Student projects: Difference between revisions

From Intelligent Materials and Systems Lab

No edit summary
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
[[Image:IMS poster.png|300px]]
[[Image:IMS poster.png|300px|right]]
=Bakalauruse, magistri ja doktoritööd=
=Bakalauruse-, magistri- ja doktoritööd=


''Siin on mõned tegemised, mide meie uurimisgrupi juures on võimalik teha. Tegemist pole lõpliku nimekirjaga ning head tegijad on alati oodatud huvitavate ideedega. Kõikidest teemadest on võimalik edasi minna kuni PhD kaitsmiseni.
''Siin on mõned tegemised, mide meie uurimisgrupi juures on võimalik teha. Tegemist pole lõpliku nimekirjaga ning head tegijad on alati oodatud huvitavate ideedega. Kõikidest teemadest on võimalik edasi minna kuni PhD kaitsmiseni.''
Tegijad, kes teevad oma töö hindele A, saavad ka väärilise töötasu.'' Huvi korral [[User:Alvo#Contacts|võta ühendust]]
''Tegijad, kes teevad oma töö hindele A, saavad ka väärilise töötasu.'' ''Huvi korral [[User:Alvo#Contacts|võta ühendust]]''.




<!-- This is a comment --->
<!-- This is a comment --->
== '''Eksperimentaalne materjaliteadus''' ==
== '''Eksperimentaalne materjaliteadus''' ==
===Süsinik elektroodidega polümeersed täiturid===
<font size="4"> Süsinikelektroodidega polümeersed täiturid</font>
Kunstlihased, ehk elektroaktiivseid polümeerseid komposiitmaterjale on väga palju erinevaid. Meie tegeleme madapingeliste, ionseta materjaldiega, millel on mitemed eelised kasutamiseks mikroseadmetes ja meditsiinis. Hetkel on eesmärgiks edasi arendada ioonvedelik-süsinik materjale. KAsutame erinevaid süsinikke- aerogeelid, karbiidsed süsinikud, nanotorud jpt.. Töö eesmärgiks on valmistada erinevad aktuaator-sensormaterjalid, uurida nende valmistamise võimalusi ja nende omadusi.
 
=== Kunstlihased kosmoserakendustes===
Kunstlihased, ehk elektroaktiivseid polümeerseid komposiitmaterjale on väga palju erinevaid. Meie tegeleme madapingeliste, ioonsete materjalidega, millel on mitmed eelised kasutamiseks mikroseadmetes ja meditsiinis. Hetkel on eesmärgiks edasi arendada ioonvedelik-süsinikmaterjale. Kasutame erinevaid süsinikke- aerogeelid, karbiidsed süsinikud, nanotorud jpt. Töö eesmärgiks on valmistada erinevad aktuaator-sensormaterjalid, uurida nende valmistamise võimalusi ja nende omadusi.
 
<font size="4">Kunstlihased kosmoserakendustes</font>
 
Meie poolt valmistatavad materjalid on kerged ning juhitavad madalate elektripingetega. Seetõttu pakuvad nad huvi kosmosetehnoloogia seadmete valmistajatele.
Meie poolt valmistatavad materjalid on kerged ning juhitavad madalate elektripingetega. Seetõttu pakuvad nad huvi kosmosetehnoloogia seadmete valmistajatele.
Töö eesmärgiks on uurida kiirguse, temperatuuri jpt kosmoses materjalidele mõjuvate kahjustvate toimete mõju.
Töö eesmärgiks on uurida kiirguse, temperatuuri jpt kosmoses materjalidele mõjuvate kahjustvate toimete mõju.
===Tekstiilikiudude märgumisvastase tehnoloogia (gore-tex) analüüs skaneeriva elektronmikroskoobiga===
 
Kaasaegsete tekstiilmaterjalide töötluste juures on üheks olulisemaks suunaks materjalide vee – ja määrdumiskindluse suurendamine.  Kui kootud materjalide (enamus kangaid) puhul on enamvähem toimivad lahendused (n.n. Gore-tex) välja töötatud, siis sidumata kiudude korral (näiteks paelad) need meetodid paraku enamasti ei toimi. Samas on tekstiilitööstuses kasvav huvi kvaliteetsete veekindlate paelte vastu. Koostöös Eesti (ja Põhjamaade ning Ida-Euroopa ) juhtiva paelatootjaga on TÜ IMS laboris arendamisel innovaatilised töötlustehnoloogiad, mis peaksid võimaldama niisuguste materjalide tootmiseni jõuda. Kvaliteedi peamiseks kriteeriumiks peab olema kapillaarse märgumise puudumine. Nende protsesside uurimiseks oleme kasutusele võtnud kontrastainega „ilmutamise“ ning järgneva skaneeriva elektornmikroskoopia (SEM).
<font size="4">Tekstiilikiudude märgumisvastase tehnoloogia (Gore-tex) analüüs skaneeriva elektronmikroskoobiga</font>
===Juhtivpolümeeridel põhinevate mitmekihiliste kunstlihaste valmistamine ja iseloomustamine===
 
Kaasaegsete tekstiilmaterjalide töötluste juures on üheks olulisemaks suunaks materjalide vee– ja määrdumiskindluse suurendamine.  Kui kootud materjalide (enamus kangaid) puhul on enamvähem toimivad lahendused (nn Gore-tex) välja töötatud, siis sidumata kiudude korral (näiteks paelad) need meetodid paraku enamasti ei toimi. Samas on tekstiilitööstuses kasvav huvi kvaliteetsete veekindlate paelte vastu. Koostöös Eesti (ja Põhjamaade ning Ida-Euroopa) juhtiva paelatootjaga on TÜ IMS laboris arendamisel innovaatilised töötlustehnoloogiad, mis peaksid võimaldama niisuguste materjalide tootmiseni jõuda. Kvaliteedi peamiseks kriteeriumiks peab olema kapillaarse märgumise puudumine. Nende protsesside uurimiseks oleme kasutusele võtnud kontrastainega „ilmutamise“ ning järgneva skaneeriva elektornmikroskoopia (SEM).
 
