
University of Tartu

Faculty of Science and Technology

Institute of Technology

Robert Allik

Validation of NoMaD as a Global Planner for Mobile Robots

Master’s thesis (30 EAP)
Robotics and Computer Engineering

Supervisors:

Arun Kumar Singh, PhD
Karl Kruusamäe, PhD

Tartu 2024

Abstract/Resümee

Validation of NoMaD as a Global Planner for Mobile Robots

As autonomous mobile robots are becoming increasingly common in real-world applications,
like warehouses and self-driving cars, so is the need for robust navigation methods growing.
NoMaD, a vision-based navigation architecture, was recently presented and showed very good
metrics in obstacle avoidance tested in ”challenging environments” but the exact level of chal-
lenge was unclear. This thesis aimed to measure that performance in a standardized way and
implement an improvement by augmenting it with a LiDAR sensor. This new solution is based
on ROS Navigation, where NoMaD acts as the global planner guiding the robot, leaving the
obstacle avoidance to the local planner. Both NoMaD and the new solution were tested in envi-
ronments inspired by the standardized navigation environment dataset BARN. While NoMaD
reached the proclaimed success rate (90%) in simple baseline tests, it failed to do so in more
complex environments, even when the hardware limitations of the setup were compensated for,
with success rates ranging from 3.3% to 53.3%. The new solution, however, achieved all-around
good results (83%) with no collisions. While it has its own drawbacks the new approach shows
some merit.

CERCS: P176 Artificial intelligence; T125 Automation, robotics, control engineering.

Keywords: motion planning, ROS, diffusion models

2

NoMaD’il põhineva mobiilsete robotite globaalse planeerija valideerimine

Kuna autonoomsed liikurrobotid on muutumas üha tavalisemaks igapäevastes rakendustes, nagu
näiteks laorobotid ja isesõitvad autod, kasvab ka vajadus robustsemate navigatsioonimeetodite
järele. Hiljuti esitleti arvutinägemisel põhinevat navigatsiooniarhitektuuri NoMaD, mida kat-
setati ”väljakutsuvates keskkondades” ning näitas väga häid tulemusi, kuid nende keskkondade
täpne raskusetase oli ebaselge. Selle töö eesmärk oli mõõta NoMaD’i standardiseeritud viisil
ja arendada sellest uus lahendus täiendades NoMaD’it LiDAR sensoriga. See uus lahendus
põhineb ROS Navigation’il, kus NoMaD tegutseb robotit juhtiva globaalse planeerijana, jättes
takistuste vältimise kohalikule planeerijale. Nii NoMaD’it kui ka uut lahendust katsetati stan-
dardiseeritud navigatsioonikeskkonna andmestikust BARN inspireeritud keskkondades. Kuigi
NoMaD saavutas küllalt hea edukuse määra (90%) lihtsates testimis keskkondades, ei suutnud
ta seda teha keerukamates keskkondades, isegi kui riistvaralisi piirangud kompenseeriti. No-
MaD saavutatas nendes keskkondades 3,3% kuni 53,3%. Uus lahendus andis aga üldiselt häid
tulemusi (83%) ja ei põrkanud kordagi kokku ühegi takistusega. Kuigi sellel uuel lahendusel
on omad puudused, näitab see potentsiaali.

CERCS: P176 Tehisintellekt; T125 Automatiseerimine, robootika, juhtimistehnika .

Märksõnad: rajaplaneerimine, ROS, difusioonimudelid

3

Contents

Abstract/Resümee 2

List of Figures 6

List of Tables 7

List of Abbreviations 8

1 Introduction 9
1.1 Motivation . 9
1.2 Objective . 9

2 Background 11
2.1 Motion Planning . 11
2.2 Robot Operating System . 11

2.2.1 ROS Navigation . 12
2.3 Diffusion Probabilistic Models . 14

2.3.1 Mathematical Preliminaries . 14
2.3.2 U-net . 15

2.4 Diffusion Policy . 17
2.5 Navigation with Goal Masked Diffusion . 19
2.6 Benchmark for Autonomous Robot Navigation 20

3 Requirements 22

4 Methodology 23
4.1 Software implementation . 23

4.1.1 About training the NoMaD model . 24
4.2 Hardware . 24

4.2.1 Clearpath Jackal . 25
4.2.2 Intel RealSense D435i Camera . 26
4.2.3 SICK TIM551 LiDAR Sensor . 26
4.2.4 Personal Computer . 27

4.3 Configuration . 28
4.4 Baseline Testing and Benchmarking . 28
4.5 Testing Environments . 29

4.5.1 Validation Procedure . 31

4

5 Results 32
5.1 Results of baseline tests . 32
5.2 Results of benchmarking tests . 32

6 Discussion 33
6.1 Limitations . 33
6.2 Analysis . 34

7 Conclusion & Future Work 35

Appendixes 40
7.1 Appendix A . 40
7.2 Appendix B . 43

Non-exclusive license 44

5

List of Figures

2.1 Example of C-space . 12
2.2 Example of ROS1 running on multiple machines 12
2.3 ROS Navigation diagram . 13
2.4 Directed graphical diffusion model . 14
2.5 A diffusion model trained on 2D Swiss roll data 16
2.6 U-net architecture . 17
2.7 Diffusion Policy Overview . 18
2.8 Comparison of how different models learned a task 19
2.9 NoMaD Architecture . 20
2.10 Example BARN environments . 21

4.1 Implementation diagram . 24
4.2 Clearpath Jackal . 25
4.3 Clearpath Jackal dimensions . 25
4.4 Intel RealSense D435i Camera . 26
4.5 Sick TIM551 LiDAR . 27
4.6 Pictures of benchmarking layout 1 (top) and 2 (bottom). 30

6.1 Example sketch of a situation where a collision would not be considered a failure 33

7.1 Screenshot of baseline environment 1 . 40
7.2 Screenshot of baseline environment 2. 41
7.3 Screenshot of benchmarking environment 1. 41
7.4 Screenshot of benchmarking environment 2. 42

6

List of Tables

4.1 Clearpath Jackal specifications . 25
4.2 435i RGB camera specifications . 26
4.3 TIM551 specifications . 26
4.4 PC specifications . 27

5.1 Averaged results of the baseline tests. 32
5.2 Benchmarking results. 32

7

List of Abbreviations

DWA - Dynamic Window Approach

LiDAR - Light Detection and Ranging

ML - machine learning

NoMaD - Navigation with Goal Masked Diffusion

ROS - Robobotic Operating System

RRT - rapidly exploring random trees

ViNT - Visual Navigation Transformer

8

1 Introduction

Mobile robots have already become everyday components of various real-world applications,
ranging from autonomous cars [1] to warehouse logistics [2] and even warfare in the form of
drones and ground vehicles [3]. In structured environments such as grid-based warehouses,
traditional navigation methods using algorithms like A* or Djikstra’s to compute paths tend to
work well. But in places, like the outdoors or buildings designed for people, which can un-
predictably change over time and have very complex shapes, these methods can have difficulty
with localization [4], e.g. if the world no longer matches the map given to the robot, and be
inefficient [5].

Machine learning (ML) based approaches, like the Diffusion Policy [6] based NoMaD [7], aim
to learn behaviours that avoid obstacles and navigate based on vision. While diffusion is nowa-
days commonly used in text-to-image generation, it can be used to generate other kinds of data
as well, in NoMaD’s case, using images as inputs and producing navigable paths.

The authors of NoMaD consider it to be the first successful action diffusion model that can do
both exploratory and goal-conditioned navigation by reporting a very high success rate, 90% to
98%, tested in ”challenging indoor and outdoor environments”. However, it is unclear exactly
how challenging the environments really were.

1.1 Motivation
As mentioned, the exact difficulty of the environments was not discussed by Sridhar et al., but
from the published images in the paper [7] and videos [8] showcasing NoMaD we can get some
hints. They show their robot moving in typical human environments like corridors, sidewalks,
and office buildings at a slow speed. This raises some questions: how well does NoMaD work in
more cluttered environments, how much does velocity impact the performance, and can NoMaD
be further improved?

