
Tartu University

Faculty of Science and Technology

Institute of Technology

Melis Doğan

Integration of a High Speed Communications System into ESTCube-2

Master’s thesis (30 EAP)
Robotics and Computer Engineering

Supervisors:

Kristo Allaje, MSc
Viljo Allik, MSc

Tõnis Eenmäe, MSc

Tartu 2024

Resümee/Abstract

Kiire sidesüsteemi integreerimine ESTCube-2 kuupsateliiti

ESTCube-2 oli Maa-lähedasel orbiidil töötav kuupsatelliidist demonstraator, mis startis 9. ok-
toobril 2023. Satelliidi üks peamisi teaduslikke laste oli Maa vaatluskaamerad, mis olid võimelised
tootma mitme megabaidiseid pilte. Seetõttu vajas satelliit piltide edastamiseks spetsiaalset ki-
iret sidesüsteemi. Lõputöö alguses oli ESTCube’i meeskonna poolt selleks otstarbeks ostetud
S-riba raadiosaatja.

See lõputöö esitleb IQ Spacecomi HISPICO saatja integreerimist ESTCube-2 platvormiga.
See integratsioon hõlmas saatja juhtimiseks madaltaseme manussüsteemide draiverite loomist.
Seadme draiverid kirjutati C-keeles, kasutades FreeRTOS-i, STM32L4 mikrokontrolleril. Lisaks
loodi rakenduse tasemel loogika piltide vastuvõtmiseks kaamerast. Vastuvõetud pildid jagati
RF-kaadriteks ja kaadritele lisati edasisuunas veaparandus (ingl. Forward Error Correction).
See funktsioon on HISPICO-s olemas, kuid ESTCube-i meeskonnale ei antud piisavat ligipääsu
signaalimuunduri dokumentatsioonile. Maajaama jaoks loodi LimeSDR Mini ja GNURadio
Companion-i abil raadioside vastuvõtuahel. Sideahela testimiseks edastati 318 HISPICO kaadriga
76,8 kB suurune pilt ja see võeti edukalt vastu.

CERCS: T120 Süsteemitehnoloogia, arvutitehnoloogia; T320 Kosmosetehnoloogia

Märksõnad: kuupsatelliit, raadioside, S-riba

2

Integration of a High Speed Communications System into ESTCube-2

ESTCube-2 was a low Earth orbit CubeSat demonstrator that was launched on 9th of October,
2023. One of the main payloads of the satellite was the Earth observation payload, which was
capable of producing images of tens of megabytes. Thus the spacecraft required a dedicated
high speed communications system to downlink the images. At the beginning of the thesis, an
S-band transmitter had been bought by the ESTCube team for this purpose.

This thesis presents the integration of the HISPICO transmitter from IQ Spacecom into the
ESTCube-2 platform. This integration involved writing low-level embedded device drivers to
control the transmitter. The device drivers were written in C, using FreeRTOS on an STM32L4
microcontroller. Furthermore, the application level logic was created for the reception of images
from the imaging payload, dividing the received images into RF frames, and adding forward
error correction to the frames - a functionality that exists on HISPICO, but the ESTCube team
were not given access to. For the ground station, a reception pipeline using a LimeSDR Mini
and GNURadio Companion was created. To test the chain of communication, an image of 76.8
kB was transmitted over 318 HISPICO frames and was successfully received.

CERCS: T120 Systems engineering, computer technology; T320 Space technology.

Keywords: CubeSat, radio communications, S-band

3

Contents

Resümee/Abstract 2

List of Figures 6

List of Tables 7

Acronyms 8

1 Introduction 10

2 High Speed S-Band Communications in CubeSats 11
2.1 Aalto-1 . 11
2.2 AMICal Sat . 12
2.3 PICASSO . 13
2.4 Summary . 14

3 ESTCube-2 High Speed Communication Subsystem 15
3.1 HISPICO Transmitter . 17
3.2 Patch Antenna . 19
3.3 High Speed Communication Breakout Board 20
3.4 High Speed Communication Subsystem at the Start of the Thesis 20