<font size="4">Juhtivpolümeeridel põhinevate mitmekihiliste kunstlihaste valmistamine ja iseloomustamine</font>
 
Kunstlihased, sensorid ja energiahõiveseadmed on elektritjuhtivate orgaaniliste polümeeride uudsemateks ja põnevamateks arengusuundadeks.  Neid loodetakse kasutada meditsiinis, robootikas,  kosmose- ja militaartööstuses.  Enne laiaulatuslikku kasutuselevõttu on siiski vaja veel teha hulk arendustööd.  Mitmekihilise disain loob eeldused juhtivpolümeerse materjali paremaks kontrollimiseks ning tema omaduste parandamiseks.  TÜ IMS laboris on välja töötatud uudsed sünteesimeetodid metallivabade kunstlihaste valmistamiseks.  Senistel lihtsa ühekihilise struktuuriga materjalidel on mitmeid puudusi (juhtuvuse langus, tundlikus väliskeskkonna mõjudele). Aktuatsiooni tekitavale polümeerikihile vastupidise ioonliikuvusega kihtide lisamine loob eelduse neid puudusi vältida.
Kunstlihased, sensorid ja energiahõiveseadmed on elektritjuhtivate orgaaniliste polümeeride uudsemateks ja põnevamateks arengusuundadeks.  Neid loodetakse kasutada meditsiinis, robootikas,  kosmose- ja militaartööstuses.  Enne laiaulatuslikku kasutuselevõttu on siiski vaja veel teha hulk arendustööd.  Mitmekihilise disain loob eeldused juhtivpolümeerse materjali paremaks kontrollimiseks ning tema omaduste parandamiseks.  TÜ IMS laboris on välja töötatud uudsed sünteesimeetodid metallivabade kunstlihaste valmistamiseks.  Senistel lihtsa ühekihilise struktuuriga materjalidel on mitmeid puudusi (juhtuvuse langus, tundlikus väliskeskkonna mõjudele). Aktuatsiooni tekitavale polümeerikihile vastupidise ioonliikuvusega kihtide lisamine loob eelduse neid puudusi vältida.
== '''Arvutieksperimendid ja materjalide simuleerimine''' ==
== '''Arvutieksperimendid ja materjalide simuleerimine''' ==
===Liitiumiion-polümeerakude ja kunstlihaste materjalide uurimine erinevate arvutisimulatsioonimeetodite abil===
 
<font size="4">Liitiumioon-polümeerakude ja kunstlihaste materjalide uurimine erinevate arvutisimulatsioonimeetodite abil</font>
 
* liitiumioon-polümeeraku on üks olulisimaid osi tuleviku energiamuundamise ja -salvestamise vallas alates käepärastest elektroonikasedametest ja elektriautodest kuni kodumajapidamiseni välja
* liitiumioon-polümeeraku on üks olulisimaid osi tuleviku energiamuundamise ja -salvestamise vallas alates käepärastest elektroonikasedametest ja elektriautodest kuni kodumajapidamiseni välja
* kunstlihas on tükk sellist materjali, mida välise elektriväljaga on võimalik panna kuju muutma: painduma, punduma, kokku tõmbuma - nagu teeb reaalne lihas
* kunstlihas on tükk sellist materjali, mida välise elektriväljaga on võimalik panna kuju muutma: painduma, punduma, kokku tõmbuma - nagu teeb reaalne lihas
Line 28: Line 39:
* tahad teada, kuidas elektroodide kuju muutmine mõjutab liitiumioonaku mahtuvust - seda, kui kaua sinu elektriauto mööda Tartu-Tallinna maanteed suudaks kihutada? võta lõplike elementide meetod ja sa saad välja arvutada aku tühjenemise kiiruse sinu elektriauto toitmisel
* tahad teada, kuidas elektroodide kuju muutmine mõjutab liitiumioonaku mahtuvust - seda, kui kaua sinu elektriauto mööda Tartu-Tallinna maanteed suudaks kihutada? võta lõplike elementide meetod ja sa saad välja arvutada aku tühjenemise kiiruse sinu elektriauto toitmisel
* tahad teada, kuidas liiguvad ja mõjutavad üksteist aatomid ja molekulid kunstlihases ja liitiumioonaku elektroodides ning elektrolüüdis? võta molekulaardünaamiline simulatsioon ja sa saad siseneda maailma, mis on 10000 korda väiksem sinu juuksekarva läbimõõdust
* tahad teada, kuidas liiguvad ja mõjutavad üksteist aatomid ja molekulid kunstlihases ja liitiumioonaku elektroodides ning elektrolüüdis? võta molekulaardünaamiline simulatsioon ja sa saad siseneda maailma, mis on 10000 korda väiksem sinu juuksekarva läbimõõdust
* tahad virtuaalselt istuda iga aatomi peal ja näha, kuidas ühe aatomi elektronpilv lööb teise oma segamini? võta kvantkeemiline molekulaardünaamika ja sinu sõit lainefunktsioonide harjadel on pöörasem kui Ristna neemel Katja ajal
* tahad virtuaalselt istuda iga aatomi peal ja näha, kuidas ühe aatomi elektronpilv lööb teise oma segamini? võta kvantkeemiline molekulaardünaamika ja sinu sõit lainefunktsioonide harjadel on pöörasem kui Ristna neemel Katja ajal.
===Liitium-ioon akude arhitektuuri optimeerimine arvutisimulatsioonide abil===
 
<font size="4">Liitium-ioon akude arhitektuuri optimeerimine arvutisimulatsioonide abil</font>
 