1.2 Objective
The main goals of this thesis were to first evaluate the effectiveness of the NoMaD navigation
architecture in moderate to highly cluttered real-life standardized environments. Then in an
effort to improve the architecture, it was augmented with LiDAR sensing. To this end, NoMaD
was integrated into ROS Navigation as a global planner leaving it to direct the robot, but having
the LiDAR-based local planner be the one to avoid the obstacles. Then the new solution was
benchmarked using the same methods.

A recent publication by Tampuu et al. looked at the effects of speed and delays of end-to-end

9

self-driving models and concluded that differing velocities in training and testing had adverse
effects [9]. Although neither NoMaD nor the new solution presented here are end-to-end mod-
els, the effect of velocity was looked at by testing both solutions at two different velocities.

10

2 Background

This section will first introduce the concept of motion planning for mobile robots and describe
ROS and its Navigation package as an example of a classical implementation of robot naviga-
tion. Then NoMaD is introduced as a novel approach to navigation based on diffusion policy
[7]. Therefore, this section will also discuss diffusion: what diffusion models are, what diffu-
sion policy is, and go into depth about NoMaD itself. Finally, a standardized benchmarking
method is introduced.

2.1 Motion Planning
Motion planning is the method by which robots compute paths from their initial placement
through an environment to a desired goal placement while avoiding collisions with obstacles
[5]. Using a 2-dimensional example, the world is W = R2, O ⊂ W is the obstacle region,
and the robot A is modelled as a rigid polygon, which can move through W , but must avoid O.
The computation of paths takes place in configuration space (C-space) instead of W , which is
the set of all possible rigid-body transformations (position and orientation combinations) of the
robot in W . The robot’s pose or configuration q = (xt, yt, θ) in 2D worlds is defined by x, y
coordinates and θ orientation. Therefore, the C-space is three-dimensional. But if the robot in
question has more degrees of freedom (DOF) then the dimensionality of C-space also increases.
The C-space is divided into Cfree, which is the set of all non-colliding configurations, and Cobs,
which is all the colliding configurations.

Planning can be done in two ways [5]: combinatorial planning and sampling-based planning.
Combinatorial planning works by constructing structures in the C-space that capture all the
information needed for planning. Essentially, the whole C-space is vertically divided into
trapezoid-shaped sections, and each section is then connected by a straight-line path. The
downside of this approach is that it is slower as it analyzes the whole C-space. Sampling-
based planning, on the other hand, works by iteratively exploring Cfree for a path. An example
of this is rapidly exploring random trees (RRT). This approach is much faster but may fail even
if a solution exists as it does not look at the whole C-space.

2.2 Robot Operating System
ROS is a robotics-oriented open-source framework that provides a communications layer to
node programs [10]. NoMaD was built for ROS1 [7], which this section will focus on, but
it is coming to its end of life in 2025 [11] and is already in the process of being replaced by
ROS2. ROS1 is implemented in a peer-to-peer topology, allowing very modular robot software
design and it supports multiple programming languages, such as C++ and Python. The network
is controlled by ROS master, which provides a lookup mechanism to allow ROS nodes to find

11

Figure 2.1: Example of C-space [5].

each other. Communication between nodes is done through either topics or services. Topics
are message pipelines that can have many subscribers and many publishers. Services are, in
contrast, unicast synchronous transactions, meaning that there is one response for each request.
The modularity of ROS also lets users use previously developed solutions without having to
tailor them to their robots such as ROS Navigation.

Figure 2.2: Example of ROS1 running on multiple machines [10].

2.2.1 ROS Navigation
ROS Navigation is a ROS package that takes in data from odometry and sensors and outputs
velocity commands to a mobile robot [12]. It is meant for differential drive (turning by rotating
wheels at different rates, not steering) and holonomic drive (driving in any direction without
turning) robots. It requires a distance measurement sensor like LiDAR, which is used for map
building and localization. Works best on robots which have a nearly square or circular shape.
The components of navigation and the data flow are shown in Figure 2.3.

Navigation begins with knowing the coordinate frames and the relationships between them [13].
These answer the questions of where exactly the sensor is located on the robot and if the obsta-
cle is 1 meter away from the sensor, how far it is from the centre of the robot. This is done using

12

the ROS Transform (tf) library as it provides a standard way to track the coordinate frames
and the transforms of an entire system [14, 10]. The transforms are stored in a tree data struc-
ture, allowing them to have child transforms, which provides easy relative positioning, and fast
searching.

The shape of a robot is described using Unified Robot Description Format (URDF), which is an
XML format. It is comprised of links, which are the structural elements of a robot, and joints,
which describe how links are connected and how they can move [15]. A tf tree is then built
from the URDF file to describe all the coordinate reference frames for the whole system [10].

Odometry is the estimation of changes in position using motion sensors, like rotary encoders
attached to the wheels of a robot. This allows the robot to measure how far and how fast it
drives and provide that information to ROS. Odometry also provides its own coordinate frame,
which is always centred on the robot and can be used for navigation and issuing goal pose com-
mands. E.g. ”drive x meters forward and y meters left from the current location”, not ”move to
coordinates x, y on the map”.

As the Navigation package outputs velocity commands, there must be a controller which han-
dles them. This is done by a Base Controller, which reads the velocity commands and controls
the robot’s motors to fulfil the commands.

Global and local planners

ROS Navigation uses two separate motion planning components - a global planner and a local
planner, each with its own cost map [12]. The global planner creates paths over the entire
environment using algorithms such as A* and Dijkstra’s algorithm [16]. The local planner tries
to follow the path while avoiding obstacles using algorithms like Dynamic Window Approach
(DWA) [17]. The costmaps are 2D data structures that are used to indicate a cost function,
meaning how costly it would be for the robot to move to that location. E.g. the cost of free
space would be 0; an obstacle would be 255; and areas near an obstacle would be somewhere
in between so the robot would not go close to one unless needed to.

Figure 2.3: ROS Navigation diagram [13].

13

2.3 Diffusion Probabilistic Models
In 2015, Dickstein et al. introduced a novel way to model highly complex data sets using proba-
bilistic models inspired by non-equilibrium statistical physics [18], where the structure of a data
distribution is slowly destroyed in a forward diffusion process and then restored by a learned
reverse process. A kind of Monte Carlo simulation called Langevin dynamics explains how to
define a Gaussian diffusion process, which can have any distribution as its equilibrium. This is
implemented using a Markov chain, which then iteratively converts one distribution of data into
another (e.g. a standard Gaussian into a bimodal distribution).

The main idea is for the forward process to, over T time steps, destroy a more complex data
distribution by adding some Gaussian noise to it and training the model (the Markov chain) to
predict what noise was added. Then, the model performs the reverse process by iteratively sub-
tracting some learned noise from a pure noise data distribution (see Figures 2.4 and 2.5). The
end product is a new complex data distribution that is similar to the distribution of the training
data.

Further progress was presented by Ho et al. in 2020 in their paper ”Denoising Diffusion Proba-
bilistic Models” (DDMP) [19] and by Nichol et al. in 2021 in their paper ”Improved Denoising
Diffusion Probabilistic Models” (iDDPM) [20].

�!<latexit sha1_base64="7yFrn0YPyuP5dVIvc7Tl2zcbS/g=">AAAB+HicbVBNSwMxEJ2tX7V+dNWjl2ARPJXdKuix6MVjBfsB7VKyaXYbmk2WJKvU0l/ixYMiXv0p3vw3pu0etPXBwOO9GWbmhSln2njet1NYW9/Y3Cpul3Z29/bL7sFhS8tMEdokkkvVCbGmnAnaNMxw2kkVxUnIaTsc3cz89gNVmklxb8YpDRIcCxYxgo2V+m65x6WIFYuHBislH/tuxat6c6BV4uekAjkafferN5AkS6gwhGOtu76XmmCClWGE02mpl2maYjLCMe1aKnBCdTCZHz5Fp1YZoEgqW8Kgufp7YoITrcdJaDsTbIZ62ZuJ/3ndzERXwYSJNDNUkMWiKOPISDRLAQ2YosTwsSWYKGZvRWSIFSbGZlWyIfjLL6+SVq3qn1drdxeV+nUeRxGO4QTOwIdLqMMtNKAJBDJ4hld4c56cF+fd+Vi0Fpx85gj+wPn8AXOGk5o=</latexit>