4 Thesis Scope 21

5 Firmware Development 22
5.1 Device Driver . 22

5.1.1 Initialization and Power Up . 22
5.1.2 Telemetry . 24
5.1.3 Transmission . 26

5.2 High Level Transmission Logic . 28
5.2.1 Payload Handler . 29
5.2.2 Transmission Daemon . 30

4

6 Reception, Demodulation, Decoding 34
6.1 Preamble . 37
6.2 Header . 37
6.3 Payload . 38

7 Testing 40

8 Conclusion 43

Bibliography 45

Non-exclusive license 48

5

List of Figures

2.1 High level overview of the Aalto-1 S-band communications system. 12
2.2 High level overview of the AMICal Sat S-band communications system. 13
2.3 Possible high level overview of the PICASSO S-band communications system

using an STX transmitter. The exact details of the framing are unknown. 14

3.1 Block diagram of the main hardware components of the HSCOM on board
ESTCube-2. 16

3.2 The HISPICO transmitter. The antenna cable of the engineering model of the
HISPICO transmitter was replaced with a sturdier solution, as the original cable
frayed during the development of the system. 17

3.3 Comparison of the SPI protocols used in HISPICO. The difference in the Chip
Select line is highlighted in red. 18

3.4 The patch antenna used for HSCOM of ESTCube-2. [24] 19
3.5 The HSCOM breakout board. 20

5.1 Flowchart of the HISPICO transmitter turning on sequence. 23
5.2 EXT ON and READY signals during bootup. The time at which the READY

signal might go low is highlighted in yellow. 24
5.3 An oscilloscope screenshot received from the manufacturers of HISPICO, show-

ing the modified timings of SPI lines that HISPICO accepts. Note that there are
9 clock pulses per byte, with the Chip Select pulse before the first bit of the byte. 26

5.4 Inspecting the SPI MOSI line with an oscilloscope revealed the logic LOW
signal never going below 1.45 V. 27

5.5 Comparison of SPI TI mode and SPI NSSP mode. The differences in Clock and
Chip Select lines are highlighted in red. 28

5.6 Block diagram of the high level transmission logic of ESTCube-2 HSCOM. . . 29
5.7 Flowchart of the high level payload handler logic of ESTCube-2 HSCOM. . . . 30
5.8 Flowchart of the high level transmission daemon logic of ESTCube-2 HSCOM. 33

6

6.1 Constellation diagram of a; (a) BPSK modulated signal. The data points are
divided between 0° and 180°. (b) QPSK modulated signal. The data points are
divided between 0°, 90°, 180° and 270°. 35

6.2 The GNURadio Companion Flowchart for Reception of ESTCube-2 HSCOM. . 36
6.3 The GNURadio Companion Flowchart for decoding of FEC in ESTCube-2

HSCOM. 39

7.1 Comparison of Forward Error Correction algorithms of the ESTCube-2 HSCOM. 41

List of Tables

2.1 Comparison of the missions examined in this section. 14

3.1 Possible forward error correction schemes available onboard HISPICO and their
respective firmware slots. The ”FEC Identifier” column is used to differenti-
ate between the FEC rates by assigning them an identifier and is used in the
HISPICO frame headers. See 6.1. 19

5.1 Information contained within the telemetry block of HISPICO. 25

6.1 Data contained within the header bits of a HISPICO frame. 38
6.2 The DQPSK constellation used in HISPICO. 39

7

Acronyms

AWGN Additive White Gaussian Noise. A noise model used to simulate random noise that
may occur during radio transmission. 40

BER Bit Error Rate. The rate of bit errors to the correctly received bits. 10, 40, 42

BPSK Binary Phase Shift Keying. A type of Phase Shift Keying (PSK) with only two phases,
separated by 180�. 8, 10, 34, 37

CCSDS Consultative Committee for Space Data Systems. A multi-national committee creating
standards for space data and communication systems. 13, 14, 31, 39, 40

COBS Consistent Overhead Byte Stuffing. A computationally inexpensive, highly predictable
algorithm for packet framing with consistent overhead regardless of packet size. 29

COTS Commercial Off-The-Shelf. A ready-made product available for purchase and use. 14,
15, 21

CRC Cyclic Redundancy Check. A technique for error detection in data. 13, 25, 26, 38