Kaasaskantav mikroakutoide on oluliseks faktoriks paljudes arenevates tehnoloogiasuundades, kuna mikroelektroonika mõõtmete vähenemine on jätnud kaugele seljataha väikesemõõduliste vooluallikate arengu. Sobivate kaasaskantavate vooluallikate vähene energiamahtuvus on saamas takistuseks mitmete tehnoloogiasuundade nagu kaasaskantavate arvutusseadmete (Weareable Computing Technology e. WCT), mikroelektromehaaniliste seadmete (MEMS), biomeditsiiniliste mikromasinate arengus. Üheks võtmeprobleemiks selliste seadmete edukaks toimimiseks on nende varustamine vooluallikatega, mis ühelt küljelt tagavad seadme piisava energiahulgaga varustamise ning teiselt küljelt, on võimalikult väikesemõõduised ning kergekaalulised. Sellise konfiguratsiooni juures tulevad ilmsiks olemasolevate, olemuselt kahemõõtmeliste (2D) liitium-ioonakude puudused – nii väikeste ruum- ja pindalade puhul ei ole võimalik saavutada piisavaid energiatihedusi. Seda probleemi võimaldab lahendada 3D mikroakude (MB) kasutusele võtmine.  
Kaasaskantav mikroakutoide on oluliseks faktoriks paljudes arenevates tehnoloogiasuundades, kuna mikroelektroonika mõõtmete vähenemine on jätnud kaugele seljataha väikesemõõduliste vooluallikate arengu. Sobivate kaasaskantavate vooluallikate vähene energiamahtuvus on saamas takistuseks mitmete tehnoloogiasuundade nagu kaasaskantavate arvutusseadmete (Weareable Computing Technology e. WCT), mikroelektromehaaniliste seadmete (MEMS), biomeditsiiniliste mikromasinate arengus. Üheks võtmeprobleemiks selliste seadmete edukaks toimimiseks on nende varustamine vooluallikatega, mis ühelt küljelt tagavad seadme piisava energiahulgaga varustamise ning teiselt küljelt, on võimalikult väikesemõõduised ning kergekaalulised. Sellise konfiguratsiooni juures tulevad ilmsiks olemasolevate, olemuselt kahemõõtmeliste (2D) liitium-ioonakude puudused – nii väikeste ruum- ja pindalade puhul ei ole võimalik saavutada piisavaid energiatihedusi. Seda probleemi võimaldab lahendada 3D mikroakude (MB) kasutusele võtmine.  
Liitiumioonakude arhitektuuri optimeerimise eesmärgiks on valmistada töötav 3D-MB, mille energiatihedus ning mahtuvus on vähemalt suurusjärgu võrra suuremad praegu kasutusel olevate akude omadest. Toimiva 3D-MB välja töötamiseks arendatakse ja uuritakse erinevaid mikroaku arhitektuure, neist sobiva väljavalimist ning optimeerimist lihtsustavad oluliselt teoreetilised, arvutisimulatsioonidega läbi viidavad uuringud, mis võimaldavad testida erinevaid 3D-MB arhitektuure, lahendada optimeerimisülesandeid elektroodide optimaalse geomeetria leidmiseks; optimeerida elektroodi pinda; uurida terve aku käitumist laadimisel-tühjakslaadimisel; optimeerida sobivaid mikroaku arhitektuure.  
Liitiumioonakude arhitektuuri optimeerimise eesmärgiks on valmistada töötav 3D-MB, mille energiatihedus ning mahtuvus on vähemalt suurusjärgu võrra suuremad praegu kasutusel olevate akude omadest. Toimiva 3D-MB välja töötamiseks arendatakse ja uuritakse erinevaid mikroaku arhitektuure, neist sobiva väljavalimist ning optimeerimist lihtsustavad oluliselt teoreetilised, arvutisimulatsioonidega läbi viidavad uuringud, mis võimaldavad testida erinevaid 3D-MB arhitektuure, lahendada optimeerimisülesandeid elektroodide optimaalse geomeetria leidmiseks; optimeerida elektroodi pinda; uurida terve aku käitumist laadimisel-tühjakslaadimisel; optimeerida sobivaid mikroaku arhitektuure.  
Meetodid makrotasandis, mida selliste uuringute läbiviimiseks kasutatakse on lõplike elementide meetod (LEM) ning mikrotasandil molekulaardünaamilise simulatsiooni meetod (MD). Simulatsioonide läbiviimiseks kasutatakse LEM-i puhul tarkvarapakette COMSOL Multiphysics ja Elmer ning MD puhul tarkvarapaketti dl_poly.  
Meetodid makrotasandis, mida selliste uuringute läbiviimiseks kasutatakse on lõplike elementide meetod (LEM) ning mikrotasandil molekulaardünaamilise simulatsiooni meetod (MD). Simulatsioonide läbiviimiseks kasutatakse LEM-i puhul tarkvarapakette COMSOL Multiphysics ja Elmer ning MD puhul tarkvarapaketti dl_poly.  
===Materjalidefektide simuleerimine kõrgsageduslikes elektriväljades===
 
<font size="4">Materjalidefektide simuleerimine kõrgsageduslikes elektriväljades</font>
 
Uute elementaarosakeste tekitamiseks kiirendatakse elementaarosakesi kuni nende energiad ulatuvad mitme TeV piiridesse, kiirendamise efekt saavutatakse kahekiirelise kiirendiga. Eksperimentides kasutatakse uudse disainiga kompaktset lineaarpõrgutit (CLIC), asukohaga CERN’is Genfis ning see on paljude osakestefüüsikute poolt kauaoodatud seade, mis peaks andma vastuse paljudele olulistele osakestefüüsika küsimustele. Kahekiireline kiirendi CLIC suudab saavutada kiirendusgradiente  100 MV/m mille juures kokkupõrkeenergia ulatub 3TeV. Kiirendi ise on 50 km pikk.
Uute elementaarosakeste tekitamiseks kiirendatakse elementaarosakesi kuni nende energiad ulatuvad mitme TeV piiridesse, kiirendamise efekt saavutatakse kahekiirelise kiirendiga. Eksperimentides kasutatakse uudse disainiga kompaktset lineaarpõrgutit (CLIC), asukohaga CERN’is Genfis ning see on paljude osakestefüüsikute poolt kauaoodatud seade, mis peaks andma vastuse paljudele olulistele osakestefüüsika küsimustele. Kahekiireline kiirendi CLIC suudab saavutada kiirendusgradiente  100 MV/m mille juures kokkupõrkeenergia ulatub 3TeV. Kiirendi ise on 50 km pikk.
Üheks olulisemaks probleemiks kiirendi opereerimise juures on elektrilistest probleemidest põhjustatud töökatkestused. Kuigi probleem on hästi tuntud, ei ole teada millised füüsikalised effektid seda täpselt pühjustavad. Üks lubavamaid meetodeid kiirendi struktuuri parandamiseks on uute materjalide leidmine, mis suudavad taluda kõrgeid elektrivälju ning kiireid elektriväljade muutusi. Võtmeprobleemiks uute materjalide leidmisel on arusaamine füüsikalistest protsessidest, mis toimuvad materjalis elektriliste katkestuste tekkimisel.
Üheks olulisemaks probleemiks kiirendi opereerimise juures on elektrilistest probleemidest põhjustatud töökatkestused. Kuigi probleem on hästi tuntud, ei ole teada millised füüsikalised effektid seda täpselt pühjustavad. Üks lubavamaid meetodeid kiirendi struktuuri parandamiseks on uute materjalide leidmine, mis suudavad taluda kõrgeid elektrivälju ning kiireid elektriväljade muutusi. Võtmeprobleemiks uute materjalide leidmisel on arusaamine füüsikalistest protsessidest, mis toimuvad materjalis elektriliste katkestuste tekkimisel.
Meetodid, mida probleemi uurimisel kasutatakse on lõplike elementide meetod(LEM) ja molekulaardünaamika (MD) simulatsioonid.
Meetodid, mida probleemi uurimisel kasutatakse on lõplike elementide meetod(LEM) ja molekulaardünaamika (MD) simulatsioonid.