xT �! · · · �! xt �����! xt�1 �! · · · �! x0
<latexit sha1_base64="l4LvSgM7PR7I/kkuy5soikK4gpU=">AAAEoXictVLditNAFE7XqGv92a5eejOYLexKLU0VFKRQ9EYvhCrb3YUklOlk2g6dnzBzYrcb8zK+lU/gazhJK6atuiB4YODM+T/n+8YJZwY6nW+1vRvuzVu39+/U7967/+CgcfjwzKhUEzokiit9McaGcibpEBhwepFoisWY0/Px/G3hP/9MtWFKnsIyoZHAU8kmjGCwplHjeygwzAjThNM4Kz/jSXaZj05zFHIlp5pNZ4C1VgsUkliB2TX/oQLYCpe/4rJwZhJM6NPMJyLPt9IM0SwBA0tOUaVGBs/8/J8mWVRH6eSjhtdpd0pBu4q/VjxnLYPR4d7XMFYkFVQC4diYwO8kEGVYA7P183qYGmr3meMpDawqsaAmykpEctS0lhhNlLZPAiqt1YwMC2OWYmwjiynNtq8w/s4XpDB5FWVMJilQSVaNJilHoFABL4qZpgT40irYntTOisgMa0zAkqC+0QbY/MquIfCcYssbsBH1UNIFUUJgGVePGfhR1qyj1YETXAaH/SqAnp836/lGftUfdNcFiqbBT8L2jouQdvE9iVAoVUyDWONFa5XVYlJSjezEPT+BlmCSiVQgw65or2vBaE0Y5z1e4D/VeBmhstwJyo5C0YeZ53vdo/z19lhVjly71+K6xRb/ZbO/rbLCS8HMwmVZ7W9zeFc567b95+3uxxde/82a3/vOY+eJc+z4zkun77xzBs7QIbUPNVP7Ustdz33vDtxPq9C92jrnkbMhbvAD81mObw==</latexit>

p✓(xt�1|xt)
<latexit sha1_base64="XVzP503G8Ma8Lkwk3KKGZcZJbZ0=">AAACEnicbVC7SgNBFJ2Nrxhfq5Y2g0FICsNuFEwZsLGMYB6QLMvsZDYZMvtg5q4Y1nyDjb9iY6GIrZWdf+Mk2SImHrhwOOde7r3HiwVXYFk/Rm5tfWNzK79d2Nnd2z8wD49aKkokZU0aiUh2PKKY4CFrAgfBOrFkJPAEa3uj66nfvmdS8Si8g3HMnIAMQu5zSkBLrlmO3R4MGZBSLyAw9Pz0YeKmcG5P8CNekKDsmkWrYs2AV4mdkSLK0HDN714/oknAQqCCKNW1rRiclEjgVLBJoZcoFhM6IgPW1TQkAVNOOntpgs+00sd+JHWFgGfq4kRKAqXGgac7p0eqZW8q/ud1E/BrTsrDOAEW0vkiPxEYIjzNB/e5ZBTEWBNCJde3YjokklDQKRZ0CPbyy6ukVa3YF5Xq7WWxXsviyKMTdIpKyEZXqI5uUAM1EUVP6AW9oXfj2Xg1PozPeWvOyGaO0R8YX7+bCp4F</latexit>

q(xt|xt�1)
<latexit sha1_base64="eAZ87UuTmAQoJ4u19RGH5tA+bCI=">AAACC3icbVC7TgJBFJ31ifhatbSZQEywkOyiiZQkNpaYyCMBspkdZmHC7MOZu0ay0tv4KzYWGmPrD9j5N87CFgieZJIz59ybe+9xI8EVWNaPsbK6tr6xmdvKb+/s7u2bB4dNFcaSsgYNRSjbLlFM8IA1gINg7Ugy4ruCtdzRVeq37plUPAxuYRyxnk8GAfc4JaAlxyzclbo+gaHrJQ8TB/AjnvsmcGZPTh2zaJWtKfAysTNSRBnqjvnd7Yc09lkAVBClOrYVQS8hEjgVbJLvxopFhI7IgHU0DYjPVC+Z3jLBJ1rpYy+U+gWAp+p8R0J8pca+qyvTRdWil4r/eZ0YvGov4UEUAwvobJAXCwwhToPBfS4ZBTHWhFDJ9a6YDokkFHR8eR2CvXjyMmlWyvZ5uXJzUaxVszhy6BgVUAnZ6BLV0DWqowai6Am9oDf0bjwbr8aH8TkrXTGyniP0B8bXL+1hmu8=</latexit>

Figure 2.4: Directed graphical diffusion model [19].

2.3.1 Mathematical Preliminaries
This part will explain the diffusion processes using images as an example, where xt is an image
at timestep t. E.g. x0 is the original image, x5 is the image with 5 iterations of noise added, and
xT is the final iteration and is pure noise. The forward process is noted as q(xt|xt−1), which
means xt−1 (image with less noise) is the input and xt (image with more noise) is the output. As
Equation 2.1 shows, calculating xt is done by sampling a normal (Gaussian) distribution with√
1− βtxt−1 as the mean and βtI as the variance, where βt is the noise scheduled for time step

t by the scheduler β. Ho et al. chose a linear noise schedule: β1 = 10−4 to βT = 0.02.

q(xt|xt−1) = N (xt,
√
1− βtxt−1, βtI) (2.1)

Where N is the normal distribution; xt is the output of N ; then the mean and variance; β is the
noise scheduler ranging from 0 to 1; I is an identity matrix.

Equation 2.1 was further simplified in [19] to be able to be computed in one step. Note that as
before, in Equation 2.1, the computation was done for one timestep; now, in Equation 2.2, the
computation is done for any timestep in one calculation. This allows the model training process
to be more efficient.

14

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (2.2)

Where αt = 1− βt; ᾱt =
t∏

s=1

αs.

The reverse process (Equation 2.3) takes in a noisy image xt and produces a less noisy im-
age xt−1. Here the variance was fixed Σθ(xt, t) = σ2

t I giving the equation pθ(xt−1|xt) =
N (xt−1;µθ(xt, t), σ

2
t I) and could fixed to either σ2

t = βt or σ2
t = β̃t =

1−ᾱt−1

1−ᾱt
βt, which have

similar results but are optimal for different objectives. µθ is the reverse process mean func-
tion approximator, which is the part we want the model to learn (predicting the mean of the
noise).Through some reparameterization, Ho et al. reach Equation 2.4, where ϵθ is a function
approximator predicting ϵ from xt and ϵ ∼ N (0, I) (predicting the noise itself).

p(xt−1|xt) = N (xt−1, µθ(xt, t),Σθ(xt, t)) (2.3)

µθ(xt, t) = µ̃t

(
xt,

1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt))

)
=

1√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
(2.4)

Ho et al. train the model by optimizing the usual variational bound on the negative log like-
lihood as seen in Equation 2.5. Meaning that the model wants to minimize the value of the
negative log likelihood, which is approximated by the variational bound (L). Likelihood is the
probability density (like the bell curve of a normal distribution) of the data given the parameter
value. E.g. instead of calculating the probability of getting two heads in a row with flips of a
fair coin, likelihood says how much support there is on the coin being fair given the observation
of two heads in a row. Then log likelihood is the logarithm of likelihood.

Eventually, the following form is reached through some derivations and simplifications: Equa-
tion 2.6 [19]. In simpler terms, the loss function is the mean squared error between the noise
added in the forward process and the noise predicted by the model (Equation 2.7) [6].

E [− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T)

q(x1:T |x0)

]
= Eq

[
− log p(xT)−

∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)

]
=: L

(2.5)
Lsimple(θ) := Et,x0,ϵ

[∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2
]

(2.6)

L =MSE(ϵ, ϵθ(x0 + ϵ, t)) (2.7)

Finally, all of this is put together into Algorithms 1 and 2. Algorithm 1 starts by sampling
an image from a dataset, sampling an array of integers between 1 and T for the time steps,
and sampling noise ϵ from a normal distribution. Then the model is optimized using Equation
2.6. Sampling or generating a new image is done using Algorithm 2: first sampling xT as pure
Gaussian noise, then using Equation 2.4 to get a less noisy image xt−1 in a loop until a noiseless
image is reached. An example of a diffusion model trained on 2D data is in Figure 2.5.