DBPSK Differential Binary Phase Shift Keying. A type of Binary Phase Shift Keying (BPSK)
with bits modulated by phase difference, as opposed to absolute phase. 34, 37

DQPSK Differential Quadrature Phase Shift Keying. A type of Quadrature Phase Shift Keying
(QPSK) with bits modulated by phase difference, as opposed to absolute phase. 15, 34,
38

FEC Forward Error Correction. A technique for error detection and correction in transmitted
data. 12–14, 18, 19, 25, 31, 32, 37–43

GFSK Gaussian Frequency Shift Keying. A type of Frequency Shift Keying with a Gaussian
filter applied before modulation. 12, 14, 15

GMSK Gaussian Minimum Shift Keying. A type of Frequency Shift Keying with continuous
phase, modulation index of 0.5i and a Gaussian filter applied before modulation. 12, 14

8

GS Ground Station. A radio station on Earth with capabilities for receiving/transmitting data
from/to spacecrafts. 10, 11, 14, 16, 21, 26, 43

HAL Hardware Abstraction Layer. A software layer allowing convenient access and use of the
hardware functionality. 22, 24, 26

HSCOM High-Speed Communications Subsystem. An additional communications subsystem
that was added to ESTCube-2 for downlinking payload data. 10, 16, 20–24, 26–30, 32,
40, 42

ICP Internal Communication Protocol. A proprietary communication protocol for inter-subsystem
communications, developed by the ESTCube team. 16, 28, 30, 40

MCU Microcontroller Unit. A small computing unit as a chip. 12, 15, 16, 20–24, 27, 29–31,
40, 42

OBC On-Board Computer. The central processing unit of a spacecraft. 12

PDU Protocol Data Unit. A special polymorphic data type specific to GNURadio consisting of
a dictionary and a uniform vector. 37–39

PSK Phase Shift Keying. A modulation scheme where bits are encoded as the phases of the
signal. 8–10

QPSK Quadrature Phase Shift Keying. A type of PSK with four phases separated by 90�. 8,
10, 13, 14, 34, 37

RF Radio Frequency. Electromagnetic waves with frequency in the 20 kHz to 300 GHz band.
10, 11, 34

SNR Signal-to-Noise Ratio. The ratio of received signal to the noise present in the channel,
used for measuring signal quality. Measured in decibels (dB). 10, 40, 41

SPI Serial Peripheral Interface. A widely used protocol for synchronous communication over
small distances, commonly used in embedded devices. 17, 18, 26–28, 42

UART Universal Asynchronous Receiver / Transmitter. A peripheral device that enables asyn-
chronous serial communication. 17, 24, 25, 27, 28

UHF Ultra High Frequency. The RF band spanning from 300 MHz to 1 GHz. 10, 11, 15

VHF Very High Frequency. The RF band spanning from 30 MHz to 300 MHz. 10, 11

9

1 Introduction

CubeSats are a subset of nanosatellites, with a standard unit of ”U” determining their weight and
size. One ”U” is defined as a 10 cm cube weighing up to 2 kilograms, with each CubeSat ranging
between 1U to 12U in size. [1] The small size and standard dimensions of CubeSats enable
quicker and cheaper development and more launch opportunities, important factors sought after
by almost all student teams.

Generally, satellite communications use Radio Frequency (RF) within 30 MHz to 60 GHz to
communicate with Earth or other satellites. Smaller satellites like CubeSats normally use the
lower end of the frequency range, the Very High Frequency (VHF) and Ultra High Frequency
(UHF) bands, which have been widely used and thus offer a higher technical maturity, and less
attenuation due to obstacles and weather conditions. However, widespread usage also leads to
crowding on these frequency ranges, as well as the lower bandwidth resulting in lower data
rates. For missions requiring a higher data rate, higher frequency bands such as S or X-band are
used. [2]

The choice of modulation and channel coding also has a drastic effect on the achievable data rate
without affecting the satellites’ size, weight, and energy consumption limitations. Modulation
schemes such as PSK allow modulating multiple bits into one symbol - in comparison to BPSK
which modulates one bit per symbol, QPSK uses the same bandwidth for twice the data rate by
modulating two bits per symbol. Use of channel coding techniques allows trading the data rate
for error detection and correction, achieving low Bit Error Rate (BER) at lower Signal-to-Noise
Ratio (SNR)s. [3]