== '''Aktuaatorid, seadmed ja nende juhtimine''' ==
<font size="4">IPMC elektromehhaanilisi omadusi uuriva seadme juhtimine</font>


== '''Aktuaatorid, seadmed ja nende juhtimine''' ==
===IPMC elektromehhaanilisi omadusi uuriva seadme juhtimine===
Töö eesmärgiks on koostada eksperimentaalne seade, mis mõõdab elektroaktiivsete polümeeride elektromehaanilisi omadusi. Materjale kasutatakse kunstlihastena erinevates rakendustes. Töö tulemuseks peab valmima moodul, mis võimaldab seadet juhtuda USB kaudu.
Töö eesmärgiks on koostada eksperimentaalne seade, mis mõõdab elektroaktiivsete polümeeride elektromehaanilisi omadusi. Materjale kasutatakse kunstlihastena erinevates rakendustes. Töö tulemuseks peab valmima moodul, mis võimaldab seadet juhtuda USB kaudu.


===IPMC täitureid kasutava autonoomse seadme konstrueerimine===
<font size="4">IPMC täitureid kasutava autonoomse seadme konstrueerimine</font>
Eesmärgiks on nn kunstlihaeid kasutavate materjalide abil liikuvate autonoomsete seadmete konstrueerimine ning töö kirjeldamine. Valik ideid: "putukas", ratas, minipurilennuk, mikrohumanoid jne jne...
 
===Süsinik-polümeermaterjalidest täiturite juhtimine===
Eesmärgiks on nn kunstlihaeid kasutavate materjalide abil liikuvate autonoomsete seadmete konstrueerimine ning töö kirjeldamine. Valik ideid: "putukas", ratas, minipurilennuk, mikrohumanoid jne.
 
<font size="4">Süsinik-polümeermaterjalidest täiturite juhtimine</font>
 
Töö eesmärgiks on parametriseerida ning uurida materjaliteadlaste poolt laboris loodud uudsete materjalide elektromehaanilisi omadusi. St. vajalike elektromehaaniliste ja füüsikaliskeemiliste mudelite loomine, nende mudelite kirjeldamine ning eksperimentaalsete tulemuste vastu kinnitamine. Töö sobib (erinevates mahtudes) bakalaureus, magistri ja doktroritöödeks. Vajalik on võõrkeele oskus ning soov ja võimalus töötada aegajalt erinevates laborites välismaa ülikoolides.
Töö eesmärgiks on parametriseerida ning uurida materjaliteadlaste poolt laboris loodud uudsete materjalide elektromehaanilisi omadusi. St. vajalike elektromehaaniliste ja füüsikaliskeemiliste mudelite loomine, nende mudelite kirjeldamine ning eksperimentaalsete tulemuste vastu kinnitamine. Töö sobib (erinevates mahtudes) bakalaureus, magistri ja doktroritöödeks. Vajalik on võõrkeele oskus ning soov ja võimalus töötada aegajalt erinevates laborites välismaa ülikoolides.


===IPMC/süsinik polümeermaterjalidest energiakogujate uurimine===
<font size="4">IPMC/süsinik polümeermaterjalidest energiakogujate uurimine</font>
 
Töö eesmärgiks on parametriseerida ning uurida materjaliteadlaste poolt laboris loodud uudsete materjalide elektromehaanilisi omadusi eesmärgiga vinkeskkonnas olevate vibratsioonidest saadav energia muundada elektrienergiaks. Töö kujutab endast vajalike elektromehaaniliste ja füüsikaliskeemiliste mudelite loomist, nende mudelite kirjeldamine nin eksperimentaalsete tulemuste vastu kinnitamine. Töö sobib (erinevates mahtudes) bakalaureuse, magistri ja doktroritöödeks. Vajalik on võõrkeele oskus ning soov ja võimalus töötada aegajalt erinevates laborites välismaa ülikoolides.
Töö eesmärgiks on parametriseerida ning uurida materjaliteadlaste poolt laboris loodud uudsete materjalide elektromehaanilisi omadusi eesmärgiga vinkeskkonnas olevate vibratsioonidest saadav energia muundada elektrienergiaks. Töö kujutab endast vajalike elektromehaaniliste ja füüsikaliskeemiliste mudelite loomist, nende mudelite kirjeldamine nin eksperimentaalsete tulemuste vastu kinnitamine. Töö sobib (erinevates mahtudes) bakalaureuse, magistri ja doktroritöödeks. Vajalik on võõrkeele oskus ning soov ja võimalus töötada aegajalt erinevates laborites välismaa ülikoolides.
=== Fokuseeritava läätsesüsteemi konstrueerimine ja prototüüpimine ===
 
<font size="4">Fokuseeritava läätsesüsteemi konstrueerimine ja prototüüpimine</font>
 
Eesmärgiks on ehitada lihtne prototüüp, mis suudab vedeliku rõhuga manipuleerides muuta pehme läätse fooksukaugust. Aktiivseks elemendiks on süsinik-polümeer materjalist valmistatud täitur ehk nn kunstlihas.
Eesmärgiks on ehitada lihtne prototüüp, mis suudab vedeliku rõhuga manipuleerides muuta pehme läätse fooksukaugust. Aktiivseks elemendiks on süsinik-polümeer materjalist valmistatud täitur ehk nn kunstlihas.