2.3.2 U-net
Ho et al. use a U-net as the neural network architecture [19]. The U-net is a convolutional
neural network (CNN) architecture designed for use cases like biomedical imaging, where in-

15

Algorithm 1 Training
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, . . . , T})
4: ϵ ∼ N (0, I)
5: Take gradient descent step on

∇θ

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)

∥∥2
6: until converged

Algorithm 2 Sampling

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: xt−1 =
1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+ σtz

5: end for
6: return x0

t = 0 t = T
2

t = T

q
(
x(0···T)

)
2 0 2

2

0

2

2 0 2
2

0

2

2 0 2
2

0

2

p
(
x(0···T)

)
2 0 2

2

0

2

2 0 2
2

0

2

2 0 2
2

0

2

Figure 2.5: A diffusion model trained on 2D Swiss roll data The first row shows the forward
process at the first timestep, middle timestep and last timestep. The second row shows the
reverse process (read right to left), where a set of data with identity-covariance Gaussian distri-
bution is turned into a distribution that resembles the original Swiss roll distribution [18].

stead of just the classification of the whole image, the output should include localization, i.e. a
classification label for each pixel [21] (see Figure 2.6).

16

copy and crop

input
image

tile

output
segmentation
map

641

128

256

512

1024

max pool 2x2

up-conv 2x2

conv 3x3, ReLU

57
2

x
57

2

28
4²

64

128

256

512

57
0

x
57

0

56
8

x
56

8

28
2²

28
0²

14
0²

13
8²

13
6²

68
²

66
²

64
²

32
²

28
²

56
²

54
²

52
²

512

10
4²

10
2²

10
0²

20
0²

30
²

19
8²

19
6²

39
2

x
39

2

39
0

x
39

0

38
8

x
38

8

38
8

x
38

8

1024

512 256

256 128

64128 64 2

conv 1x1

Figure 2.6: U-net architecture. Example by Ronneberger et al. [21] (note the U-shape). An
image is sampled down to and then back up again, with intermediate downsampling results
being concatenated during upsampling (the grey horizontal arrows), producing a segmentation
map.

2.4 Diffusion Policy
Diffusion Policy by Chi et al. is a method of generating robot behaviour with a conditional
denoising diffusion process [6]. This approach outperforms other state-of-the-art robot learning
methods on average by 46.9% and allows models to learn multimodal behaviour (see Figure
2.8), generate a sequence of actions instead of a single action, and have stable training. While
diffusion models are usually used in image generation, Chi et al. use them to learn visuomotor
policies (learned behaviours with visual input and movement-based output).

They do this by first changing the formulation to output robot actions. This means that at time
step t, the model takes in the latest To time steps of observational information Ot as input, pre-
dicts Tp steps of actions, and executes Ta steps. To clarify, To is the observation horizon, Tp is
the action prediction horizon, and Ta is the action execution horizon, which can be set to less
than Tp. Chi et al. state that this makes the actions more consistent without hurting responsive-
ness.

Secondly they use DDPM to approximate the conditional distribution p(At|Ot) (distribution of
actions At given observations Ot) instead of the joint distribution p(At,Ot) (joint distribution
of At and Ot) used in an earlier related work by Janner et al. [22]. The first section of Figure
2.7 shows a robotic arm getting a series of observations Ot as an input and then generating a
series of waypoints (actions) At for the end effector to follow.

17

Diffusion Policy was examined with two model architecture options: CNN-based and transformer-

b) CNN-based c) Transformer-based

Conv1D

Conv1D

Conv1D

Conv1D

Conv1D

Input: Image Observation Sequence

Output: Action Sequence

…
Cross Attention

Cross Attention

×KO
bs Em

b

Action Emb

Action Emb

A
 Em

b

a

b

a

b

x: Action Emb

x: Action Emb

…

×K

Linear
Linear

a ⋅ x + b

a ⋅ x + b

a) Diffusion Policy General Formulation

∇E(At)

At

∇E(At)

At

O
bservation O

t

O
bservation O

t

FiLM
conditioning

k

k

Action Sequence At

Ot+4

ot+4

at+4

Observation Ot

otot-1ot-2

at at+1 at+2 at+3

Prediction Horizon Tp

Diffusion Policy

At+4

At At At
03K

Robot
Pose

Ot

Figure 2.7: Diffusion Policy Overview a) shows the general formulation of Diffusion Policy. b)
shows CNN-based Diffusion Policy. c) shows transformer-based Diffusion Policy [6].

based. The CNN-based architecture was based on the U-Net architecture mentioned earlier,
but the two-dimensional spatial convolutions were replaced by one-dimensional spatial convo-
lutions by Janner et al. [22] allowing dynamically changing input dimensionality (longer or
shorter horizons) and further modifications by Chi et al. implementing the changes mentioned
previously [6]. The transformer model is not relevant to this thesis as NoMaD uses the CNN
model, but it proved to be better at more complex tasks at the cost of additional tuning. Figure
2.7 shows the general formulation of Diffusion Policy and the structures of CNN and trans-
former models.

Diffusion Policy makes use of a ResNet-18 based visual encoders to map images from the
robot’s cameras into the latent embedding Ot, which are trained together with the diffusion
model. The noise schedule used in this work is the Square Cosine Schedule proposed by Nichol
et al. in iDDPM [20], which adds noise more slowly and works better on smaller resolution
images. Improvements in inferencing speed were made by employing the Denoising Diffusion
Implicit Models (DDIM) approach [23]. This allowed Chi et al. to train their model with 100
denoising diffusion iterations, but only use 16 iterations in real-world inference, reducing la-
tency.

Evaluation in simulated and real world environments [6] proved Diffusion Policy to have many
major advantages over previous ML-based behaviour learning models like Long Short Term
Memory Gaussian Mixture Model (LSTM-GMM, robomimic) [24], Implicit behavioral cloning
(IBC) [25], and Behavior transformers (BET) [26]. Diffusion Policy learns behaviours that are
multimodal, meaning it can accomplish tasks in a number of different ways and commits to one
(see Figure 2.8). It can complete sub-goals in an inconsistent order, is better at position control
compared to velocity control, and is good at idle actions (e.g. waiting while pouring a cup).
Diffusion Policy was demonstrated by Chi et al. in real-world tasks like spreading sauce on a
pizza and flipping a cup.

18

Diffusion Policy LSTM-GMM BET IBC

Figure 2.8: Comparison of how different models learned a task with Diffusion Policy showing
good multimodal behaviour [6].

2.5 Navigation with Goal Masked Diffusion
Navigation with Goal Masked Diffusion (NoMaD) by Sridhar et al. is a Diffusion Policy based
architecture meant for robotic navigation and exploration [7]. The authors consider this the
first successful goal-conditioned diffusion model and the first optionally task-oriented model
deployed on a physical robot. NoMaD is closely related to the Visual Navigation Transformer
(ViNT) [27] navigation policy, even sharing many authors, and is essentially an extension of it.
While ViNT uses a separate image diffusion model to generate candidate subgoals conditioned
on the current observation, NoMaD, in contrast, generates a series of waypoints for the robot to
follow. This approach requires 15 times fewer parameters in the model, making it much more
efficient. The architecture of NoMaD is shown in Figure 2.9.

NoMaD uses the ViNT policy as the framework for processing input images. It uses an encoder
(ψ(Oi)) to process observational images Ot and a goal fusion encoder (ϕ(Ot, Og)) to tokenize
inputs. The usage of goal images is optional and can be turned off by a goal masking mech-
anism. The tokens are then processed by multi-headed attention layers (transformer), and the
output is a context vector ct, which is then used to predict future actions at using a Diffusion
Policy model ϵθ and temporal distance between Og and Ot. Here i ∈ t− P, ..., t; Oi is the last
P observed images; Ot is the latest image; and Og is the goal image.

NoMaD also makes use of episodic memory taken from ViKiNG [28] and is paired with a high-
level planner. The memory is in the form of a topological graph with nodes being the robot’s
visual observations and edges being navigable paths between two nodes. The edges are deter-
mined by the temporal distance prediction. The addition of the memory and planner provides
NoMaD with goal-seeking behaviour and allows it to navigate very large environments using
sub-goals.

