
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Technology
Robotics and Computer Engineering Curriculum

Maxence ROUCHOU

Development of an Adaptive Pipeline for
Object Detection Training and

Benchmarking

Master’s Thesis (30 ECTS)

Supervisors: Ric Dengel

Quazi Saimoon Islam

Tartu 2024

Development of an Adaptive Pipeline for Object Detection Training
and Benchmarking

Abstract:
This thesis presents the development of a highly modular pipeline designed for the train-
ing, testing and benchmarking of object detection models for future extraterrestrial sur-
face exploration. The key focus for these models is to achieve an optimal balance between
inference time, power consumption, and model precision, which is paramount given the
limited computational capabilities and power restrictions of resource-constrained devices.
Five models (FRCNNs and YOLOs) were chosen for their varied characteristics. They
were then implemented in this pipeline and their accuracy, power consumption, inference
time, and CPU & GPU usage were collected. With the collected metrics, Yolo11s was
determined to be the most suitable for autonomous navigation out of the implemented
models. The developed pipeline lays the foundation for further study and research into
the domain and identifying models that could be deployed in future space applications.

Keywords: Neural Network Benchmark, Object Detection, Model optimization, Jetson
Orin Nano

CERCS: T111: Imaging, image processing, T125: Automation, robotics, control engi-
neering;

Kohandatava toru arendamine objektide tuvastamise koolitamiseks
ja hindamiseks
Lühikokkuvõte:
Kohanduva treenimis- ja hindamisliini arendus objektide tuvastamise mudelitele See
lõputöö esitleb modulaarset süsteemi, et treenida, testida ja hinnata objektide tuvasta-
mise mudeleid tulevaseks maavälise pinna avastamiseks. Töö fookuses on optimaalse
tasakaalu leidmine mudeli järeldamisaja, nõutava arvutusvõimsuse ning mudeli täpsuse
vahel, sest arvutusjõudlus ning voolutarbimine on seadmetel piiratud. Valiti viis mudelit
(FRCNN ja YOLO algoritmidel baseeruvad) nende varieeruvate karakteristikute poo-
lest. Need mudelid implementeeriti treenimis- ja hindamisliini, mõõdeti nende täpsust,
voolutarbimist, järeldamisaega ning protsessorite kasutust. Kogutud andmete põhjal
leiti, et autonoomseks navigatsiooniks on implementeeritud mudelitest parim YOLO11.
Tehtud töö loob aluse edasisteks valdkonnasisesteks uuringuteks kosmoserakendusteks
kasutatavate mudelite valimisel.

Võtmesõnad:

CERCS: T111: Pilditehnika , T125: Automatiseerimine, robootika, juhtimistehnika,

2

Contents
1 Introduction 8

1.1 Background . 8
1.2 Problem statement . 9
1.3 Goals . 9

2 Literature Review 10
2.1 Previous Work in Autonomous Navigation for Rovers 10

2.1.1 Evolution of Rover Navigation 10
2.1.2 Advances in Neural Network Architectures 10
2.1.3 Optimization Techniques for Resource Efficiency 11
2.1.4 Real-World Applications and Challenges 12

2.2 Future Possibilities in Neural Network Applications for Lunar Rover
Navigation . 12
2.2.1 Enhanced Terrain Classification 12
2.2.2 Integration of Spiking Neural Networks 13

2.3 Neural Networks Choice . 13
2.4 Possible Target Devices . 15

2.4.1 Difference between main Hardware Components 15
2.4.2 Nvidia Jetson . 16
2.4.3 AMD Versal . 18
2.4.4 Google Coral . 19

3 Methodology 20
3.1 Chosen Models . 20
3.2 Dataset . 20
3.3 Chosen Target Device . 21
3.4 Pipeline Overview . 22

3.4.1 Configuration File . 22
3.4.2 Virtual Environments . 24
3.4.3 Model Training . 24
3.4.4 Model Testing . 25
3.4.5 Model & Config Copy . 26
3.4.6 Model Benchmarking . 26

4 Results and analysis 29
4.1 Input Variables . 29
4.2 Results . 30

4.2.1 Total Time and Individual Times 30
4.2.2 Inference Speed and Model Accuracy 32

3

4.2.3 Power Consumption . 33
4.2.4 CPU & GPU . 35
4.2.5 RAM . 37

4.3 Analysis of the Results . 37

5 Discussion 38

6 Conclusion 39

References 44

Glossary 45
Tools . 45

Licence 46

4

List of Tables
1 Performance and Specifications of object detection models from PyTorch

documentation [1] . 14
2 Performance and Specifications of YOLO Models [2] 14
3 Performance Highlights of NVIDIA Jetson Devices [3] 16
4 Specifications of Versal AI Edge XA Models 18
5 Performance comparison of models based on Frames Per Second (FPS)

and precision. 20
6 Specifications of Jetson Orin Nano . 22
7 Configuration Variables Definition . 23
8 Overview of metrics used for benchmarking. 27
9 Image Augmentations for Yolo models 29
10 Image Augmentations for PyTorch FRCNN models 30
11 First Pass Times for Object Detection Models 31
12 Performance Comparison of the 5 Benchmarked Models based on FPS

and Model Score. 32
13 Performance Comparison of Models 37

5

List of Figures
1 Hardware efficiency [4] . 15
2 Jetson AGX Xavier and Jetson AGX Orin Comparison [5] 17
3 Space Bunker . 21
4 Input Image from the Dataset . 21
5 Same Image with Annotations . 21
6 Pipeline Diagram . 22
7 Block Diagram of PyTorch Model Training 25
8 Block Diagram of TensorFlow 2 Model Training 25
9 Block Diagram of the Model Benchmarking 28
10 Inference Times for Each Iteration of the 5 Benchmarked Models 31
11 Power Consumption Of the 5 Benchmarked Models 33
12 Power Consumption of the 5 Benchmarked Models 34
13 CPU & GPU Usage of the 5 Benchmarked Models 35
14 CPU Frequency of the 5 Benchmarked Models 36

6

List of Acronyms
AI Artificial Intelligence

ASIC Application-specific integrated circuit

CNN Convolutional Neural Network

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

FOV Field Of View

FPGA Field Programmable Gate Arrays

FPS Frames Per Second

FRCNN Faster RCNN

GFLOPS Giga Floating Point Operations Per Second

GPU Graphics Processing Unit

JSON JavaScript Object Notation

MPU Microprocessor Unit

RL Reinforcement Learning

SL Supervised Learning

SNN Spiking Neural Network

SoC System-on-Chip

TPU Tensor Power Unit

UL Unsupervised Learning

XLA Accelerated Linear Algebra

YOLO You Only Look Once

7

1 Introduction

1.1 Background
Interest in lunar exploration has increased in recent years due to several significant
factors. The first factor is that the Moon is an entryway for deeper space exploration
[6] and is the perfect testing ground for technologies required for missions to Mars
and beyond. More specifically, its proximity to Earth allows for shorter and less costly
missions, making it the best place for research and development in space engineering.
The second main factor was the discovery of water ice near the poles of the Moon
[7]. This translates to a potential source of drinkable water. In addition, electrolysis
of water separates the H2O into O2 (oxygen for breathable air) and H2 (can be used
for Rocket Fuel). Finally, the rise of new commercial space programs such as SpaceX
has made lunar exploration more accessible, leading to a new era of space exploration [8].

Rovers play an important role in the increase in interest in lunar exploration. They are
vital for conducting scientific investigations and acquiring data in harsh or remote areas
[9]. Rovers equipped with advanced technologies are beginning to autonomously explore
the rough terrain of the Moon, including craters, rocks, and varied surface textures, but
currently still need a human operator to navigate these terrains [10].