== '''Robootika''' ==
== '''Robootika''' ==
===Inimest jälgiv minirobotite farm===
<font size="4">Inimest jälgiv minirobotite farm</font>
 
Töö eesmärgiks on luua robotite kooslus, mis suudab järgneda ruumis kõndivale inimesele. Selleks tuleb  täiustada olemasolevat robotiplatformi lisamooduli(te)ga. Töö nõuab oskusi elektroonikas ja programmeerimises.
Töö eesmärgiks on luua robotite kooslus, mis suudab järgneda ruumis kõndivale inimesele. Selleks tuleb  täiustada olemasolevat robotiplatformi lisamooduli(te)ga. Töö nõuab oskusi elektroonikas ja programmeerimises.
=== Roboti asukoha määramine ruumis kasutades olemas olevaid Wifi access pointe ===
 
<font size="4">Roboti asukoha määramine ruumis kasutades olemas olevaid Wifi access pointe</font>
 
Töö eesmärgiks on luua seade, mis suudab määra ta oma asukoha kaugust laialdaselt kasutusel olevast Wifi võrguseadmetest nii et olemasoelvaid võrguseadmeid ei modifitseerita. Kauguse abil on võimlik trangulatsiooni abil määrata seadme asukohta ruumis eeldusel et Wifi accesspointide asukoht on teada.
Töö eesmärgiks on luua seade, mis suudab määra ta oma asukoha kaugust laialdaselt kasutusel olevast Wifi võrguseadmetest nii et olemasoelvaid võrguseadmeid ei modifitseerita. Kauguse abil on võimlik trangulatsiooni abil määrata seadme asukohta ruumis eeldusel et Wifi accesspointide asukoht on teada.
Töö käigus on vaja välja töötada andmeside protokolli põhimõtted, koostaa seade ning realiseerida tarkvaraliselt protokoll ning viia läbi reaalsed testid. Töö sobib bakalaureuse, magistri ning doktoritööks, vastavalt milline alamülesanne ära lahendatakse.
Töö käigus on vaja välja töötada andmeside protokolli põhimõtted, koostaa seade ning realiseerida tarkvaraliselt protokoll ning viia läbi reaalsed testid. Töö sobib bakalaureuse, magistri ning doktoritööks, vastavalt milline alamülesanne ära lahendatakse.
===Aldabaran Nao rakendamine ===
Aldebaran NAo on poole meetri pikkune humanoid robt, kes on varsutatud mitmete andurite ja mootoritega. ÜLesandaks on Nao rakendamine erinevate vajalike ja huvitavate ülasenante täitmiseks: suhtlmine, jalgpalli mängimine jne jne..RM/Intel Atom baasil töötav miniarvuti


===Õpperobotid===
<font size="4">Aldebaran Nao rakendamine</font>
 
Aldebaran Nao on poolemeetrine humanoidrobot, kes on varustatud mitmete andurite ja mootoritega. Ülesandeks on Nao rakendamine erinevate vajalike ja huvitavate ülesannete täitmiseks: suhtlemine, jalgpalli mängimine jne. RM/Intel Atom baasil töötav miniarvuti.
 
<font size="4">Õpperobotid</font>
 
Eesmärgiks on arendada välja meelalahutuslike robootika teemalisi vahendeid lastele nii AHHAA teaduskeskuse kui nn robotiteatri tarbeks. Töö sisaldab sadem kosntrueerimist,ning realiseerimist töötava prototüübi kujul. Konkreetseid ideid on mitmedi, kui uued ideed on ka oodatud.
Eesmärgiks on arendada välja meelalahutuslike robootika teemalisi vahendeid lastele nii AHHAA teaduskeskuse kui nn robotiteatri tarbeks. Töö sisaldab sadem kosntrueerimist,ning realiseerimist töötava prototüübi kujul. Konkreetseid ideid on mitmedi, kui uued ideed on ka oodatud.


== '''Partneritega seotud teemad''' ==
== '''Partneritega seotud teemad''' ==
===Robotmannekeen rõivatööstusele ===
<font size="4">Mehhanoelektriliste andurite uurimine </font>
 
Töö eesmärgiks on eksperimentaalselt uurida erinevate mehaanilist liigutust elektriliseks muundavate materjalide omadusi. Töö hõlmab eksperimendi konstrueerimist ja arvutijuhitavate mõõtmiste teostamist LabVIEW keskkonnas. Sobib hästi arvutitehnika, füüsika ja materjaliteaduse tudengitele.
 
<font size="4">Robotmannekeen rõivatööstusele </font>
 
Projekti eesmärgiks on arendada välja inimkeha kujuline mannekeen rõivatööstusele kiirendamaks ning parendamaks disainerrõivaste väljatöötamist.
Projekti eesmärgiks on arendada välja inimkeha kujuline mannekeen rõivatööstusele kiirendamaks ning parendamaks disainerrõivaste väljatöötamist.
Projektis on vaja konstrueerida mehaanika sõlmed, realiseerida elektroonika juhtsõlmed, modeleerida ning luua algoritmid mannekeeni välispinna juhtimiseks ning arendada välja süsteemi kontroll tarkvara. Samuti on vaja arendada välja kasutajatarkvara. Projekti käigus tuleb  koostööd teha mitemete põnevate inimestega, kes on aktiivsed moe- ja rõivatööstuse vallas.
Projektis on vaja konstrueerida mehaanika sõlmed, realiseerida elektroonika juhtsõlmed, modeleerida ning luua algoritmid mannekeeni välispinna juhtimiseks ning arendada välja süsteemi kontroll tarkvara. Samuti on vaja arendada välja kasutajatarkvara. Projekti käigus tuleb  koostööd teha mitemete põnevate inimestega, kes on aktiivsed moe- ja rõivatööstuse vallas.
Line 72: Line 106:


== '''Õppetööga seotud''' ==
== '''Õppetööga seotud''' ==
===Sensori-anduri töö uurimine ja juhendmaterjali koostamine===
<font size="4">Sensori-anduri töö uurimine ja juhendmaterjali koostamine</font>
 
Töö eesmärgiks on eksperimentaalselt parametriseerida robootikas/automaatikas kasutatav sensor/täitur ning tulemuse põhjal koostada protokoll ja metoodika selle kasutamiseks.
Töö eesmärgiks on eksperimentaalselt parametriseerida robootikas/automaatikas kasutatav sensor/täitur ning tulemuse põhjal koostada protokoll ja metoodika selle kasutamiseks.
-->
-->


=Üldine info bakalaureuse ja magistritöö tegijatele=
=Üldine info bakalaureuse- ja magistritöö tegijatele=


# Teil on kaks juhendajat. Eeldame et te vähemalt 1 kord nädalas vähemalt ühe juhendajaga kontakti võtate ja arutate läbi oma töö  mured ja tegemised.
Teil on kaks juhendajat. Eeldame, et te vähemalt kord nädalas võtate vähemalt ühe juhendajaga kontakti ja arutate läbi oma mured ja tegemised.
# Töö esimene versioon peab olema esitatud hiljemalt 1. mai. Hilinemiseks sobivad ainult dokumentaalselt tõestatavad meditsiinilised põhjused. Esimene version peab sisaldama:
## Sissejuhatus, mis räägib miks projekti tulemus on vajalik ja mis teised selles valdkonnas maailmas teinud on.
## Projekti teoreetilised/matemaatilised//mudel alused lahti kirjutatuna.
## Tehtud tegevuse detailne kirjeldus (detaile pole kunagi liiga palju, delete on lihtsaim funktsioon, mida juhendaja teie kirjaliku töö ümber kirjutamisel :) teha saab)
## Töö tulemused, st kas mõõtmistulemused või seadme töötav! prototüübi tehnline kirjeldus ja  seade ise.
## Hinnang oma tööle, st töö tulemuste edasise arengu analüüs, tulemuste analüüs ja töö tulemuse kvaliteedile oma hinnang.