19

x6

Goal
Optional

Transformer
4 Layers, 4 Heads
5M Parameters

Observations
Past 5 timesteps

96x96x3 RGB

Context
Average Pooled

Temporal Distance

Goal Masking

7 Tokens
x 256-D

10 denoising steps

8 Future
Actions

Figure 2.9: NoMaD Architecture Two encoders ψ, ϕ are used to tokenize observation and goal
images. The tokens are then processed by a transformer into a context vector ct. The context
vector is then used to predict future actions using Diffusion Policy and predict how far the robot
currently is from its goal [7].

PD Controller

NoMaD uses a proportional-derivative (PD) controller [29], which is a variant of the proportional-
integral-derivative (PID) controller. A PID controller is a method of feedback control contain-
ing elements, which perform those mathematical functions [30]. It works by using the error
between a goal value and the current value to scale the adjustment of the current value so that
it would not overshoot or oscillate (e.g. the cruise control of a car). The Proportional element
accounts for the error at instant t, the Integral element for the cumulative error up to t, and the
Derivative element the derivative of the error at t.

NoMaDs PD controller is used to control its position. As the actions NoMaD generates are a
sequence of waypoints for the robot to move to, the first one (closest to the robot) is sent to the
PD controller, which then produces velocity commands for the base controller.

2.6 Benchmark for Autonomous Robot Navigation
The Benchmark for Autonomous Robot Navigation (BARN) is a dataset of 300 environments
meant to be used as standardized tests for robot navigation [31]. The environments are generated
using cellular automation, then the A* algorithm is used to plan a path in the Cfree space. That
path is then used to calculate the following metrics to characterize the generated environment:

1. Distance to Closest Obstacle - distance to the nearest obstacle averaged over all points in
the path.

2. Average Visibility - average of the distances to obstacles in eight rays averaged over all
points in the path.

3. Dispersion - average number of potential paths out of every point in the path.

4. Characteristic Dimension - the average tightness of every point in the path.

5. Tortuosity - how bendy a path is.

These metrics are used to predict a Combined Difficulty Level by a learned ML model. Some
example environments are in Figure 2.10.

20

Figure 2.10: Example BARN environments. Four environments simulated with Gazebo in order
of increasing difficulty [31].

21

3 Requirements

In order to achieve the goals of benchmarking NoMaD and benchmarking NoMaD as a global
planner the following requirements had to be met:

1. Generation of testing environments.

2. Acquisition of materials to build the environments.

3. Deployment of NoMaD on a suitable mobile robot.

4. Baseline testing of NoMaD.

5. Benchmarking of NoMaD at two different maximum velocities.

6. Integration of NoMaD into ROS Navigation as a global planner.

7. Benchmarking of NoMaD as a global planner at two different maximum velocities.

Baseline testing aimed to prove that the whole setup worked and that the NoMaD model was
good enough to be used in further benchmarking if it could reach a similar performance that was
achieved by Sridhar et al. [7] in very easy testing environments. The benchmarking intended to
measure the performance of both NoMaD and the new solution in more complex environments
and if the performance was dependent on the velocity of the robot.

22

4 Methodology

This chapter explains in detail how NoMaD was integrated as a global planner in ROS Naviga-
tion, what hardware was this deployed on and tested, and then the procedure for baseline testing
and benchmarking.

4.1 Software implementation
The integration of NoMaD encompasses modifications to the NoMaD source code, the creation
of a global planner plug-in, a ROS node to facilitate communication between NoMaD and the
navigation nodes, and various ROS launch files and other scripts. The code and scripts used in
this work are provided in a GitHub repository: link.

The result of the implementation is shown as a diagram in Figure 4.1. First, the NoMaD navi-
gation code is modified by adding a ROS topic publisher to access the whole path it generated,
and its PD controller was removed.

Second, a ROS node was written to listen to the NoMaD path messages. The author chose to
use the last waypoint of the path as the goal for the local planner because preliminary testing
showed it to work reasonably well. The option to use the full sequence of waypoints was con-
sidered but was rejected because the length of the path was relatively short and the local planner
resolved a similar or even better path with just the last waypoint. In contrast, the original No-
MaD implementation uses the first waypoint as the goal. A goal pose was put together from the
chosen waypoint and published to ROS Navigation.

Third, a global planner plugin was developed to replace the default global planner. This plugin
would act as a dummy and do no processing or path generation on its own. Its only job was to
accept goal pose messages and set them as the goal for the local planner.

23

https://github.com/SuspiciousSeal/nomad_thesis

NoMaD Camera

LiDARodometry

global planner
plug-in

DWA
local planner

recovery
behaviors

local costmap

tf

NoMaD goal
sender
node

"/tf"
tfMessage

"/odom"
Odometry

"/front/scan"
LaserScan

"/camera/color/image_raw"
Image

"/nomad_path"
Float32MultiArray

"move_base/goal"
MoveBaseGoal

move_base

base controller

"cmd_vel"
Twist

Figure 4.1: Implementation diagram. The red parts indicate the software components that were
added to ROS Navigation as part of this thesis.

4.1.1 About training the NoMaD model
A pre-trained model, which was available on the NoMaD GitHub page [29], was used in this
work. It was trained on RECON, TartanDrive, SCAND, GoStanford2 (Modified), and SAC-
SoN/HuRoN datasets and some datasets that were unreleased [7].

The author made the decision not to train a new model based on the following: some datasets
used in training the pre-trained model were unreleased, so there would have been fewer datasets
to train with overall; making a new dataset based on the testing environment would have been
prohibitively time-consuming; and NoMaD is meant to be able to handle unseen environments
[7]. Baseline testing was used to prove that the pre-trained model was good enough to be used
in further benchmarking.

4.2 Hardware
Both NoMaD and the integrated solution were deployed on the same hardware, which consisted
of a small unmanned ground vehicle Jackal, an Intel D435i camera, a Sick TIM551 LiDAR, and
a more powerful personal computer (PC). All of the software was run on the onboard computer
of the Jackal except for the NoMaD model itself, which was run on the PC.

24

4.2.1 Clearpath Jackal
The Jackal by Clearpath Robotics is a relatively small entry-level rectangular robot meant for
robotics research [32]. It has an onboard computer and is fully integrated with ROS. The Jackal
was chosen because it was readily available at the University of Tartu and was already outfitted
with the required sensors, which are described in the following sections.

Figure 4.2: Clearpath Jackal outfitted with a camera and a LiDAR.

Figure 4.3: Clearpath Jackal dimensions [32].

Table 4.1: Clearpath Jackal specifications [32, 33].
External dimensions 508 x 430 x 250 mm
Drive power 500 W
Maximum speed 2.0 m/s
Weight 17 kg
Processor Intel i3 4330TE
Memory 4 GB
Operating system Ubuntu 18.04 LTS
ROS version Melodic

25

4.2.2 Intel RealSense D435i Camera
The D435i is a multi-camera unit produced by Intel containing a regular RGB camera, a stereo
depth camera, and an inertial measurement unit [34]. In this work, only the RGB camera part
was used. It was mounted on the superstructure of the Jackal robot facing forward. This camera
was not optimal for this task because its field-of-view is too narrow, 69 degrees [29], but issues
coming from this could be mitigated to a certain degree and are discussed in the ”Limitations”
section. Relevant specifications are brought out in Table 4.2.

Table 4.2: D435i RGB camera specifications [34].
Resolution 1920 × 1080
FOV (H × V) 69° × 42°
Frame rate 30 fps
Interface USB3.1

Figure 4.4: Intel RealSense D435i Camera [34].

4.2.3 SICK TIM551 LiDAR Sensor
The TIM551 is a light detection and ranging (LiDAR) sensor produced by SICK AG [35]. It
was mounted on the robot’s superstructure behind the camera. The data from this sensor was
used to avoid obstacles near the robot. It was already mounted on the robot and deemed suitable
for this case. Relevant specifications are brought out in Table 4.3.

Table 4.3: TIM551 specifications [35].
Measurement principle HDDM+ (time of flight)
Light source Infrared (850 nm)
Aperture angle 270 deg
Scanning frequency 15 Hz
Working range 0.05 m ... 10 m
Interface Ethernet, TCP/IP

26

Figure 4.5: Sick TIM551 LiDAR [35].