Traditional autonomous navigation algorithms rely primarily on rule-based systems
and manually created features to detect and avoid obstacles. Although these technologies
have been extensively tested and are efficient in a controlled environment, they struggle
with other planets’ more varied and complex terrains, where obstacles and geological
formations are more common [11]. Said algorithms lack the adaptability to handle these
conditions, especially when adding variable lighting, shadows, and surface textures [12].
Neural networks, on the other hand, are based on how the human brain works. Their
main advantage over standard algorithms is their ability to generalize concepts from a set
of information. Starting from a huge number of training data, they can detect patterns and
anomalies that traditional algorithms may miss, resulting in more accurate and reliable
navigation [13].

However, neural network models have some disadvantages to take into account, the
most important being their computational costs [14]; this cost is difficult to accommodate
on resource-limited space systems. Luckily, recent advancements have made powerful
Graphics Processing Unit (GPU) technology more accessible for space applications [15].
As miniaturization and energy efficiency of computing hardware improvements occur,
this issue is becoming decreasingly problematic [16] but still needs to be addressed.
Another constraint with missions in the space environment is the limitation in power
resources, where energy conservation is vital for prolonged mission duration. Overall,

8

any neural network used in a space project must achieve a delicate balance between speed,
accuracy, and power efficiency [17]. More specifically for rover applications, the goal
is to deploy models that maximize detection capabilities, allowing for safe autonomous
navigation while consuming the lowest amount of energy in challenging extraterrestrial
environments.

To this end, this thesis aims to develop a benchmarking pipeline for neural network
solutions that enables quick and easy evaluation of various neural network architectures
and their performance on an edge device. With this tool, this research seeks to identify the
best model and configuration that can accurately be used for navigation while operating
within the constraints of computationally and energetically limited space systems.

1.2 Problem statement
Autonomous navigation for planetary rovers requires a careful balance of model preci-
sion, inference speed, and power consumption, which are essential for detecting obstacles
in real-time. This balance is especially challenging on compact hardware, which has
limited computational resources and must operate with restricted power.

This thesis aims to develop a modular pipeline to easily experiment with different
neural network models and configurations for object detection of lunar rocks. By building
a flexible benchmarking system, the project seeks to help find the optimal trade-off
between speed, accuracy, and power efficiency for rock detection.

1.3 Goals
In response to the identified challenges, this project aims to achieve the following goals:

• Develop a highly modular pipeline that aims to train, test, and benchmark different
neural networks with variable configurations.

• Identify the most relevant metrics to accurately benchmark the trained deep learn-
ing models.

• Determine which model and which configuration achieves the best balance between
inference speed, accuracy, and power consumption.

9

2 Literature Review

2.1 Previous Work in Autonomous Navigation for Rovers
Over the years, the number of studies related to Autonomous navigation especially
focusing on deep learning has skyrocketed. This section will be diving into the evolution
of autonomous navigation for rovers, then the improvements that were made related to
neural networks, followed by various optimization techniques for models to be lighter
and faster, and finally the challenges related to applying the neural networks into real-life
extraterrestrial exploration.

2.1.1 Evolution of Rover Navigation

Autonomous navigation was already implemented as early as the first Mars Exploration
Rover with a self-driving technology called AutoNav [18]. Opportunity, one of the two
Mars Exploration Rovers, only traveled 5% of its total distance with this technology. This
system was improved over the years for subsequent missions: Curiosity and especially
Perseverance, which has autonomously traveled more than 85% of its total distance with
a record 699.9 meters without human review [19]. Despite this impressive feat, the maxi-
mum distance traveled per day remains limited, the maximum attained by Perseverance
being only 347.7 meters, and regular human intervention is still needed.

2.1.2 Advances in Neural Network Architectures

In the field of neural networks, there are three main learning paradigms:

• Supervised Learning (SL): Training a neural network to predict values based on
labeled data.

• Unsupervised Learning (UL): Training a neural network to distinguish patterns,
without labeled data.

• Reinforcement Learning (RL): Training a neural network where its interactions
with its environment awards rewards or penalties.

A first approach towards autonomous navigation using SL would be through the use
of Convolutional Neural Network (CNN). This type of neural network is specifically
aimed for computer vision, in that sense, their use is paired with navigation. Their use in
the context of extraterrestrial rovers was studied for image classification of terrain types
and terrain features [20]. It was shown that the use of CNN leads to high accuracy for
spatial but most importantly for us, ground-based images.

10

Another approach towards autonomy using RL was also studied for navigation
tasks [21]. Generally, RL neural networks have a very long training time and may
lead to dead ends during navigation. In this paper, a new framework was developed,
combining traditional navigation and RL, keeping the advantages of RL while mitigating
its weaknesses. Their novel approach beat both end-to-end RL approaches and traditional
navigation processes. This approach, even though never implemented in extraterrestrial
environments could be implemented in future studies.

2.1.3 Optimization Techniques for Resource Efficiency

For autonomous navigation in resource-constrained systems, it is mandatory to maximize
accuracy and detection speed while having the lowest power consumption possible.
When working with neural networks, multiple techniques were developed to improve
model inference speed while very slightly affecting precision, such as low-rank fac-
torization or knowledge distillation [22]. However, the two most effective techniques
are model pruning and quantization [23]. There are different algorithms to perform
pruning on models, but the aim remains the same: delete some neurons of the neural
network alongside its connections to other neurons, leading to lighter models. Similar
to pruning, there are many different types of quantization, either pre or post-training.
The idea is to reduce the precision of neuron weights, usually from float of 32 or 16 bits
to integers of 8 bits, leading to faster models, as less bits means smaller computation.
It was demonstrated that the implementation of these techniques greatly improved the
inference speed of tested models without any significant decrease in model accuracy [23].

While pruning and quantization are techniques applied to models, light models are
also being developed, aiming for the lowest inference time while keeping a high accuracy.
It is the case of the last version of the MobileNet models, MobileNetV3 [24]. The main
technique used in this architecture called Depthwise Separable Convolutions, breaks
down the standard convolution into two steps: Depthwise convolution and Pointwise
Convolution. This results in a lower computational complexity and a lower amount of
parameters, leading to faster inference time while keeping high accuracy. This type of
lightweight model is perfect for low-power devices and is a good contender for our lunar
rover application.

Now that we know how to create a small and efficient model with lightweight archi-
tecture, pruning, and quantization, we can dig into inference optimizers such as TensorRT
and Accelerated Linear Algebra (XLA). TensorRT is a high-performance deep learning
inference library developed by NVIDIA that optimizes trained models for deployment
specifically on NVIDIA GPU. It applies various techniques such as layer fusion, preci-
sion calibration, and kernel auto-tuning to maximize inference speed, making it perfect
for deployment on devices that require real-time inference [25].

11

On the other hand, XLA is a compiler for linear algebra that optimizes computations
by generating efficient machine code tailored to specific hardware. By utilizing XLA
optimization, model speed can significantly improve through graph optimizations and
reduced memory overhead [26]. The choice of one of these two optimization techniques
can significantly enhance the efficiency of neural networks.

2.1.4 Real-World Applications and Challenges

The use of neural networks still has some downsides that have already been studied.
When training neural networks with a low amount of data, the risk of overfitting is high
[27]. This problem is particularly important for planetary rovers which do not have an
unlimited amount of data. However, it was demonstrated that using pre-trained models
and fine-tuning them on a limited amount of data from the Martian environment would
lead to pretty accurate models [28], thus enhancing the feasibility of deploying neural
networks in extraterrestrial scenarios.

Moreover, sensor fusion techniques that combine data from various sources, such
as adding LiDAR and odometry values to camera input, were developed to improve
navigation performance under challenging conditions [29]. This study showed that it
might be wiser to rely on multiple sensor inputs than only the output of neural networks.