This master’s thesis focuses on developing the High-Speed Communications Subystem (HSCOM)
firmware and reception for ESTCube-2, a 3U CubeSat by the students of University of Tartu
and the Estonian Student Satellite Foundation. The aim of this work is to interface HSCOM
with the rest of the satellite, implement a high-level logic for receiving data from the payloads
onboard, transmission of files and their reception at the Ground Station (GS), including demod-
ulation and decoding of the packets. This thesis is structured to give the reader an overview of
similar communication systems used in CubeSats in chapter 2, outlines previous work done by
other team members in chapter 3, and the work done during the thesis in chapters 5, 6, 7 and
8.

10

2 High Speed S-Band Communications in
CubeSats

The VHF and UHF bands are widely used for satellite telemetry and beacons due to their low
complexity and signal attenuation due to obstacles and weather conditions. This reliability is
useful in transmitting important data, such as the telemetry and control of a satellite. However,
for missions producing large payload data, using the same transceivers to downlink this data as
for command and telemetry can cause congestion on this communication link. Furthermore, due
to the congestion on the VHF and UHF bands, acquiring a license is difficult - and the success-
fully acquired licenses are for very narrow bandwidths. In CubeSat missions with instruments
and payloads that produce a large amount of data requiring a high data rate downlinking, a
secondary transmitter working in higher RF bands is needed.

In this section, the reader is given a brief overview of other CubeSat missions that have used a
secondary S-band communication system for transmitting large amounts of payload data.

2.1 Aalto-1

Aalto-1 is a 3U CubeSat created by the students at Aalto University. The work on the satellite
began in 2010, and it was originally planned to be launched by a Falcon 9 rocket in 2015. [4]
However, due to multiple delays caused by the rocket, it was postponed until the successful
launch aboard an Indian Polar Satellite Launch Vehicle on June 23rd, 2017. [5] The Aalto-1
carried three different scientific payloads; a spectral imager, a radiation monitor, and a plasma
brake [6].

Of these payloads, the spectral Earth observation imager produced spectral images with sizes up
to 10 MB, with possibility of compressing the images - down to 3.7 Megabytes in one instance.
Thus the satellite required a high data throughput link for transmitting the spectral images down
to the GS. [8] [9]

For the high speed communication system on Aalto-1, the HISPICO from IQ Technologies was
considered as a possible high speed transmitter candidate. However, a custom-built transmitter
solution was preferred because it offered more freedom and educational value when designing

11

the subsystem. [9]

The custom S-band communication system on Aalto-1 is based on the TI CC2500 transceiver
[10] controlled by the Texas Instruments MSP430F2274 Microcontroller Unit (MCU) [11] due
to their capabilities as well as space heritage. [9] The transceiver offers multiple modulations,
of which Gaussian Minimum Shift Keying (GMSK) was chosen, and operates on 2.4 GHz with
a data rate of 500 kBaud. The On-Board Computer (OBC) of the Aalto-1 controls the func-
tionality of the S-band subsystem, which is powered off until a command to transmit images is
uplinked via the primary communication system. The full architecture of the S-band communi-
cations system can be seen in Fig. 2.1.

Figure 2.1: High level overview of the Aalto-1 S-band communications system.

The downlinked packet includes a preamble, followed by 256 byte payload, and supports op-
tional Forward Error Correction (FEC) of rate n = 1/2 and constraint length k = 3. [12]

2.2 AMICal Sat

AMICal Sat is a 2U CubeSat developed by the Grenoble University Space Centre in France
and the Moscow State University, Institute of Nuclear Physics in Russia. Launched on Septem-
ber 3rd, 2020, AMICal Sat carries a compact imager for capturing the Northern and Southern
Lights. The imager uses the Onyx EV76C664 sensor [13], which produces 1408×1024 8-bit
pixels, resulting in ⇠1.4 MB files. These images are then compressed down to ⇠27.9 kB, and
downlinked. While the members of the project developed the payload itself, the satellite bus,
including the communications subsystem, was purchased from SatRevolution, a private Polish
company that specializes in nanosatellites. [14–17]

The communications subsystem contains an S-band transmitter based on a Nordic Semiconduc-
tor nRF24L01+ transceiver chip. Transmitting at 2.4 GHz with a 1 MBaud symbol rate using
Gaussian Frequency Shift Keying (GFSK), the image data is encapsulated in a packet using the
proprietary ShockBurst packet format, as seen in Fig. 2.2. [17]

12

Figure 2.2: High level overview of the AMICal Sat S-band communications system.