4.2.4 Personal Computer
A PC was used to run the NoMaD model because it required a CUDA 10+ compatible graphics
processing unit (GPU) [29] and the Jackal robot lacked a GPU. The robot and the PC were
connected over a WiFi network. Specifically, a Lenovo Legion 5 17ACH6H laptop was used in
this work and the relevant specifications are described in Table 4.4.

Processor AMD Ryzen 7 5800H
Memory 32 GB
Operating system Ubuntu 20.04 LTS
GPU Nvidia RTX 3070 Mobile
GPU driver nvidia-driver-535 (proprietary)
Python 3.8.5
CUDA 11
ROS Noetic

Table 4.4: PC specifications

27

4.3 Configuration
This section highlights configuration options that are relevant or changed from their default
values. They are already configured in the GitHub repository.

NoMaD related configuration:

• RealSense camera was launched with default options except
”initial reset:=true enable depth:=false”.

• NoMaD observation frame rate 4 Hz. This sets how often NoMaD
accepts camera inputs and scales the length of the output path.

• Max angular velocity 0.4 rad/s.

• Max velocity 0.2 m/s or 0.4 m/s.

Local planner related configuration:

• Max angular velocity 0.4 rad/s.

• Max velocity 0.2 m/s or 0.5 m/s.

• Escape velocity -0.5 m/s.

• Costmap inflation radius: 0.2 m.

• DWA enabled.

4.4 Baseline Testing and Benchmarking
Two stages of testing were required to first prove that the whole setup is working correctly
with baseline testing and then actually measure how well both architectures could navigate the
environments with benchmarking. As this work also aimed to see if velocity had an effect on
the performance of both NoMaD and the new integrated solution, the main tests were conducted
at two different maximum velocities - for NoMaD 0.2 m/s (default speed) and 0.4 m/s; for the
new solution 0.2 m/s and 0.5 m/s (default speed of the local planner). The NoMaD baseline
tests were done using the faster speed. 30 runs were conducted for each test and for each speed,
so 300 runs in total, and the only metric that was measured was the success rate - whether the
robot could reach the goal without collisions. Cases where the robot had not collided yet, but
was seemingly stuck, e.g. driving in a circle multiple times, were counted as a failure. The data
was recorded in Google Sheets, and after all the runs were done, the average of the 30 results
for each environment and speed combination was considered to be their success rate.

28

4.5 Testing Environments
Ideally, this thesis would have used actual BARN environments. However, they were too large
to fit into the available room at the University of Tartu Delta Centre, and setting up the required
number of obstacles would have been quite expensive. Therefore smaller environments had to
be designed. Since the floor of the room was made from 60 × 60 cm tiles, they were used as a
grid to place the obstacles, and since the room contained obstacles which could not be removed,
they were incorporated into the designs of the environments. The obstacles were made from
40 × 40 × 60 cm cardboard boxes, 20 of them were sourced from PAKENDIKESKUS AS for
around 60 EUR, and nine 11.5× 74.5 cm cardboard tubes, which were available at the univer-
sity. The layout designs are in Appendix A.

In total four environments were designed - two for baseline testing and two for the actual bench-
marking. Baseline layout 1 (see Figure 7.1) was meant to be as simple as possible and form the
general structure for all the other environments. It can be described as a wide corridor or a small
room, where there are no obstacles besides bounding walls and the goal lies directly ahead from
the start point. This layout was designed to simulate an obstacle-free room to see if the whole
setup was working correctly and that NoMaD could actually direct the robot to the goal. All
other test layouts were based on the general design of this one but with increased difficulty.

Baseline layout 2 (see Figure 7.2) is similar to baseline test 1, but it is much narrower - about 3
widths of the robot, and the goal is again directly ahead from the starting position. This layout
was meant to imitate one of NoMaD’s demonstration videos, where it drives in narrow corri-
dors.

The benchmarking layout 1 took baseline layout 1 and a single cluster of obstacles obstructing
the path to the goal (see Figure 7.3). This layout aimed to be relatively simple to navigate,
with multiple paths to the goal. The goal was still straight ahead from the starting position but
obscured by the obstacles. All the spaces between the obstacles were wide enough for the robot
to move through.

The benchmarking layout 2 was designed to pose a greater challenge, thus having a larger
amount and wider distribution of obstacles (see Figure 7.4). The start and goal positions re-
mained the same but with even more obstacles in the way.

29

Figure 4.6: Pictures of benchmarking layout 1 (top) and 2 (bottom).

30

4.5.1 Validation Procedure
This procedure is the same for both baseline tests and benchmark tests.

1. Start camera and LiDAR nodes.

2. Make a topological map with the scripts from NoMaD.

3. Place the robot in the starting square (indicated as the arrow in the environment layouts)
in the correct orientation.

4. Start ROS Navigation.

5. Start NoMaD.

6. Robot starts driving.

7. Robot reaches goal, collides with an obstacle, or fails to reach the goal.

8. Stop NoMaD and Navigation.

9. Record result.

10. Go to 3 unless finished.

31

5 Results

All the data gathered in testing is available in Appendix B.

5.1 Results of baseline tests
Table 5.1 shows the success rate of NoMaD in the baseline tests. With the pre-trained model
and a maximum velocity of 0.4 m/s, NoMaD achieved a success rate of 96.7%, meaning it only
failed 1 run out of 30 in baseline test 1. In baseline test 2 with the same model and velocity,
NoMaD failed 7 times out of 30 leading to an average success rate of 76.7%.

Table 5.1: Averaged results of the baseline tests.
Success rate Baseline 1 Baseline 2
NoMaD @ 0.4m/s 96.7% 76.7%

5.2 Results of benchmarking tests
Table 5.2 shows the average success rate of NoMaD and the NoMaD as a global planner solution
in benchmarking tests 1 and 2. Both NoMaD and NoMaD as a global planner used the same
pre-trained model. First, the NoMaD model reached a 53.3% success rate by succeeding in 16
runs out of 30 in test 1 and 26.7% in the more complex test 2 with 0.2 m/s maximum velocity.
With the faster velocity, the results were worse at 23.3% and 3.3% (only 1 successful run out of
30).

NoMaD as a planner was successful 86.7% of the time (26 out of 30) at the lower maximum
velocity in both environments. With higher maximum velocities, the success rates were 83.3%
and 80.0% respectively.

Table 5.2: Benchmarking results.
Success rate Benchmark 1 Benchmark 2
NoMaD @ 0.2m/s 53.3% 26.7%
NoMaD @ 0.4m/s 23.3% 3.3%
Planner @ 0.2m/s 86.7% 86.7%
Planner @ 0.5m/s 83.3% 80.0%

32

6 Discussion

This chapter will first discuss the limitations of the work done in this thesis, what was done to
compensate for them, and then analyze the results.

6.1 Limitations
• The camera FOV of 69 degrees was too narrow according to issue #19 in the NoMaD

GitHub [29], which suggested a 180-degree FOV camera.

• The camera could see over the boxes, meaning that the obstacles were not full-height
walls. This could influence the path NoMaD generates.

• The camera was unstabilized. This could cause blurry images when the robot is acceler-
ating.

Due to the camera limitations, the scoring of NoMaD by itself was made more lenient. For
example, if an obstacle was out of view of the camera and the robot turned into it, it was not
considered a collision (see Figure 6.1 for an example).

Figure 6.1: Example sketch of a situation where a collision would not be considered a failure.
The black rectangle is the robot, the circle is an obstacle, the orange arrow designates the
movement direction, and the grey triangle is the field of view of the camera (not to scale).

33

6.2 Analysis
The baseline tests set out to prove that NoMaD was deployed on the robot successfully, that
the setup could achieve similar results to what the authors of NoMaD reported, and that the
pre-trained model worked in the testing environment.

Both Baseline tests had high success rates (96.7% and 76.7%), which were comparable to what
was presented by Sridhar et al. (90%) [7]. With these results, it can be said that the whole
setup was working correctly and that the pre-trained model was indeed suitable for use in the
benchmarking tests.