Töö esimene versioon peab olema esitatud hiljemalt 1. maiks. Hilinemiseks sobivad ainult dokumentaalselt tõestatavad meditsiinilised põhjused. Esimene version peab sisaldama:
# sissejuhatust, mis räägib, miks projekti tulemus on vajalik ja mida teised selles valdkonnas maailmas teinud on;
# projekti teoreetilisi/matemaatilisi/mudeli aluseid lahti kirjutatuna;
# tehtud tegevuse detailset kirjeldust (detaile pole kunagi liiga palju, delete on lihtsaim funktsioon, mida juhendaja teie kirjaliku töö ümber kirjutamisel :) teha saab);
# töö tulemusi, st kas mõõtmistulemusi või seadme töötava! prototüübi tehniline kirjeldust ja seadet ennast;
# hinnangut oma tööle, st töö tulemuste edasise arengu analüüsi, tulemuste analüüsi ja hinnangut töö tulemuse kvaliteedile.





Revision as of 15:08, 13 August 2012

IMS poster.png

Bakalauruse-, magistri- ja doktoritööd

Siin on mõned tegemised, mide meie uurimisgrupi juures on võimalik teha. Tegemist pole lõpliku nimekirjaga ning head tegijad on alati oodatud huvitavate ideedega. Kõikidest teemadest on võimalik edasi minna kuni PhD kaitsmiseni. Tegijad, kes teevad oma töö hindele A, saavad ka väärilise töötasu. Huvi korral võta ühendust.


Eksperimentaalne materjaliteadus

Süsinikelektroodidega polümeersed täiturid

Kunstlihased, ehk elektroaktiivseid polümeerseid komposiitmaterjale on väga palju erinevaid. Meie tegeleme madapingeliste, ioonsete materjalidega, millel on mitmed eelised kasutamiseks mikroseadmetes ja meditsiinis. Hetkel on eesmärgiks edasi arendada ioonvedelik-süsinikmaterjale. Kasutame erinevaid süsinikke- aerogeelid, karbiidsed süsinikud, nanotorud jpt. Töö eesmärgiks on valmistada erinevad aktuaator-sensormaterjalid, uurida nende valmistamise võimalusi ja nende omadusi.

Kunstlihased kosmoserakendustes

Meie poolt valmistatavad materjalid on kerged ning juhitavad madalate elektripingetega. Seetõttu pakuvad nad huvi kosmosetehnoloogia seadmete valmistajatele. Töö eesmärgiks on uurida kiirguse, temperatuuri jpt kosmoses materjalidele mõjuvate kahjustvate toimete mõju.

Tekstiilikiudude märgumisvastase tehnoloogia (Gore-tex) analüüs skaneeriva elektronmikroskoobiga

Kaasaegsete tekstiilmaterjalide töötluste juures on üheks olulisemaks suunaks materjalide vee– ja määrdumiskindluse suurendamine. Kui kootud materjalide (enamus kangaid) puhul on enamvähem toimivad lahendused (nn Gore-tex) välja töötatud, siis sidumata kiudude korral (näiteks paelad) need meetodid paraku enamasti ei toimi. Samas on tekstiilitööstuses kasvav huvi kvaliteetsete veekindlate paelte vastu. Koostöös Eesti (ja Põhjamaade ning Ida-Euroopa) juhtiva paelatootjaga on TÜ IMS laboris arendamisel innovaatilised töötlustehnoloogiad, mis peaksid võimaldama niisuguste materjalide tootmiseni jõuda. Kvaliteedi peamiseks kriteeriumiks peab olema kapillaarse märgumise puudumine. Nende protsesside uurimiseks oleme kasutusele võtnud kontrastainega „ilmutamise“ ning järgneva skaneeriva elektornmikroskoopia (SEM).

Juhtivpolümeeridel põhinevate mitmekihiliste kunstlihaste valmistamine ja iseloomustamine

Kunstlihased, sensorid ja energiahõiveseadmed on elektritjuhtivate orgaaniliste polümeeride uudsemateks ja põnevamateks arengusuundadeks. Neid loodetakse kasutada meditsiinis, robootikas, kosmose- ja militaartööstuses. Enne laiaulatuslikku kasutuselevõttu on siiski vaja veel teha hulk arendustööd. Mitmekihilise disain loob eeldused juhtivpolümeerse materjali paremaks kontrollimiseks ning tema omaduste parandamiseks. TÜ IMS laboris on välja töötatud uudsed sünteesimeetodid metallivabade kunstlihaste valmistamiseks. Senistel lihtsa ühekihilise struktuuriga materjalidel on mitmeid puudusi (juhtuvuse langus, tundlikus väliskeskkonna mõjudele). Aktuatsiooni tekitavale polümeerikihile vastupidise ioonliikuvusega kihtide lisamine loob eelduse neid puudusi vältida.