The satellite uses 5 byte address field, 32 byte payload field, and 2 byte Cyclic Redundancy
Check (CRC) field. Each image is sent with a 512 byte header, and the size of the image can
differ depending on the compression applied. The contents of the 32 byte payload field depend
on whether FEC is used:

• If no FEC is used, the payload field uses 2 bytes for the frame counter, and the remaining
30 bytes are used for the payload data.

• If FEC is used, the payload field uses 4 bytes for the frame counter, 22 bytes for the
payload data, and 22 bytes for the Reed-Solomon parity bits. This is likely an error in the
datasheet [16], as the total amount of payload data exceeds 32 bytes. The authors were
contacted, but no response was received.

2.3 PICASSO

PICASSO is a 3U CubeSat mission initiated by the Belgian Institute for Space Aeronomy in
partnership with VTT Technical Research Center of Finland, Centre Spatial de Liège of Bel-
gium, and Clyde-Space Ltd. from the United Kingdom. PICASSO is administrated by the
European Space Agency. Launched on September 3rd, 2020, PICASSO aims to demonstrate
the capacity of small satellites within the context of high-cost and important science experi-
ments. It carries a miniaturized hyperspectral imager to measure vertical profiles of ozone, and
a Sweeping Langmuir Probe to measure electron density. The hyperspectral imager, similar to
the one used in Aalto-1, is the main source of large payload data. [18]

The S-band communication system uses STX by Clyde-Space and offers 1 MBaud symbol rate
using QPSK modulation at 2.2 - 2.45 GHz. The STX offers rate n = 1/2 convolutional encod-
ing with a constraint length of k = 7, differential encoding, and scrambling using the IESS-308
standard. The STX does not offer any framing itself, and details of the frame structure are not
available for public, however they are mentioned to be ”modified Consultative Committee for
Space Data Systems (CCSDS) packets”. The STX works in two modes: the synchronization
mode and the data mode. During the synchronization mode, the transmitter continuously trans-

13

Figure 2.3: Possible high level overview of the PICASSO S-band communications system using
an STX transmitter. The exact details of the framing are unknown.

mits the CCSDS 32 bit syncword 0x1ACFFC1D. This mode can be used to synchronize the
receiver at the GS before the packet transmission in data mode can begin. [18, 19]

2.4 Summary

The missions examined in this section have been chosen due to their variety in components and
techniques, despite using similar center frequencies and their resulting baud rates.

For Aalto-1 S-band system, the HISPICO was considered for use as a Commercial Off-The-
Shelf (COTS) product, but a system created in-house was preferred due to its educational value
and freedom in building the system. This is a direct inverse of the ESTCube-2, as HISPICO
was chosen after the planned bespoke system could not be created due to budgeting constraints,
explained further in Section 3. AMICal Sat and PICASSO both use COTS products, and
detailed implementation of the S-band systems of these missions are not available for pub-
lic. [9, 17, 18]

All missions examined in this chapter use a form of FEC. Aalto-1 uses the FEC offered by the
transceiver chip used in the system, whereas AMICal Sat implements their own. Both missions
offer FEC optionally, and main configuration is transmission without FEC. [12, 17]

Satellite Transmitter Frequency Modulation FEC Baud
Rate

Aalto-1 CC2500 2.4 GHz GMSK Convolutional Code 0.5
MBaud

AMICalSat nRF24L01+ 2.4 GHz GFSK Reed-Solomon 1
MBaud

PICASSO STX 2.2 - 2.45 GHz QPSK Convolutional Code 1
MBaud

Table 2.1: Comparison of the missions examined in this section.