In the benchmarking tests, NoMaD failed to achieve such a high success rate. Visual obser-
vations seemed to indicate that the poor performance was because of the PD controller. For
example, if the robot was too close to an obstacle it sometimes could not turn fast enough and
had no recovery behaviours like reversing or turning in place. Increasing the maximum velocity
significantly reduced the performance resulting in only one successful run in the more complex
layout compared to eight successful runs at the lower speed.

Using NoMaD as a global planner produced consistent results with around 80% success rate in
every benchmarking test. This was an increase of 30% to 60% compared to NoMaD alone and
close to the 90% presented by Sridhar et al. Additionally, there was no performance degradation
with higher velocity. There were zero collisions recorded, which was to be expected because
the local planner actively avoided running into obstacles by overriding any goal pose generated
by NoMaD. Still, the success rate was not 100%. The main failure mode was getting stuck in a
situation where NoMaD says to go forward, but the local planner considers the path too narrow.
This problem could possibly be alleviated by optimizing the parameters of the costmap and the
local planner. Another common failure mode was the inability to commit to a path, so the robot
drove around in a circle. Fixing this could possibly require higher-level logic to recognize this
issue and then initialise some kind of a special behaviour, like circling the other way or posi-
tioning itself more head-on when entering narrow paths.

When comparing the two solutions, the benefit of integrating NoMaD with the classical robot
navigation approach over just pure NoMaD is that it pretty much guarantees that the robot will
not collide with obstacles. LiDARs also have a much wider FOV (270 degrees) than any nor-
mal camera, meaning that the robot is much more aware of its surroundings, compared to just
relying on a camera. The requirement of a LiDAR is a disadvantage as well because they can
be expensive (e.g. the Sick TIM551 costs around 3000 EUR [36]) and they require additional
power, processing, and parameter tuning. A drawback of relying only on NoMaD would be that
it cannot

34

7 Conclusion & Future Work

As reported by its authors, NoMaD, a recently presented state-of-the-art mobile robot navigation
architecture, outperformed the previous state-of-the-art (Subgoal Diffusion) by 25%. Inspired
by the success of NoMaD, this thesis set out to achieve three goals: benchmarking NoMaD in a
standardized setting, developing a new solution by integrating NoMaD into the classical robot
navigation approach as a global planner, and then benchmarking that new solution. The detri-
mental effect of velocity was also investigated by running the benchmarking tests at a lower and
a higher velocity.

While it was not possible to use actual standardized testing environments like BARN, it was
used as a guide to design similar environments that could be set up in the room that the author
had access to. Two environments were designed for baseline testing and two for benchmarking.

Baseline testing of NoMaD showed that the robot was set up correctly and that the pre-trained
model was usable in the testing environment by attaining a similar success rate to Sridhar et
al. - 90%. Further testing in more complex obstacle layouts had a lower success rate, which
deteriorated greatly when maximum velocity was increased. Although there was a definite lim-
itation on the hardware side due to the narrow FOV of the camera, it was mitigated by more
lenient grading, but head-on collisions were still head-on collisions. Visual observations by the
author suggested that the main cause of the failures was the simplicity of its PD controller. The
controller could sometimes not react fast enough and lacked recovery behaviours like reversing
or turning in place.

The new solution using NoMaD as a planner was implemented successfully. In testing it reli-
ably achieved around 80% success rate and recorded no collisions. Compared to the NoMaD
benchmarks this is a 30% to 60% increase but still lower than the 90% presented by Sridhar
et al. It also suffered no degradation when speed was increased, because the local planner was
better at slowing down near obstacles. The main drawback of this solution is the need for a
LiDAR, which comes with its own extra cost and processing requirements.

There are many ways the planner solution could be improved further. Removing the camera
limitation by using a wider FOV camera should be the first to be addressed. On the software
side, the path-processing ROS node could probably be removed by moving the functionality
to either NoMaD or the global planner plugin. While the current design is not detrimental to
performance, this would simplify it. Adjusting the parameters of the local planner and costmap
would most likely provide the largest benefit. Implementing receding-horizon control from Dif-
fusion Policy could also provide some benefit. This would mean using not the last waypoint of
the sequence generated by NoMaD but one from the middle of the sequence.

35

Acknowledgements

I would like to thank:

my supervisors, Arun Kumar Singh and Karl Kruusamäe, for their guidance,

Fatemeh Rastgar, Houman Masnavi, Vishal Mandadi, and Kallol Saha for answering the ques-
tions I had and for their help,

my colleagues at Evikontroll Systems for their support and understanding attitude,

Grammarly for pointing out missing commas,

the country of Brazil for making good coffee,

and Larissa for her unwavering love and encouragement.

36

Bibliography

[1] Ardi Tampuu et al. “A Survey of End-to-End Driving: Architectures and Training Meth-
ods”. In: IEEE Transactions on Neural Networks and Learning Systems 33.4 (2022),
pp. 1364–1384. DOI: 10.1109/TNNLS.2020.3043505.

[2] Nantawat Pinkam, François Bonnet, and Nak Young Chong. “Robot collaboration in
warehouse”. In: 2016 16th International Conference on Control, Automation and Sys-
tems (ICCAS). 2016, pp. 269–272. DOI: 10.1109/ICCAS.2016.7832331.

[3] David Hambling. “Ukraine Prepares To Roll Out An Army Of Ground Robots”. In:
Forbes (Mar. 14, 2024). Accessed: 2024-04-09. URL: https://www.forbes.com/
sites/davidhambling/2024/03/14/ukraine-prepares-to-roll-
out-an-army-of-ground-robots/.

[4] Muhammad Diginsa, Noraimi Shafie, and Nazir Yusuf. “Review: Issues and Challenges
of Simultaneous Localization and Mapping (SLAM) Technology in Autonomous Robot”.
In: International Journal of Innovative Computing 13 (Nov. 2023), pp. 59–63. DOI: 10.
11113/ijic.v13n2.408.

[5] S.M. LaValle. “Motion Planning: The Essentials”. In: Robotics & Automation Magazine,
IEEE 18 (Mar. 2011), pp. 79–89. DOI: 10.1109/MRA.2011.940276.

[6] Cheng Chi et al. “Diffusion Policy: Visuomotor Policy Learning via Action Diffusion”.
In: Proceedings of Robotics: Science and Systems (RSS). 2023.

[7] Ajay Sridhar et al. “NoMaD: Goal Masked Diffusion Policies for Navigation and Ex-
ploration”. In: arXiv pre-print (2023). URL: https://arxiv.org/abs/2310.
07896.

[8] Ajay Sridhar et al. NoMaD: Goal Masked Diffusion Policies for Navigation and Explo-
ration. https://general- navigation- models.github.io/nomad/
index.html. Accessed: 2024-05-20. 2023.

[9] Ardi Tampuu, Kristjan Roosild, and Ilmar Uduste. “The Effects of Speed and Delays
on Test-Time Performance of End-to-End Self-Driving”. In: Sensors 24.6 (2024). ISSN:
1424-8220. DOI: 10.3390/s24061963. URL: https://www.mdpi.com/
1424-8220/24/6/1963.

[10] Morgan Quigley. “ROS: an open-source Robot Operating System”. In: IEEE Interna-
tional Conference on Robotics and Automation. 2009. URL: https://api.semanticscholar.
org/CorpusID:6324125.

[11] endoflife.date ROS. https://endoflife.date/ros. Accessed: 2024-05-15.

[12] Eitan Marder-Eppstein. ROS Navigation. http://wiki.ros.org/navigation.
Accessed: 2024-04-04.

[13] ROS Navigation Tutorials. http://wiki.ros.org/navigation/Tutorials.
Accessed: 2024-04-22.

