
- Kristjan Eimre
- Kristian Kuppart
- Robert Aare