2.2 Future Possibilities in Neural Network Applications for Lunar
Rover Navigation

As the field of autonomous navigation for lunar rovers continues to evolve, several
new possibilities emerge. In this field, the integration of neural network architectures
and innovative techniques is a hot topic. This section explores potential advancements,
including enhanced terrain classification, and the application of Spiking Neural Network
(SNN).

2.2.1 Enhanced Terrain Classification

The ability to accurately classify terrain is vital for ensuring safe navigation and effective
mission planning on the Moon. Recent advancements have shown promise in using deep
learning techniques for automated image classification of lunar features. For example,
a study focused on using CNN demonstrated high accuracy in identifying geological
features from lunar imagery captured by robotic rovers [30]. This study shows that
the implementation of neural networks for extraterrestrial environments is not only
theoretically possible but even already possible to implement.

It is possible to imagine the future of more robust and more accurate deep learning
models that could be created from bigger datasets due to the renewed interest in lunar

12

exploration. This paired with transfer learning and domain adaptation could enable
models trained on Earth-based data to be effectively adapted for lunar environments,
enhancing their robustness in on-field applications.

2.2.2 Integration of Spiking Neural Networks

Spiking Neural Networks are a significant evolution compared to traditional neural
network models. The idea behind SNN is to resemble the human brain more closely,
by processing information with spikes and adding a time dimension to these networks.
Research showed that this type of neural network requires less power to be run, and is
faster than CNN [31].

However, multiple challenges are currently linked to the use of SNN.

• Training SNN is more complex than training traditional neural networks. As they
are based on spikes, these signals are non-differentiable so traditional backpropa-
gation by gradient descent is non-applicable.

• Only a few amount of hardware (such as Intel Loihi [32]) currently support SNNs.
This reason is the main issue regarding its use in this pipeline.

• Only a few amount of research was done about the use of SNN with object
detection, which is the task performed in this study.

Given these limitations, while SNN is promising for future implementation and wider
use, further research is necessary to mitigate the aforementioned issues.

2.3 Neural Networks Choice
In the vast world of neural networks, new models emerge regularly, making the selection
process quite fastidious. While it is possible to develop a custom model from scratch,
this approach can be time-consuming and does not guarantee impressive results, which
could lead to a waste of time. As already covered previously, a better strategy is to use
pre-trained models which can then be fine-tuned for specific tasks. In this section, we
will explore several object detection models and evaluate their suitability for our study.

Tables 1 and 2 show us key metrics for different object detection models. Model
accuracies are designated by their mAP score (the higher the better) and their com-
putational cost is represented by the number of Giga Floating Point Operations Per
Second (GFLOPS) (the higher, the more computationally intensive the model is)

When considering model performance, it is essential to benchmark both highly
accurate but slower models -such as Faster RCNN (FRCNN) with ResNet50 backbone,
RetinaNet with Resnet50 backbone, or Yolo11x models- but also fast and less accurate
ones -such as SSDLite320, FRCNN with MobileNet Backbone or Yolo11n.

13

Model Box MAP Params GFLOPS

FCOS_ResNet50_FPN 39.2 32.3M 128.21
FasterRCNN_MobileNet_V3_Large_320_FPN 22.8 19.4M 0.72
FasterRCNN_MobileNet_V3_Large_FPN 32.8 19.4M 4.49
FasterRCNN_ResNet50_FPN_V2s 46.7 43.7M 280.37
FasterRCNN_ResNet50_FPNs 37.0 41.8M 134.38
RetinaNet_ResNet50_FPN_V2 41.5 38.2M 152.24
RetinaNet_ResNet50_FPN 36.4 34.0M 151.54
SSD300_VGG16 25.1 35.6M 34.86
SSDLite320_MobileNet_V3_Large 21.3 3.4M 0.58

Table 1. Performance and Specifications of object detection models from PyTorch
documentation [1]

Model mAPval 50-95 Params GFLOPS

YOLO11n 39.5 2.6 M 6.5
YOLO11s 47.0 9.4 M 21.5
YOLO11m 51.5 20.1 M 68.0
YOLO11l 53.4 25.3 M 86.9
YOLO11x 54.7 56.9 M 194.9

Table 2. Performance and Specifications of YOLO Models [2]

The more accurate models are amazing at detecting objects but often have highly
increased inference time, which is not ideal for real-time applications. Conversely, the
lightweight models offer faster processing speeds, which is important for real-time detec-
tion but comes with a trade-off in precision.

To strike a balance between accuracy and speed, we can also consider two models
from the You Only Look Once (YOLO) family: YOLO11s and YOLO11l. The choice
of Yolo11 was made as it is the newest version of this model, but most importantly it
is faster and more precise than its predecessors [2]. The YOLO11s model achieves a
reasonable mAP score while seeming to have rapid inference times, making it an excel-
lent choice for our trade-off problem. Meanwhile, YOLO11l provides higher accuracy
than YOLO11s while still being faster than the more complex FRCNN with ResNet50
backbone. By benchmarking these models, we can decipher which configuration would
be more suitable for an autonomous navigation application.

14

2.4 Possible Target Devices
The selection of appropriate target devices for benchmarking is crucial for the per-
formance evaluation of neural network models in real-world applications, especially
in resource-constrained environments. The choice of hardware directly impacts the
efficiency, speed, and accuracy of the object detection algorithms deployed on these
platforms.

2.4.1 Difference between main Hardware Components

Before digging into which device we could use, it is interesting to think about the reasons
why some devices are better than others.

First, we can compare different hardware in terms of energy efficiency. To this end,
figure 1 was created, showing the number of operations per energy consumed (GOP/J),
over the years [4].

Figure 1. Hardware efficiency [4]

In this figure, multiple technologies are compared but the ones that we are interested
in are Application-specific integrated circuit (ASIC) and Field Programmable Gate Ar-
rays (FPGA). Digital Signal Processors (DSP) are designed for signal processing, which
is not in the scope of this thesis, and Microprocessor Unit (MPU), cell and Reduced
Instruction Set Computer (RISC) are designed for general purposes.

ASICs are custom chips designed for a specific task. Due to this and as can be seen
in figure 1, they are very energy efficient. This makes them the primary target device for

15

this thesis. Coming in close second in terms of energy efficiency are FPGAs. These inte-
grated circuits are reprogrammable which makes them less efficient than ASICs. Their
high efficiency still makes them an interesting target to consider. The primary difference
between those two hardware is that ASIC logic is set on a silicon level (Very efficient, but
not modifiable) while FPGA have circuits that can take on any logic (reprogrammable
but adds an overhead) [33].

In this thesis, the aim is to train, test, and benchmark object detection models, and
these models are all based on CNN. With this type of neural network, the calculations
are made using tensors. For example, in CNNs, input images are often stored in four-
dimension tensors of shape [B, C, H, W]. B represents the Batch size, C is the number of
channels in the image (3 for RGB Images), and H and W are the Height and Width of the
images. In a nutshell, we need to find devices similar to ASICs or FPGA, designed for
tensor calculations.

2.4.2 Nvidia Jetson

Nvidia Jetson is a series of low-power embedded computing boards designed for Artificial
Intelligence (AI) applications. They are System-on-Chip (SoC), which means that they
integrate a graphical computational hardware that is called GPU and a more general one
called Central Processing Unit (CPU). Their GPU contains Compute Unified Device
Architecture (CUDA) cores, designed for parallel computing and cores specialized for
tensor calculations. This specialized GPU part can be considered as an ASIC. Knowing
that and from our previous study, these devices should be very energy efficient for our
deep learning application. Table 3 lists the different generations of Jetson devices (Nano,
TX2, Xavier, and Orin) as well as the models from these generations.