14

3 ESTCube-2 High Speed Communication
Subsystem

ESTCube-2 is a 3U CubeSat built by the Estonian Student Satellite Foundation and the students
of University of Tartu. The satellite carries three main payloads on board;

• Two earth observation cameras, to observe the vegetation of the Earth.

• 15 anti-corrosion materials attached to the satellite’s exterior, to be analysed for their
reaction when exposed to atomic oxygen.

• Plasma brake to de-orbit ESTCube-2 in what is to be the first successful in-orbit demon-
stration.

For the operation of the satellite and downlinking of telemetry, the satellite carries a UHF
transceiver for telemetry and telecommands, operating at 435.8 MHz GFSK, with a baud rate
of 9600. However, the Earth observation cameras were predicted to produce a large amount of
images, each at least 4 MB in size. Using the primary UHF communication system, a single
image can be downloaded in 45 days, assuming 15 passes per day, with 8 minutes per pass, and
including the primary communications subsystem protocol overhead. Due to this, a high-speed
communication subsystem was added to the ESTCube-2 to downlink the images produced by
the Earth observation cameras.

Initially, this subsystem was planned to be based on a C-band transmitter created by the students
of the Ventspils University in Latvia, and a first mock-up was created. However, the funding for
the project was cut, and no further developments were made. Due to time constraints, another
bespoke solution could not be built by the ESTCube-2 team, and instead was replaced by a
COTS S-band transmitter, the HISPICO from IQ Spacecom. [20] The HISPICO is an S-band
radio transmitter, operating in 2.1 - 2.5 GHz with Differential Quadrature Phase Shift Keying
(DQPSK) and offering user data rates of up to 1.3 Mbps. Due to its small form factor of less than
0.1U, the HISPICO could be placed into the slot that was intially allocated for the transmitter
from Ventspils. A dedicated STM32L462CE MCU [21] was added to control the HISPICO
transmitter, in addition to storing and parsing its periodic telemetry. The HISPICO will be
explored in detail in section 3.1, while the patch antenna will be explored in section 3.2.

15

Figure 3.1: Block diagram of the main hardware components of the HSCOM on board
ESTCube-2.

The HSCOM’s main task is to transmit data received through the payload bus, which is con-
nected to every payload aboard the satellite. Through the payload bus, the payloads can ex-
change data with the on-board computer and with HSCOM for transmitting their data down
to the GS. The Internal Communication Protocol (ICP) bus is used to communicate with other
subsystems in the satellite. This includes the transmission of housekeeping data that the COM
subsystem periodically requests, and enables the possibility of transmitting ICP response and
data packets through the HISPICO S-band communication link. A general overview of some
of the hardware components and connections of the HSCOM subsystem can be seen in Fig.
3.1.

The MCU and the transmitter have different power requirements and thus are supplied by two
different power lines. The MCU controls the supply of power to the transmitter through the
ENABLE line, allowing the satellite to deactivate the transmitter when not in use. After the
transmitter is powered, the MCU can then turn on the transmitter by sending a logic high on
the ENABLE line. The exact sequence of communications required to turn on the transmitter
will be covered in chapter 5.

After activation, the transmitter sends a telemetry block to the MCU over the serial interface
every 5 seconds. The MCU can start forwarding data from the payload bus to the transmitter at
any time. For forwarding the data to the transmitter, both the CLK and FRAME SYNC lines are

16

used in addition to the main Serial Peripheral Interface (SPI) line through which the data flows.
The exact protocol used for this transmission will be covered in chapter 5. The transmitter uses
a custom made patch antenna, covered in chapter 3.2, to transmit the data.

3.1 HISPICO Transmitter

The HISPICO is an S-band transmitter with a small form factor of less than 0.1U, transmitting at
2.4 GHz. It offers two interfaces for downlinking data; TTL serial over Universal Asynchronous
Receiver / Transmitter (UART) with a maximum data rate of 17.1 Kbps, and SPI 3-wire with a
maximum data rate of 1.3 Mbps. The HISPICO transmitter can be seen in Fig. 3.2.

Figure 3.2: The HISPICO transmitter. The antenna cable of the engineering model of the
HISPICO transmitter was replaced with a sturdier solution, as the original cable frayed during
the development of the system.