Arvutieksperimendid ja materjalide simuleerimine

Liitiumioon-polümeerakude ja kunstlihaste materjalide uurimine erinevate arvutisimulatsioonimeetodite abil

  • liitiumioon-polümeeraku on üks olulisimaid osi tuleviku energiamuundamise ja -salvestamise vallas alates käepärastest elektroonikasedametest ja elektriautodest kuni kodumajapidamiseni välja
  • kunstlihas on tükk sellist materjali, mida välise elektriväljaga on võimalik panna kuju muutma: painduma, punduma, kokku tõmbuma - nagu teeb reaalne lihas
  • kunstlihase materjal võib ka reageerida välisele mehaanilisele kujumuutusele elektrilise signaaliga
  • kunstlihas tegutseb hääletult, olles ise mõõtmetelt väga väike
  • kunstlihase materjalidena uuritakse selliseid "hitte" nagu grafeen ja ioonvedelik
  • arvutisimulatsioonid viivad sind materjali "sisse", võimaldades näha seda, mis katses jääb varju, anda infot toimuvate protsesside kohta ja näpunäiteid materjalide parendamiseks
  • tahad teda, kuidas liigutab 2 cm pikkune riba kunstlihast? võta lõplike lementide meetod ja sa näed ära pinged ja deformatsioonid kujumuutmisel
  • tahad teada, kuidas elektroodide kuju muutmine mõjutab liitiumioonaku mahtuvust - seda, kui kaua sinu elektriauto mööda Tartu-Tallinna maanteed suudaks kihutada? võta lõplike elementide meetod ja sa saad välja arvutada aku tühjenemise kiiruse sinu elektriauto toitmisel
  • tahad teada, kuidas liiguvad ja mõjutavad üksteist aatomid ja molekulid kunstlihases ja liitiumioonaku elektroodides ning elektrolüüdis? võta molekulaardünaamiline simulatsioon ja sa saad siseneda maailma, mis on 10000 korda väiksem sinu juuksekarva läbimõõdust
  • tahad virtuaalselt istuda iga aatomi peal ja näha, kuidas ühe aatomi elektronpilv lööb teise oma segamini? võta kvantkeemiline molekulaardünaamika ja sinu sõit lainefunktsioonide harjadel on pöörasem kui Ristna neemel Katja ajal.

Liitium-ioon akude arhitektuuri optimeerimine arvutisimulatsioonide abil

Kaasaskantav mikroakutoide on oluliseks faktoriks paljudes arenevates tehnoloogiasuundades, kuna mikroelektroonika mõõtmete vähenemine on jätnud kaugele seljataha väikesemõõduliste vooluallikate arengu. Sobivate kaasaskantavate vooluallikate vähene energiamahtuvus on saamas takistuseks mitmete tehnoloogiasuundade nagu kaasaskantavate arvutusseadmete (Weareable Computing Technology e. WCT), mikroelektromehaaniliste seadmete (MEMS), biomeditsiiniliste mikromasinate arengus. Üheks võtmeprobleemiks selliste seadmete edukaks toimimiseks on nende varustamine vooluallikatega, mis ühelt küljelt tagavad seadme piisava energiahulgaga varustamise ning teiselt küljelt, on võimalikult väikesemõõduised ning kergekaalulised. Sellise konfiguratsiooni juures tulevad ilmsiks olemasolevate, olemuselt kahemõõtmeliste (2D) liitium-ioonakude puudused – nii väikeste ruum- ja pindalade puhul ei ole võimalik saavutada piisavaid energiatihedusi. Seda probleemi võimaldab lahendada 3D mikroakude (MB) kasutusele võtmine. Liitiumioonakude arhitektuuri optimeerimise eesmärgiks on valmistada töötav 3D-MB, mille energiatihedus ning mahtuvus on vähemalt suurusjärgu võrra suuremad praegu kasutusel olevate akude omadest. Toimiva 3D-MB välja töötamiseks arendatakse ja uuritakse erinevaid mikroaku arhitektuure, neist sobiva väljavalimist ning optimeerimist lihtsustavad oluliselt teoreetilised, arvutisimulatsioonidega läbi viidavad uuringud, mis võimaldavad testida erinevaid 3D-MB arhitektuure, lahendada optimeerimisülesandeid elektroodide optimaalse geomeetria leidmiseks; optimeerida elektroodi pinda; uurida terve aku käitumist laadimisel-tühjakslaadimisel; optimeerida sobivaid mikroaku arhitektuure. Meetodid makrotasandis, mida selliste uuringute läbiviimiseks kasutatakse on lõplike elementide meetod (LEM) ning mikrotasandil molekulaardünaamilise simulatsiooni meetod (MD). Simulatsioonide läbiviimiseks kasutatakse LEM-i puhul tarkvarapakette COMSOL Multiphysics ja Elmer ning MD puhul tarkvarapaketti dl_poly.

Materjalidefektide simuleerimine kõrgsageduslikes elektriväljades

Uute elementaarosakeste tekitamiseks kiirendatakse elementaarosakesi kuni nende energiad ulatuvad mitme TeV piiridesse, kiirendamise efekt saavutatakse kahekiirelise kiirendiga. Eksperimentides kasutatakse uudse disainiga kompaktset lineaarpõrgutit (CLIC), asukohaga CERN’is Genfis ning see on paljude osakestefüüsikute poolt kauaoodatud seade, mis peaks andma vastuse paljudele olulistele osakestefüüsika küsimustele. Kahekiireline kiirendi CLIC suudab saavutada kiirendusgradiente  100 MV/m mille juures kokkupõrkeenergia ulatub 3TeV. Kiirendi ise on 50 km pikk. Üheks olulisemaks probleemiks kiirendi opereerimise juures on elektrilistest probleemidest põhjustatud töökatkestused. Kuigi probleem on hästi tuntud, ei ole teada millised füüsikalised effektid seda täpselt pühjustavad. Üks lubavamaid meetodeid kiirendi struktuuri parandamiseks on uute materjalide leidmine, mis suudavad taluda kõrgeid elektrivälju ning kiireid elektriväljade muutusi. Võtmeprobleemiks uute materjalide leidmisel on arusaamine füüsikalistest protsessidest, mis toimuvad materjalis elektriliste katkestuste tekkimisel. Meetodid, mida probleemi uurimisel kasutatakse on lõplike elementide meetod(LEM) ja molekulaardünaamika (MD) simulatsioonid.

Aktuaatorid, seadmed ja nende juhtimine

IPMC elektromehhaanilisi omadusi uuriva seadme juhtimine

Töö eesmärgiks on koostada eksperimentaalne seade, mis mõõdab elektroaktiivsete polümeeride elektromehaanilisi omadusi. Materjale kasutatakse kunstlihastena erinevates rakendustes. Töö tulemuseks peab valmima moodul, mis võimaldab seadet juhtuda USB kaudu.

IPMC täitureid kasutava autonoomse seadme konstrueerimine

Eesmärgiks on nn kunstlihaeid kasutavate materjalide abil liikuvate autonoomsete seadmete konstrueerimine ning töö kirjeldamine. Valik ideid: "putukas", ratas, minipurilennuk, mikrohumanoid jne.