Jetson Device AI Performance GPU Cores RAM Power (W)

Jetson Nano 0.472 TOPS 128 4 GB 5 - 10
Jetson TX2 1.26 TOPS 256 4 - 8 GB 7.5 - 20
Jetson Xavier NX 21 TOPS 384 8 - 16 GB 10 - 20
Jetson AGX Xavier 30 - 32 TOPS 512 32 - 64 GB 10 - 40
Jetson Orin Nano 34 - 67 TOPS 512 - 1024 4 - 8 GB 7 - 25
Jetson Orin NX 117 - 157 TOPS 1024 8 - 16 GB 10 - 40
Jetson AGX Orin 200 - 275 TOPS 1792 - 2048 32 - 64 15 - 75

Table 3. Performance Highlights of NVIDIA Jetson Devices [3]

From this table, it is possible to make some conclusions. As we are searching
for a power-efficient device, it is important to compare devices with similar power
consumption.

16

• Jetson Nano is a low-power, entry-level model but its very low AI performance is
not interesting for this study.

• Jetson TX2 is the oldest generation out of the one compared which makes it
pretty outdated. It can be seen with its low AI performance while having a power
consumption relatively similar to the Jetson Xavier NX or the Jetson Orin Nano.

• Jetson Xavier Nx and Jetson Orin Nano have a similar power consumption, how-
ever, Jetson Orin Nano has a better AI performance which makes it more interesting
for the benchmark. It is still important to denote that the Xavier has twice the
RAM as the Orin

• Similarly Jetson AGX Xavier and Jetson Orin NX have comparable power con-
sumption. Also, the same remark can be made as the previous point, in the sense
that the Orin has a way higher AI Performance while the Xavier has twice as much
RAM.

• Finally Jetson AGX Orin is the device with the higher power consumption and
higher AI performance.

Experimental studies were conducted to verify these Nvidia marketing metrics such
as the one depicted in figure 2.

Figure 2. Jetson AGX Xavier and Jetson AGX Orin Comparison [5]

This figure confirms that the newer Orin generation is way more computationally
powerful than the older Xavier, by comparing a Jetson AGX Xavier and a Jetson AGX
Orin. The Orin can produce ~8x more operations per second than the Xavier while being

17

only ~1.5x more energy consuming.

For neural network benchmarking, AI performance has way more importance than
RAM. It means that the three models from the Orin generation are the more interesting
devices of the Jetson family. Then, the choice between those three devices will be
determined by the power budget of the mission on which the device will be used. In the
case of a small lunar rover like KuupKulgur, the AGX Orin might be too high in power
consumption so the Orin Nano and NX are better options.

2.4.3 AMD Versal

Just like Nvidia Jetsons, AMD Versal are SoC devices. The Versal family that is the most
relevant to our study is the AMD Versal AI Edge, as its name suggests, is designed for
AI applications. They are composed of an FPGA part, a certain number of specialized
"AI Engine", and a CPU. There are currently three generations to this family, the first
generation, the second generation, and the XA, a more specialized version of the second
generation [34]. Generation 2 is advertised as way more powerful and efficient than
Gen 1 [35], so there is no need to dig into the first generation. Moreover, as the XA
models are the most optimized, it is the ones with the best power efficiency so we should
consider these models.

Table 4 presents the specifications of the different models of the AMD Versal AI
Edge XA Series.

Model AI Performance AI Engine-ML Tiles Power Consumption

XAVE2002 5 TOPS 8 6-9 W
XAVE2102 7 TOPS 12 7-10 W
XAVE2202 15 TOPS 24 15-20 W
XAVE2302 22 TOPS 34 22 W
XAVE2602 89 TOPS 152 50-60 W
XAVE1752 92 TOPS 304 50-60 W
XAVE2802 171 TOPS 304 75 W

Table 4. Specifications of Versal AI Edge XA Models

Similarly to the model selection, it is complicated to compare the AI Performance
of these models to the Jetson devices, as the operation is not the same for these two
tables. Nonetheless, it is still interesting to compare these devices in terms of power
consumption. The devices XAVE2102 and XAVE2202 have a power consumption and
an AI Performance in the same order of magnitude as the Jetson Orin Nano. This

18

would suggest a similar power efficiency, to this device, so these two devices would be
interesting target devices for this study.

2.4.4 Google Coral

Finally, another possible device could be the Google Coral Tensor Power Unit (TPU).
As its name suggests, it is an ASIC designed for tensor calculation. It is pretty powerful
for deep learning applications with 4 TOPS and nicely power efficient at 2 TOPS per
watt [36]. However, as studies were made [37], it is more comparable to the Jetson
Nano rather than the more power-consuming Jetson Orin, which makes this device less
interesting than the latter family.

19

3 Methodology
This section outlines the methodology employed in this study, detailing the selection of
models, the dataset utilized for training and testing, the target device for benchmarking,
and finally the structure of the pipeline.

3.1 Chosen Models
In this study, a choice of four models was made based on their performance metrics.
As previously mentioned, choosing models with diverse characteristics helps determine
which one is best suited for the application of this thesis. The selected models are:

• The high accuracy and slow model: FRCNN with ResNet50 backbone.

• The fast and low accuracy model: FRCNN with MobileNet backbone

• The balanced models: YOLO models Yolo11s and Yolo11l

Table 5 presents the expected results for these four models, using data from tables 1
and 2. For better visualization, positive attributes (High Frame rate and High precision)
are colored in green while detrimental behaviors (Low Frame rate and Low Precision)
are colored in red. It is important to note that, since tables 1 and 2 were taken from
different sources, these models were tested in different conditions so these results may
vary from our experimental results.

Models Frames Per Second (FPS) Precision

FRCNN - ResNet50 Low High

YOLO11l Medium Very High

YOLO11s High High

FRCNN - MobileNet Very High Low

Table 5. Performance comparison of models based on FPS and precision.

3.2 Dataset
For training and testing the selected models, a dataset has been created with images from
the Lunar Analogue environment at the Observatory of Tartu. The bunker, depicted in
figure 3, has a 7.5m x 8.5m sandbox operational area designed to simulate realistic lunar
surface conditions [38].

20

Figure 3. Space Bunker

The dataset consists of 314 images collected by the KuupKulgur rover at the Lunar
analog facility of Tartu Observatory, all captured with an IMX219-160 camera that has
a resolution of 720x1280 pixels and a 160° Field Of View (FOV) [39]. All the images
in this dataset were annotated using the Roboflow Annotate application [40]. Figure
4 depicts an image from the dataset while figure 5 represents the same image with
annotated bounding boxes of rocks.

Figure 4. Input Image from the Dataset Figure 5. Same Image with Annotations

3.3 Chosen Target Device
For this study, a choice between two devices had to be made due to availability: a Jetson
Orin Nano or a Jetson Xavier NX. As discussed in the section 2.4, the Jetson Orin Nano
is more relevant for our purposes due to its higher AI Performance for comparable power

21

consumption, meaning better power efficiency. In this study, we are equipped with a
Jetson Orin Nano 8 GB, which detailed specs are detailed in table 6

Specification Details

AI Performance 67 TOPS
GPU 1024-core NVIDIA Ampere architecture GPU with 32 Tensor Cores
CPU 6-core Arm Cortex-A78AE
Memory 8GB LPDDR5
Power 10W

Table 6. Specifications of Jetson Orin Nano

3.4 Pipeline Overview
This section describes the developed pipeline alongside the different metrics chosen to
best assess the benchmarked object detection models. Figure 6 depicts the high-level
execution of this pipeline.

Figure 6. Pipeline Diagram

3.4.1 Configuration File

This pipeline begins with a configuration file in JavaScript Object Notation (JSON)
format, where users can input all necessary variables for the pipeline execution. Table 7
presents the list of these variables.

