Birch-Murnaghani võrrandi lähenduse tuletamine: Difference between revisions

From Intelligent Materials and Systems Lab

No edit summary
No edit summary
Line 3: Line 3:
<math> E(V) = E_0 + \frac{9 V_0 B_0 }{16} \left\{ \left[ \left(\frac{V_0}{V}\right)^{\frac{2}{3}} -1 \right]^3 B_0^' + \left[ \left( \frac{V_0}{V}\right)^{\frac{2}{3}} -1 \right]^2 \left[ 6 - 4 \left( \frac{V_0}{V} \right)^{\frac{2}{3}} \right] \right\} \;\; (1) </math>
<math> E(V) = E_0 + \frac{9 V_0 B_0 }{16} \left\{ \left[ \left(\frac{V_0}{V}\right)^{\frac{2}{3}} -1 \right]^3 B_0^' + \left[ \left( \frac{V_0}{V}\right)^{\frac{2}{3}} -1 \right]^2 \left[ 6 - 4 \left( \frac{V_0}{V} \right)^{\frac{2}{3}} \right] \right\} \;\; (1) </math>


Gruppeerides võrrandis (1) liikmed <maht> \frac{V_0}{V}</math> astmete järgi saame järgmise võrrandi:
Gruppeerides võrrandis (1) liikmed <math> \frac{V_0}{V}</math> astmete järgi saame järgmise võrrandi:


<math> E(V) = a + b \cdot \left(\frac{V_0}{V}\right)^2 + c \cdot \left(\frac{V_0}{V}\right)^\frac{4}{3} + d \cdot \left(\frac{V_0}{V}\right)^\frac{2}{3} \;\; (2)
<math> E(V) = a + b \cdot \left(\frac{V_0}{V}\right)^2 + c \cdot \left(\frac{V_0}{V}\right)^\frac{4}{3} + d \cdot \left(\frac{V_0}{V}\right)^\frac{2}{3} \;\; (2)
Line 9: Line 9:




<math>a = </math>
<math>a = E_0 + \frac{9}{16} \cdot V_0 \cdot B_0 ( 6 - B_0+^') \;\;(3)</math>


<math>b = </math>
<math>b = \;\;(4)</math>


<math>c = </math>
<math>c = \;\;(5)</math>


<math>d = </math>
<math>d = \;\;(6)</math>

Revision as of 10:42, 28 November 2008

Vaatleme võrrandit:

[math] E(V) = E_0 + \frac{9 V_0 B_0 }{16} \left\{ \left[ \left(\frac{V_0}{V}\right)^{\frac{2}{3}} -1 \right]^3 B_0^' + \left[ \left( \frac{V_0}{V}\right)^{\frac{2}{3}} -1 \right]^2 \left[ 6 - 4 \left( \frac{V_0}{V} \right)^{\frac{2}{3}} \right] \right\} \;\; (1) [/math]

Gruppeerides võrrandis (1) liikmed [math] \frac{V_0}{V}[/math] astmete järgi saame järgmise võrrandi:

[math] E(V) = a + b \cdot \left(\frac{V_0}{V}\right)^2 + c \cdot \left(\frac{V_0}{V}\right)^\frac{4}{3} + d \cdot \left(\frac{V_0}{V}\right)^\frac{2}{3} \;\; (2) \;\; , kus [/math]


[math]a = E_0 + \frac{9}{16} \cdot V_0 \cdot B_0 ( 6 - B_0+^') \;\;(3)[/math]

[math]b = \;\;(4)[/math]

[math]c = \;\;(5)[/math]

[math]d = \;\;(6)[/math]