Süsinik-polümeermaterjalidest täiturite juhtimine

Töö eesmärgiks on parametriseerida ning uurida materjaliteadlaste poolt laboris loodud uudsete materjalide elektromehaanilisi omadusi. St. vajalike elektromehaaniliste ja füüsikaliskeemiliste mudelite loomine, nende mudelite kirjeldamine ning eksperimentaalsete tulemuste vastu kinnitamine. Töö sobib (erinevates mahtudes) bakalaureus, magistri ja doktroritöödeks. Vajalik on võõrkeele oskus ning soov ja võimalus töötada aegajalt erinevates laborites välismaa ülikoolides.

IPMC/süsinik polümeermaterjalidest energiakogujate uurimine

Töö eesmärgiks on parametriseerida ning uurida materjaliteadlaste poolt laboris loodud uudsete materjalide elektromehaanilisi omadusi eesmärgiga vinkeskkonnas olevate vibratsioonidest saadav energia muundada elektrienergiaks. Töö kujutab endast vajalike elektromehaaniliste ja füüsikaliskeemiliste mudelite loomist, nende mudelite kirjeldamine nin eksperimentaalsete tulemuste vastu kinnitamine. Töö sobib (erinevates mahtudes) bakalaureuse, magistri ja doktroritöödeks. Vajalik on võõrkeele oskus ning soov ja võimalus töötada aegajalt erinevates laborites välismaa ülikoolides.

Fokuseeritava läätsesüsteemi konstrueerimine ja prototüüpimine

Eesmärgiks on ehitada lihtne prototüüp, mis suudab vedeliku rõhuga manipuleerides muuta pehme läätse fooksukaugust. Aktiivseks elemendiks on süsinik-polümeer materjalist valmistatud täitur ehk nn kunstlihas.


Robootika

Inimest jälgiv minirobotite farm

Töö eesmärgiks on luua robotite kooslus, mis suudab järgneda ruumis kõndivale inimesele. Selleks tuleb täiustada olemasolevat robotiplatformi lisamooduli(te)ga. Töö nõuab oskusi elektroonikas ja programmeerimises.

Roboti asukoha määramine ruumis kasutades olemas olevaid Wifi access pointe

Töö eesmärgiks on luua seade, mis suudab määra ta oma asukoha kaugust laialdaselt kasutusel olevast Wifi võrguseadmetest nii et olemasoelvaid võrguseadmeid ei modifitseerita. Kauguse abil on võimlik trangulatsiooni abil määrata seadme asukohta ruumis eeldusel et Wifi accesspointide asukoht on teada. Töö käigus on vaja välja töötada andmeside protokolli põhimõtted, koostaa seade ning realiseerida tarkvaraliselt protokoll ning viia läbi reaalsed testid. Töö sobib bakalaureuse, magistri ning doktoritööks, vastavalt milline alamülesanne ära lahendatakse.

Aldebaran Nao rakendamine

Aldebaran Nao on poolemeetrine humanoidrobot, kes on varustatud mitmete andurite ja mootoritega. Ülesandeks on Nao rakendamine erinevate vajalike ja huvitavate ülesannete täitmiseks: suhtlemine, jalgpalli mängimine jne. RM/Intel Atom baasil töötav miniarvuti.

Õpperobotid

Eesmärgiks on arendada välja meelalahutuslike robootika teemalisi vahendeid lastele nii AHHAA teaduskeskuse kui nn robotiteatri tarbeks. Töö sisaldab sadem kosntrueerimist,ning realiseerimist töötava prototüübi kujul. Konkreetseid ideid on mitmedi, kui uued ideed on ka oodatud.


Partneritega seotud teemad

Mehhanoelektriliste andurite uurimine

Töö eesmärgiks on eksperimentaalselt uurida erinevate mehaanilist liigutust elektriliseks muundavate materjalide omadusi. Töö hõlmab eksperimendi konstrueerimist ja arvutijuhitavate mõõtmiste teostamist LabVIEW keskkonnas. Sobib hästi arvutitehnika, füüsika ja materjaliteaduse tudengitele.

Robotmannekeen rõivatööstusele

Projekti eesmärgiks on arendada välja inimkeha kujuline mannekeen rõivatööstusele kiirendamaks ning parendamaks disainerrõivaste väljatöötamist. Projektis on vaja konstrueerida mehaanika sõlmed, realiseerida elektroonika juhtsõlmed, modeleerida ning luua algoritmid mannekeeni välispinna juhtimiseks ning arendada välja süsteemi kontroll tarkvara. Samuti on vaja arendada välja kasutajatarkvara. Projekti käigus tuleb koostööd teha mitemete põnevate inimestega, kes on aktiivsed moe- ja rõivatööstuse vallas. Sobib mitmeteks bakalaureuse ja magistritöödeks, sõltuvalt tasemest on ka töö maht erinev.

Õppetööga seotud

Sensori-anduri töö uurimine ja juhendmaterjali koostamine

Töö eesmärgiks on eksperimentaalselt parametriseerida robootikas/automaatikas kasutatav sensor/täitur ning tulemuse põhjal koostada protokoll ja metoodika selle kasutamiseks. -->

Üldine info bakalaureuse- ja magistritöö tegijatele

Teil on kaks juhendajat. Eeldame, et te vähemalt kord nädalas võtate vähemalt ühe juhendajaga kontakti ja arutate läbi oma mured ja tegemised.

Töö esimene versioon peab olema esitatud hiljemalt 1. maiks. Hilinemiseks sobivad ainult dokumentaalselt tõestatavad meditsiinilised põhjused. Esimene version peab sisaldama:

  1. sissejuhatust, mis räägib, miks projekti tulemus on vajalik ja mida teised selles valdkonnas maailmas teinud on;
  2. projekti teoreetilisi/matemaatilisi/mudeli aluseid lahti kirjutatuna;
  3. tehtud tegevuse detailset kirjeldust (detaile pole kunagi liiga palju, delete on lihtsaim funktsioon, mida juhendaja teie kirjaliku töö ümber kirjutamisel :) teha saab);
  4. töö tulemusi, st kas mõõtmistulemusi või seadme töötava! prototüübi tehniline kirjeldust ja seadet ennast;
  5. hinnangut oma tööle, st töö tulemuste edasise arengu analüüsi, tulemuste analüüsi ja hinnangut töö tulemuse kvaliteedile.