22

Table 7. Configuration Variables Definition

Variable Name Definition

train Toggle the execution of the train module
test Toggle the execution of the test module
copy Toggle the execution of the copy module
benchmarking Toggle the execution of the benchmarking module
framework Choice of the framework of the pipeline execution
application Choice of which model will be run
Folders Input of the different folder locations
conda_env_tf2 Name for the TensorFlow2 conda environment
conda_env_pytorch Name for the PyTorch conda environment
Training Variables List of the variables for model training
Benchmarking Variables List of the variables for model benchmarking
Jetson Variables IP and Username of the Benchmarking device
Titan Variables IP and Username of the Training and Testing device

The most important variables in this file are the different module variables, the frame-
work, and the application.

First, the user can choose which module will be run. The different modules will be
explained in the next sections. As can be seen in figure 6, if all the modules are selected,
first is executed training, then testing, then copy, and finally benchmark. The upside that
this pipeline proposes is that it is possible to run fewer modules depending on the interest
of the user. For example, the user can do a benchmark on a model that was already
trained and tested by this pipeline, without retraining a new model.

Then, the choice of framework has to be made. The user has to choose between
TensorFlow 2 or PyTorch framework. These two frameworks are the main ones used for
deep learning models, and the choice was made to incorporate them both in the Pipeline.
However, during the time of this thesis, the four chosen models were only integrated in
PyTorch while only the FRCNN - Resnet50 model was integrated in TensorFlow 2.

The final most important variable is the application, which simply is the choice of
which model will be used in this pipeline.

Finally, all the other variables were implemented to have the most modular pipeline
possible. For example, by changing the IP and user of the Jetson, it is possible to perform
the benchmarking on another Jetson device.

23

Once all the variables in this configuration file are completed, the pipeline can be
launched, and one or more of the following modules will be executed.

3.4.2 Virtual Environments

As previously explained, both TensorFlow and PyTorch frameworks can be used in
this Pipeline. Unfortunately, these two frameworks cannot coexist together in the same
environments.

To remedy this issue, a common practice is to use isolated environments. The two
main ways are to either use Python virtual environment (venv) or conda. In this project,
conda was chosen due to its ability to manage complex dependencies easily, a feat that
was very advantageous due to the numerous libraries that were used.

3.4.3 Model Training

The first module is model training, where the chosen model is fine-tuned based on the
specified parameters in the configuration file. Figures 7 and 8 depict the block diagrams
of how the training is made for these two frameworks. At the end of the training process,
the resulting model is saved for future use. To know which model was trained the last, the
current timestamp is appended to the model filename. Augmentation was implemented
with PyTorch images as a way to improve the generalization of the models. It can
be noted that due to time constraints, image augmentation was not implemented for
TensorFlow models; also these models require square images, which is not mandatory
for PyTorch models.

24

Config File Variables

Load Training Images +
Labels into a Data Loader

Image Resizing
+ Optional Augmentation

Load Pretrained
Model

Train One Epoch

Is the input number
of epochs reached ? No

Evaluation of the model
on the validation dataset

Model Saving, end of
training

Yes

Figure 7. Block Diagram of PyTorch
Model Training

Config File Variables

Create tfrecords from
Images & Labels

Image Resizing to
Square Images

Load Pretrained
Model

Train 100 Steps

Is the input number
of steps reached ? No

Evaluation of the model
on the validation dataset

Model Export, end of
training

Yes

Figure 8. Block Diagram of Tensor-
Flow 2 Model Training

3.4.4 Model Testing

Following the training process, the testing module can be executed. This module evaluates
the performance of the fine-tuned model and computes an accuracy score. The chosen
accuracy metric is the IoU score. The formula for calculating the IoU score of a model is
as follows, with TP representing the True Positives, FP the False Positives and FN the

25

False Negatives :

Model IoU score =
TP

TP + FP + FN
(1)

To determine whether a predicted bounding box is a true positive, a false positive, or
a false negative, we calculate its IoU relative to all the ground truth boxes of the predicted
image using the formula 2.

IoU =
Intersection Area

Union Area
(2)

Then, there are two possibilities :

• If the predicted bounding box has an IoU score of more than 0.5 with any ground
truth, it is considered a true positive.

• Otherwise, it is considered a false positive.

At the same time, a dictionary keeps track of which ground truth boxes have already been
paired with true positives from the ones that have not. The sum of the unpaired ground
truth is considered false negatives.

With all of that, we can finally calculate the IoU score of the tested model using the
equation 1. Also, to keep track of the model accuracy, its IoU score is prepended to its
filename.

3.4.5 Model & Config Copy

Next, the copy module transfers both the configuration file and the trained model to the
Jetson Orin Nano, ensuring that all necessary components are available for benchmarking.

3.4.6 Model Benchmarking

Finally, the benchmark module conducts inference over a designated number of images
across multiple iterations, a number defined in the configuration file.

Inference is done differently between TensorFlow and PyTorch frameworks.
For TensorFlow, the model has to be loaded and the according model signature

(serving_default, by default) has to be selected to then perform inference. The TensorFlow
model is run with XLA runtime optimization, optimization explained in section 2.1.3.

For PyTorch, the model needs to be loaded and, alongside the inferred images, has to
be manually sent to the GPU. These models were not run with any runtime optimization

26

unlike TensorFlow.

During benchmarking, various performance metrics are collected, which are detailed
in table 8:

Metric Unit Description

Total Inference
Time

s Total time taken from the start to the end of the
benchmarking loop.

Individual
Inference Times

s Time taken by the model to predict each image,
stored individually.

Total Power
Consumption

mW Overall power consumption of the device.

CPU & GPU Power
Consumption

mW Power consumption of the 6 CPU cores & the GPU

SoC Power
Consumption

mW Power consumption of the core components of the
SoC.

GPU Usage % Percentage of utilization of the GPU.
CPU Core Usage % Percentage of utilization of each CPU core.
CPU Frequency MHz Frequency of each CPU core.
RAM Usage MB Amount of RAM utilization.

Table 8. Overview of metrics used for benchmarking.

With the total inference time, it is possible to calculate the throughput time. The
calculation is detailed in equation 3, it represents the average time taken by the model,
including all the necessary operations, such as image loading. Also, by taking the inverse
of the throughput time, it allows us to calculate the throughput fps.

Throughput Time =
Total Time

Iterations × Number of images
(3)

With the inference time for each image, it is possible to calculate the number of
frames that can be predicted per second with the equation 4:

FPS =
1

Mean(Inference Times)
(4)

The power and computational consumption of the model cannot be summarized
with only one value. Instead, a graph of the evolution of these metrics is plotted using
tegrastats, which reports memory usage and processor usage for Tegra-based devices
[41] such as the Jetson Orin Nano. These plots are then transferred back to the main

27

device that launched the pipeline.

Figure 9 summarizes the steps during model benchmarking.

Config File Variables

Load a defined number
of Images

Image Resizing

Load Fine-Tuned
Model

Perform inference over
the Loaded Images

Is the input number
of iterations reached ?No

Save the Inference Times
if it is not the first Iteration

Retrieve The Metrics
towards the main Device

Start Tegrastats Utility
Subprocess

Calculate or Plot the
Benchmarking Metrics

Yes

Stop Tegrastats Utility
Subprocess

Figure 9. Block Diagram of the Model Benchmarking

28

4 Results and analysis
This section will present the results obtained using the described pipeline, with the
four chosen models under the PyTorch framework: FRCNN with ResNet50 Backbone,
FRCNN with MobileNet Backbone, Yolo11l and Yolo11s, as well as FRCNN with
ResNet50 Backbone under TensorFlow framework.