37

https://doi.org/10.1109/TNNLS.2020.3043505
https://doi.org/10.1109/ICCAS.2016.7832331
https://www.forbes.com/sites/davidhambling/2024/03/14/ukraine-prepares-to-roll-out-an-army-of-ground-robots/
https://www.forbes.com/sites/davidhambling/2024/03/14/ukraine-prepares-to-roll-out-an-army-of-ground-robots/
https://www.forbes.com/sites/davidhambling/2024/03/14/ukraine-prepares-to-roll-out-an-army-of-ground-robots/
https://doi.org/10.11113/ijic.v13n2.408
https://doi.org/10.11113/ijic.v13n2.408
https://doi.org/10.1109/MRA.2011.940276
https://arxiv.org/abs/2310.07896
https://arxiv.org/abs/2310.07896
https://general-navigation-models.github.io/nomad/index.html
https://general-navigation-models.github.io/nomad/index.html
https://doi.org/10.3390/s24061963
https://www.mdpi.com/1424-8220/24/6/1963
https://www.mdpi.com/1424-8220/24/6/1963
https://api.semanticscholar.org/CorpusID:6324125
https://api.semanticscholar.org/CorpusID:6324125
https://endoflife.date/ros
http://wiki.ros.org/navigation
http://wiki.ros.org/navigation/Tutorials

[14] Tully Foote. “tf: The transform library”. In: Technologies for Practical Robot Applica-
tions (TePRA), 2013 IEEE International Conference on. Open-Source Software work-
shop. Apr. 2013, pp. 1–6. DOI: 10.1109/TePRA.2013.6556373.

[15] ROS URDF. http://wiki.ros.org/urdf. Accessed: 2024-04-22.

[16] David Lu!! Global Planner. http://wiki.ros.org/global_planner. Ac-
cessed: 2024-05-15.

[17] Eitan Marder-Eppstein. DWA Local Planner. https://wiki.ros.org/dwa_
local_planner. Accessed: 2024-05-15.

[18] Jascha Sohl-Dickstein et al. Deep Unsupervised Learning using Nonequilibrium Ther-
modynamics. 2015. arXiv: 1503.03585 [cs.LG].

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising Diffusion Probabilistic Models”.
In: arXiv preprint arxiv:2006.11239 (2020).

[20] Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models.
2021. arXiv: 2102.09672 [cs.LG].

[21] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks
for Biomedical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV].

[22] Michael Janner et al. Planning with Diffusion for Flexible Behavior Synthesis. 2022.
arXiv: 2205.09991 [cs.LG].

[23] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models.
2022. arXiv: 2010.02502 [cs.LG].

[24] Ajay Mandlekar et al. What Matters in Learning from Offline Human Demonstrations for
Robot Manipulation. 2021. arXiv: 2108.03298 [cs.RO].

[25] Pete Florence et al. Implicit Behavioral Cloning. 2021. arXiv: 2109.00137 [cs.RO].

[26] Nur Muhammad Mahi Shafiullah et al. Behavior Transformers: Cloning k modes with
one stone. 2022. arXiv: 2206.11251 [cs.LG].

[27] Dhruv Shah et al. ViNT: A Foundation Model for Visual Navigation. 2023. arXiv: 2306.
14846 [cs.RO].

[28] Dhruv Shah and Sergey Levine. “ViKiNG: Vision-Based Kilometer-Scale Navigation
with Geographic Hints”. In: Robotics: Science and Systems XVIII. RSS2022. Robotics:
Science and Systems Foundation, June 2022. DOI: 10.15607/rss.2022.xviii.
019. URL: http://dx.doi.org/10.15607/RSS.2022.XVIII.019.

[29] Ajay Sridhar et al. NoMaD: Goal Masked Diffusion Policies for Navigation and Ex-
ploration. https://github.com/robodhruv/visualnav-transformer.
2023.

[30] H. Unbehauen. CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Volume II: Sys-
tem Analysis and Control: Classical Approaches-II. EOLSS Publications, 2009. ISBN:
9781848261419. URL: https://books.google.ee/books?id=RF1xDAAAQBAJ.

[31] Daniel Perille et al. Benchmarking Metric Ground Navigation. 2020. arXiv: 2008.
13315 [cs.RO].

[32] Clearpath Robotics. Clearpath Robotics Documentation ROS 1 Noetic. https : / /
docs.clearpathrobotics.com/docs/ros1noetic. Accessed: 2024-05-16.

[33] JACKAL UNMANNED GROUND VEHICLE. Clearpath. 2020.

38

https://doi.org/10.1109/TePRA.2013.6556373
http://wiki.ros.org/urdf
http://wiki.ros.org/global_planner
https://wiki.ros.org/dwa_local_planner
https://wiki.ros.org/dwa_local_planner
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2205.09991
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2108.03298
https://arxiv.org/abs/2109.00137
https://arxiv.org/abs/2206.11251
https://arxiv.org/abs/2306.14846
https://arxiv.org/abs/2306.14846
https://doi.org/10.15607/rss.2022.xviii.019
https://doi.org/10.15607/rss.2022.xviii.019
http://dx.doi.org/10.15607/RSS.2022.XVIII.019
https://github.com/robodhruv/visualnav-transformer
https://books.google.ee/books?id=RF1xDAAAQBAJ
https://arxiv.org/abs/2008.13315
https://arxiv.org/abs/2008.13315
https://docs.clearpathrobotics.com/docs/ros1noetic
https://docs.clearpathrobotics.com/docs/ros1noetic

[34] Intel® RealSenseTM Product Family D400 Series. D435i. Revision 018. Intel. Mar. 2024.

[35] LiDAR sensor. TIM551-2050001. SICK AG. Apr. 2024.

[36] TIM551 - Sick indoor and outdoor laser scanner for short-range measurement. https:
//www.generationrobots.com/en/401699-tim551-sick-indoor-
and- outdoor- laser- scanner- for- short- range- measurement.
html. Accessed: 2024-05-19. Generation Robots.

39

https://www.generationrobots.com/en/401699-tim551-sick-indoor-and-outdoor-laser-scanner-for-short-range-measurement.html
https://www.generationrobots.com/en/401699-tim551-sick-indoor-and-outdoor-laser-scanner-for-short-range-measurement.html
https://www.generationrobots.com/en/401699-tim551-sick-indoor-and-outdoor-laser-scanner-for-short-range-measurement.html
https://www.generationrobots.com/en/401699-tim551-sick-indoor-and-outdoor-laser-scanner-for-short-range-measurement.html

Appendixes

7.1 Appendix A

GOAL

Figure 7.1: Screenshot of baseline environment 1. The grid is 60× 60 cm and the obstacles are
60× 40 cm.

40

GOAL

Figure 7.2: Screenshot of baseline environment 2.

GOAL

Figure 7.3: Screenshot of benchmarking environment 1.

41

GOAL

Figure 7.4: Screenshot of benchmarking environment 2.

42

7.2 Appendix B

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Baseline 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Baseline 2 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0
NoMaD 1 slow 0 0 0 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 1 0 0
NoMaD 1 fast 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0
NoMaD 2 slow 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0
NoMaD 2 fast 0 1 0 0 0 0
NoMaD as global
planner 1 slow 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 1

NoMaD as global
planner 1 fast 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0

NoMaD as global
planner 2 slow 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1

NoMaD as global
planner 2 fast 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 1 143

Non-exclusive licence to reproduce thesis and
make thesis public

I, Robert Allik

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to reproduce,
for the purpose of preservation, including for adding to the DSpace digital archives until
the expiry of the term of copyright,

Validation of NoMaD as a Global Planner for Mobile Robots

supervised by Arun Kumar Singh, Karl Kruusamäe

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to
the public via the web environment of the University of Tartu, including via the DSpace
digital archives, under the Creative Commons licence CC BY NC ND 3.0, which allows,
by giving appropriate credit to the author, to reproduce, distribute the work and commu-
nicate it to the public, and prohibits the creation of derivative works and any commercial
use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intellec-
tual property rights or rights arising from the personal data protection legislation.

Robert Allik
20.05.2024

	Abstract/Resümee
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Objective

	Background
	Motion Planning
	Robot Operating System
	ROS Navigation

	Diffusion Probabilistic Models
	Mathematical Preliminaries
	U-net

	Diffusion Policy
	Navigation with Goal Masked Diffusion
	Benchmark for Autonomous Robot Navigation

	Requirements
	Methodology
	Software implementation
	About training the NoMaD model

	Hardware
	Clearpath Jackal
	Intel RealSense D435i Camera
	SICK TIM551 LiDAR Sensor
	Personal Computer

	Configuration
	Baseline Testing and Benchmarking
	Testing Environments
	Validation Procedure

	Results
	Results of baseline tests
	Results of benchmarking tests

	Discussion
	Limitations
	Analysis

	Conclusion & Future Work
	Appendixes
	Appendix A
	Appendix B

	Non-exclusive license