4.1 Input Variables
For the PyTorch models, the training and input images have dimensions of 360x640
pixels. These smaller dimensions were chosen to achieve faster inference time while
conserving as much information as possible.

For the TensorFlow model, as explained in section 3.4.3, images have a square shape
of 512x512 pixels. This ratio is slightly higher in terms of total pixels than the PyTorch
images (262144 pixels for TensorFlow and 230400 pixels for PyTorch).

The following results were obtained after 25 training epochs for the PyTorch models,
and 4000 epochs for the TensorFlow model, with a batch size of 8, and only the bounding
boxes with a confidence score of over 0.5 were kept.

The augmentations for the YOLO models are listed in table 9, each with a 1%
probability of affecting each image.

Augmentation Description

Blur Creates blur by averaging over a kernel of size between 3x3 to
7x7 pixels.

Median Blur Similar to Blur but replaces the center pixel with the median
of the kernel.

ToGray Transforms the image into grayscale.
CLAHE Enhances the contrast of small regions of the images by

applying histogram equalization.

Table 9. Image Augmentations for Yolo models

The augmentations of the PyTorch FRCNN models are listed in table 10.

29

Augmentation Description

Horizontal Flip Flips an image horizontally with a probability of
50%.

RandomBrightnessContrast Randomly adjusts the brightness and contrast of the
image with a probability of 20%.

GaussianBlur Similar to standard blur, it averages pixel values over
a kernel, but with a weighted average (center pixels
have a bigger weight), with a probability of 10%.

RandomShadow Creates shadow effects on random parts of the image,
with a probability of 10%.

Rotate Randomly rotates images between -30° and 30°, with
a probability of 50%.

Table 10. Image Augmentations for PyTorch FRCNN models

The benchmarking loop made the models perform inference over 50 Images, for 10
iterations.

4.2 Results
4.2.1 Total Time and Individual Times

During benchmarking, it was discovered that the first inference of the first iteration
loop was always longer than the following iterations. For clarity, the inference times,
excluding the first-pass time, are visible in figure 10. The first inference times were
compiled in table 11.

30

Figure 10. Inference Times for Each Iteration of the 5 Benchmarked Models

Model First Pass Time (s)

FRCNN - MobileNet 1.60
FRCNN - PT 2.32
Yolo11s 3.98
Yolo11l 4.28
FRCNN - TF 15.19

Table 11. First Pass Times for Object Detection Models

As can be seen in the above figures, the first iteration is always longer than all the
next ones. It is because during the first pass, all the elements linked to the model being
run such as cache, memory on the GPU, and graph optimization are being set up.

It is interesting to note that the setup time is similar between the two PyTorch FRC-
NNs and the two Yolo models. It supports the idea that the same kind of model setup is
made for similar framework architectures as FRCNNs and Yolo come from two different
sources (PyTorch main documentation and Ultralytics).

For the TensorFlow model, more optimizations are occurring such as XLA runtime
optimization, which leads to a longer overhead but aims for faster inference afterwards.

31

4.2.2 Inference Speed and Model Accuracy

First, let us study the first interesting metrics: Inference speed (denoted by the number of
Frames per second inferred) and Model accuracy (with the IoU score defined in section
3.4.4). The results can be seen in table 12 and are interesting due to their differences
compared to the theoretical values of table 5. From now on, the FRCNN - ResNet50
model run with PyTorch framework will be addressed as FRCNN - PT while this same
model with TensorFlow framework will be called FRCNN - TF.

Models FPS IoU Score

Yolov11s 27.564 0.525

Yolov11l 14.907 0.557

FRCNN - Mobilenet 14.202 0.3535

FRCNN - TF 2.529 0.3442

FRCNN - PT 1.745 0.7265

Table 12. Performance Comparison of the 5 Benchmarked Models based on FPS and
Model Score.

With this table, a few remarks can be denoted:

• FRCNN - MobileNet model was expected to be the fastest which is not the case.
In contrast, the Yolo models demonstrated a much better inference speed than
predicted.

• Linked with the previous remark, GFLOPS is not the only metric that is needed to
determine models with faster inference time.

• FRCNN - PT model performed significantly better than all the other models in
terms of accuracy. Comparatively, the Yolo models performed slightly worse than
expected.

• FRCNN - TF had a way lower model score than the FRCNN - PT. This is due to
some factors such as the lack of augmentation, the lack of hyperparameter tuning,
and the need for padding that might have resulted in information loss. However, its
speed of inference is nearly 50% higher. This might partially be due to the XLA
optimizer, even though more testing -such as running the Yolo models with this
optimization- should be achieved to confirm this hypothesis.

32

4.2.3 Power Consumption

Now, let us focus on the power consumption of the Jetson Orin Nano’s modules during
inference. The three modules listed using tegrastats are the Chip, the CPU & GPU, and
the SoC. For clearer visualization, only the steady-state power output was considered in
figure 11.

Figure 11. Power Consumption Of the 5 Benchmarked Models

From this table, we can observe that the Yolo11l and the FRCNN - PT require the
most power. They are followed by the FRCNN - TF and by Yolo11s models, and finally,
FRCNN - MobileNet is the least power-consuming.

Figure 12 details the power consumption of these 5 models during the whole bench-
marking process.

33

(a) FRCNN - PT (b) FRCNN - MobileNet

(c) Yolo11l (d) Yolo11s

(e) FRCNN - PT

Figure 12. Power Consumption of the 5 Benchmarked Models

It is interesting to compare these power consumption figures with figure10. We
can see that for the duration of the first inference, when the model is being set up
and compiled, the GPU and CPU power consumption is pretty low, and then quickly
increases to a steady value, before coming back down to a low value after the end of the
benchmarking loop.

34

4.2.4 CPU & GPU

For this part, two graphs per model were created. One is the usage (in %) of the GPU
and the 6 CPU cores, visible in figure 13. The other is the frequency (in MHz) of each of
the 6 CPU cores in figure 14.

(a) FRCNN - PT (b) FRCNN - MobileNet

(c) Yolo11l (d) Yolo11s

(e) FRCNN - TF

Figure 13. CPU & GPU Usage of the 5 Benchmarked Models

35

(a) FRCNN - PT (b) FRCNN - MobileNet

(c) Yolo11l (d) Yolo11s

(e) FRCNN - TF

Figure 14. CPU Frequency of the 5 Benchmarked Models

To analyze GPU usage we have to look at figure the black line in 13. For the to CPU
usage and frequency, we need to study figures 13 and 14, each colored line representing
one core.

First, we can again see the effect of the model compilation before the first inference.
In these graphs we can observe that model loading is mostly computed by the CPU.
Then, as the inference starts, GPU usage rises as it is performing the tensor calculations

36

required to perform inference.

The two bigger models (FRCNN - PT and FRCNN - TF) are each using the GPU
almost at 100% during the whole inference, and the CPU cores usage stays relatively
low.

Yolo11l model also uses a great percentage of the GPU while still having a high GPU
usage.

Surprisingly, the two smaller models (Yolo11s and FRCNN - MobileNet) do not fully
utilize the GPU, while having a fairly high CPU usage. In theory, if the GPU usage was
higher, as it is specialized in tensor calculation, it would lead to an even faster inference
time. However, it would seem that there are some bottlenecks in the benchmarking
process, meaning that images might not be transferred fast enough to the GPU, so it has
to remain slightly idle while waiting for images to process.

4.2.5 RAM

Finally, RAM usage was fluctuating during each run of the same model. As this usage
relies on multiple exterior factors to the model we are choosing, such as garbage collection
or caching mechanisms, it was decided to not incorporate this metric in the final analysis
between these models.

4.3 Analysis of the Results
To better analyze all the metrics that were benchmarked using the developed pipeline,
table 13 was created, compiling the previously detailed results. For visibility, cells of
this table were colored, red colors representing undesirable performances while green
represents positive characteristics.

Model FPS Model
Accuracy

Power
Cons.

CPU
Usage

GPU
Usage

FRCNN - PT Very Low Very High High Low High

FRCNN -
MobileNet

High Low Low High Low

YOLO11l High Medium High High Medium

YOLO11s Very High Medium Medium High Low

FRCNN - TF Low Very Low Medium Low High

Table 13. Performance Comparison of Models

37

5 Discussion
With table 13, we can more clearly decipher which models are the best suited to particular
situations.

• FRCNN - PT is a model performance made when the only focus is model accuracy,
with no regard toward inference speed or power consumption.

• FRCNN - MobileNet has an edge in cases where the requirement is the lowest
power consumption possible.

• Yolo11l has a good balance in most of the domains but is overall worse in inference
speed and power consumption for a low accuracy increase over Yolo11s

• Yolo11s balances well all the collected metrics, with a very high inference speed
which makes it a perfect choice for our goal.

• FRCNN - TF does not have any use case in its current form, further development
would lead to pretty similar results as FRCNN - PT with a possibility of faster
inference time.

While comparing these four models, Yolo11s appears to be a great compromise and
suits well our problem of balancing model accuracy with inference speed and power
consumption.

With this pipeline, we can extensively study different models, with a complete list
of their metrics. It was discovered that the experimental results were different than the
theoretical ones, so it highlighted the importance of having a unified benchmarking
process. From the presented models, one model was highlighted as the best balance for
an autonomous driving neural network, the Yolo11s.

This analysis shows that this pipeline did allow us to effectively train, test, and
benchmark 5 models, and make a choice on which model is the most adapted to a certain
situation, which was the goal of this whole study.

38

6 Conclusion
In conclusion, the goal of this study was to develop a pipeline designed for training
testing and benchmarking object detection models for autonomous navigation. The
primary focus was to make this pipeline as easily adaptable and modifiable as possible.

The pipeline modality goal was well achieved, as it is possible to quickly add new
pre-trained models, such as the one listed in tables 1 and 2, and new modules such as the
implementation of TensorRT optimization or a pruning/quantizing module can easily be
implemented in a limited time.

Currently, the TensorFlow side of the Pipeline is underdeveloped compared to the
PyTorch one, for future directions it will be interesting to develop it further. To have the
highest model accuracy, a dataset containing more images would be needed, however,
image labeling is time-consuming so the dataset was kept to a minimal sufficient size
for accurate training. Finally, model optimizations that were discussed in section 2.1.3
should be integrated into this pipeline due to their benefits of improving model perfor-
mances.

With the work done during this thesis, the developed pipeline is at a great working
and stable first iteration. It still is not perfect, so by adding the mentioned improvements,
this pipeline would become an even more efficient tool to train, test, and benchmark
object detection models.

39

Acknowledgments
First, I want to express my heartfelt gratitude toward my two supervisors Ric and
Saimoon. Your help during my projects with the KuupKulgur team has been more than
valuable. The discussions I had with you always helped me navigate the encountered
problems of this thesis, and your feedback encouraged me to improve my work and
expand my knowledge.

I am thankful for the resources provided by the Observatory of Tartu, allowing such
an interesting project as KuupKulgur to be able to exist.

A special thanks to Dmytro Fishman and the lecturers of the Machine Learning and
Deep Learning for Computer Vision courses. These classes were not only interactive but
also made me learn and grow my knowledge in the field of AI. Your teaching was the
reason why I decided to pursue this field in my thesis.

I would like to mention all of my friends back in France, as well as all the new ones I
made here in Tartu. To Julian, Alexandre, Antoine, Loïc, Daniel, and all the others that I
cannot cite individually, thank you for being part of my life, I am proud of having you as
friends.

Finally, I want to warmly thank my parents, for your continuous support and and
encouragement throughout my entire studies. Without you, I would not be where I
currently am. Your love and guidance shaped me and made me able to embark on a
journey such as this thesis.

40

References
[1] Pytorch, “Models and pre-trained weights.” https://pytorch.org/vision/

main/models.html#models-and-pre-trained-weights. Accessed: 2024-11-
19.

[2] Ultralytics, “Yolov11 models documentation.” https://docs.ultralytics.com/
models/yolo11/. Accessed: 2024-12-06.

[3] NVIDIA, “Jetson modules.” Accessed: 2024-12-17.

[4] P. Marwedel, Embedded system design: embedded systems foundations of cyber-
physical systems, and the internet of things. Springer Nature, 2021.

[5] A. Startups, “Jetson agx orin: The hot new thing in edge computing & ai,” Apr.
2022. Accessed: 2024-12-09.

[6] J. Flahaut, C. H. van der Bogert, I. A. Crawford, and S. Vincent-Bonnieu, “Scientific
perspectives on lunar exploration in europe,” npj Microgravity, vol. 9, no. 1, p. 50,
2023.

[7] S. Li, P. G. Lucey, R. E. Milliken, P. O. Hayne, E. Fisher, J.-P. Williams, D. M.
Hurley, and R. C. Elphic, “Direct evidence of surface exposed water ice in the lunar
polar regions,” Proceedings of the National Academy of Sciences, vol. 115, no. 36,
pp. 8907–8912, 2018.

[8] J. Mehta, “Why explore our moon and how we’re going back like never before.”
https://jatan.space/why-explore-the-moon/, Dec. 2023. Accessed: 2024-
12-04.

[9] J. Lai, Y. Xu, R. Bugiolacchi, X. Meng, L. Xiao, M. Xie, B. Liu, K. Di, X. Zhang,
B. Zhou, et al., “First look by the yutu-2 rover at the deep subsurface structure at
the lunar farside,” Nature communications, vol. 11, no. 1, p. 3426, 2020.

[10] C. Wong, E. Yang, X.-T. Yan, and D. Gu, “Adaptive and intelligent navigation
of autonomous planetary rovers—a survey,” in 2017 NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), pp. 237–244, IEEE, 2017.

[11] D. Arce, J. Solano, and C. Beltrán, “A comparison study between traditional and
deep-reinforcement-learning-based algorithms for indoor autonomous navigation
in dynamic scenarios,” Sensors, vol. 23, no. 24, p. 9672, 2023.

[12] H. Qin, S. Shao, T. Wang, X. Yu, Y. Jiang, and Z. Cao, “Review of autonomous
path planning algorithms for mobile robots,” Drones, vol. 7, no. 3, p. 211, 2023.

41

https://pytorch.org/vision/main/models.html#models-and-pre-trained-weights
https://pytorch.org/vision/main/models.html#models-and-pre-trained-weights
https://docs.ultralytics.com/models/yolo11/
https://docs.ultralytics.com/models/yolo11/
https://jatan.space/why-explore-the-moon/

[13] Y. Wang, C. Gong, J. Gong, and P. Jia, “Motion planning for off-road autonomous
driving based on human-like cognition and weight adaptation,” Journal of Field
Robotics, 2024.

[14] Built In, “Disadvantages of neural networks,” 2024. Accessed: 2024-11-12.

[15] W. Powell, M. Campola, and T. Sheets, “Commercial off-the-shelf gpu qualification
for space applications,” technical report, NASA, 2018.

[16] R. L. Davidson and C. P. Bridges, “Error resilient gpu accelerated image processing
for space applications,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 9, pp. 1990–2003, 2018.

[17] K. AI, “How object recognition powers autonomous vehicles.” https://keylabs.
ai/blog/how-object-recognition-powers-autonomous-vehicles/, 2023.
Accessed: 2024-12-04.

[18] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz, “Global path planning on board
the mars exploration rovers,” in 2007 IEEE Aerospace Conference, pp. 1–11, 2007.

[19] V. Verma, M. W. Maimone, D. M. Gaines, R. Francis, T. A. Estlin, S. R. Kuhn,
G. R. Rabideau, S. A. Chien, M. M. McHenry, E. J. Graser, A. L. Rankin, and E. R.
Thiel, “Autonomous robotics is driving perseverance rover’s progress on mars,”
Science Robotics, vol. 8, no. 80, p. eadi3099, 2023.

[20] B. Rothrock, R. Kennedy, C. Cunningham, J. Papon, M. Heverly, and M. Ono,
“Spoc: Deep learning-based terrain classification for mars rover missions,” in AIAA
SPACE 2016, p. 5539, 2016.

[21] X. Wang, Y. Sun, Y. Xie, J. Bin, and J. Xiao, “Deep reinforcement learning-aided
autonomous navigation with landmark generators,” Frontiers in Neurorobotics,
vol. 17, p. 1200214, 2023.

[22] H. Cai, J. Lin, Y. Lin, Z. Liu, H. Tang, H. Wang, L. Zhu, and S. Han, “Enable deep
learning on mobile devices: Methods, systems, and applications,” ACM Trans. Des.
Autom. Electron. Syst., vol. 27, Mar. 2022.

[23] G. Menghani, “Efficient deep learning: A survey on making deep learning models
smaller, faster, and better,” ACM Comput. Surv., vol. 55, Mar. 2023.

[24] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu,
R. Pang, V. Vasudevan, et al., “Searching for mobilenetv3,” in Proceedings of the
IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.

42

https://keylabs.ai/blog/how-object-recognition-powers-autonomous-vehicles/
https://keylabs.ai/blog/how-object-recognition-powers-autonomous-vehicles/

[25] Y. Zhou and K. Yang, “Exploring tensorrt to improve real-time inference for
deep learning,” in 2022 IEEE 24th Int Conf on High Performance Computing
& Communications; 8th Int Conf on Data Science & Systems; 20th Int Conf on
Smart City; 8th Int Conf on Dependability in Sensor, Cloud & Big Data Systems &
Application (HPCC/DSS/SmartCity/DependSys), pp. 2011–2018, 2022.

[26] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan, G. Yang, and
D. Qian, “The deep learning compiler: A comprehensive survey,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 32, no. 3, pp. 708–727, 2020.

[27] X. Ying, “An overview of overfitting and its solutions,” Journal of Physics: Confer-
ence Series, vol. 1168, p. 022022, feb 2019.

[28] J. Liu, S. Liu, Y. Shao, X. Wan, and H. Zhao, “Mars terrain semantic segmentation
using zhurong rover imagery based on transfer learning of historical mission data,”
in 2022 International Conference on Service Robotics (ICoSR), pp. 139–144, IEEE,
2022.

[29] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor and sensor
fusion technology in autonomous vehicles: A review,” Sensors, vol. 21, no. 6,
p. 2140, 2021.

[30] J. Shohag, “Automated lunar surface image classification using deep convolutional
neural networks for geological feature detection,” American Journal of Neural
Networks and Applications, 2024.

[31] J. K. Eshraghian, M. Ward, E. O. Neftci, X. Wang, G. Lenz, G. Dwivedi, M. Ben-
namoun, D. S. Jeong, and W. D. Lu, “Training spiking neural networks using lessons
from deep learning,” Proceedings of the IEEE, vol. 111, no. 9, pp. 1016–1054,
2023.

[32] C.-K. Lin, A. Wild, G. N. Chinya, Y. Cao, M. Davies, D. M. Lavery, and H. Wang,
“Programming spiking neural networks on intel’s loihi,” Computer, vol. 51, no. 3,
pp. 52–61, 2018.

[33] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,” in Proceedings
of the 2006 ACM/SIGDA 14th international symposium on Field programmable
gate arrays, pp. 21–30, 2006.

[34] AMD, “Versal ai edge xa series.” Accessed: 2024-12-20.

[35] AMD, “Versal ai edge series gen 2.” Accessed: 2024-12-20.

[36] Google, “Coral dev board.” Accessed: 2024-12-19.

43

[37] M. Suryavansh, “Google coral edge tpu board vs nvidia jetson nano dev
board — hardware comparison.” https://towardsdatascience.com/
google-coral-edge-tpu-board-vs-nvidia-jetson-nano-dev-board-hardware-comparison-4c25d7d7e93a,
Apr. 2019. Accessed: 2024-12-09.

[38] T. Group, “Tartu observatory space missions simulation center.” Accessed: 2024-
12-10.

[39] KuupKulgur, “Payload demonstrator.” Accessed: 2024-12-11.

[40] Roboflow, “Roboflow annotate.” Accessed: 2024-12-20.

[41] N. Corporation, “tegrastats utility.” Accessed: 2024-06-12.

[42] OpenAI, “Chatgpt.” https://www.openai.com, 2024. Accessed: December,
2024.

44

https://towardsdatascience.com/google-coral-edge-tpu-board-vs-nvidia-jetson-nano-dev-board-hardware-comparison-4c25d7d7e93a
https://towardsdatascience.com/google-coral-edge-tpu-board-vs-nvidia-jetson-nano-dev-board-hardware-comparison-4c25d7d7e93a
https://www.openai.com

Glossary

Tools
• Arxiv: Information source.

• ChatGPT-4: [42] Used as a programming and debugging assistant, as a first
learning source for new knowledge and LaTeX commands.

• Conda: System to create virtual environments and install packages. Particularly
important as the TensorFlow and PyTorcn environments cannot coexist in the same
environment.

• Draw.io: Block diagrams designing tool. Used to build figures 7, 8, and 9.

• Elsevier: Information source.

• GitLab: Project hub. All codes were saved on different branches.

• GlobalProtect: VPN. Enables remote access to the Titan Desktop for model
training and testing, and to the Jetson Orin Nano for benchmarking.

• Grammarly: Writing assistance tool. Grammar internet plugin.

• IEEE: Information source.

• Notions: Blog tool.

• ResearchGate: Information source.

• Roboflow: Image Labelling tool for the dataset creation

• Sci-Hub: Article access tool. Unlocks part of the pay-to-read papers.

• Stack Overflow: Debugging tool. Mostly used after errors or dependency issues.

• Wikipedia: Information tool. First approach to new topics.

45

Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Maxence ROUCHOU,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Development of an Adaptive Pipeline for Object Detection Training and
Benchmarking,

supervised by Quazi Saimoon Islam and Ric Dengel.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Maxence ROUCHOU
23/12/2024

46

	Introduction
	Background
	Problem statement
	Goals

	Literature Review
	Previous Work in Autonomous Navigation for Rovers
	Evolution of Rover Navigation
	Advances in Neural Network Architectures
	Optimization Techniques for Resource Efficiency
	Real-World Applications and Challenges

	Future Possibilities in Neural Network Applications for Lunar Rover Navigation
	Enhanced Terrain Classification
	Integration of Spiking Neural Networks

	Neural Networks Choice
	Possible Target Devices
	Difference between main Hardware Components
	Nvidia Jetson
	AMD Versal
	Google Coral

	Methodology
	Chosen Models
	Dataset
	Chosen Target Device
	Pipeline Overview
	Configuration File
	Virtual Environments
	Model Training
	Model Testing
	Model & Config Copy
	Model Benchmarking

	Results and analysis
	Input Variables
	Results
	Total Time and Individual Times
	Inference Speed and Model Accuracy
	Power Consumption
	CPU & GPU
	RAM

	Analysis of the Results

	Discussion
	Conclusion
	References
	Glossary
	Tools

	Licence