The 3-wire SPI protocol used in HISPICO was initially incompatible with the STM32 proces-
sors used in ESTCube-2. Normally, the SPI protocol uses the CS signal to mark the beginning
and the end of a transmission. The HISPICO 3-wire protocol instead used the CS to signal the
start of every byte, toggling it on the same clock cycle as the first bit.

The ESTCube team consulted with the manufacturers of the transmitter regarding this issue,
and it was suggested by the manufacturers to use the SPI TI mode [22] available on STM32
processors with a small modification to the transmitter firmware by the manufacturer to accept

17

the TI mode.

The comparison of all three SPI timings can be seen in Fig. 3.3.

Figure 3.3: Comparison of the SPI protocols used in HISPICO. The difference in the Chip
Select line is highlighted in red.

Furthermore, the transmitter can carry four different firmware images on board. A desired
firmware image is chosen by setting the appropriate ADR pins HIGH or LOW prior to powering
up the transmitter. The firmware images carried on board are all identical, with the exception
of the FEC rates. FEC rates affect the ratio of useful data to FEC control bits used in the FEC
algorithm, thus affecting the maximum amount of payload that can be transmitted with one
packet. From a list of available FEC rates, 4 were chosen to be carried on board. These rates
and the resulting maximum amount of data in one packet can be seen in Table 3.1.

When any FEC rate other than 1 is chosen, the transmitted data is passed through the FEC chip
inside the transmitter. This chip also performs scrambling of the bits. Despites many requests by
the ESTCube team, at the time of writing this thesis, the manufacturer has not shared any details
of the scrambler in use, effectively barring the use of any hardware supported FEC algorithm.
Thus, during this thesis only firmware slot three with no FEC was used.

18

ADR 0 ADR 1 Firmware FEC Identifier FEC Rate Max. bytes per frame
LOW LOW 0 1 0.489 250
LOW HIGH 1 0 0.325 166
HIGH LOW 2 6 0.223 115
HIGH HIGH 3 5 1 (No FEC) 511

Table 3.1: Possible forward error correction schemes available onboard HISPICO and their
respective firmware slots. The ”FEC Identifier” column is used to differentiate between the
FEC rates by assigning them an identifier and is used in the HISPICO frame headers. See 6.1.

3.2 Patch Antenna

For S-band communications, different patch antenna prototypes were made and tested by the
ESTCube team. The final iteration was made out of Rogers RO4003C-0600-1E-1E [23]. 114
x 152 mm panels with a thickness of 1.52 mm were used in testing and deemed appropriate
for usage. The final antenna is a circularly polarized patch antenna with an ⇠8dBi gain and a
half-power beam width of ⇠70�. [24]

Figure 3.4: The patch antenna used for HSCOM of ESTCube-2. [24]

19

3.3 High Speed Communication Breakout Board

The flight hardware of the HSCOM module resides on the battery management module aboard
the satellite and thus was under constant development and testing by other team members. Due
to a lack of flight model replicas, the ESTCube team created low cost modular development
PCBs that contained all the elements of their respective flight hardware counterparts. In ad-
dition to being cheaper to produce, they also provided a form factor for easy access to probe
signals and to debug in general. The breakout PCBs had interfaces that allowed them to be
connected with the developers’ PC, the flight hardware or other engineering models. By pro-
ducing multiple cheap functional copies of the flight hardware, developers working on the same
subsystem could carry on their work in parallel.

Figure 3.5: The HSCOM breakout board.

The work done in this thesis took place on the HSCOM breakout board (Fig. 3.5).

3.4 High Speed Communication Subsystem at the Start of
the Thesis

Although the components required to build the subsystem were purchased, there had not been
substantial work done to integrate the subsystem into the actual flight hardware. The HISPICO
had electrically been powered on but had not been enabled, and its transmission capabilities had
not been verified. The HSCOM hardware was checked for shorts and structural integrity, it had
been added to the flight model physically but the subsystem had not been integrated to the rest
of the satellite via software. No high-level code or drivers on the HSCOM MCU were written
to interface with the transmitter.

20

4 Thesis Scope

In addition to the educational value of building a satellite, ESTCube-2 carries multiple payloads
and scientific instruments on board. The high-speed communication subsytem plays a critical
role in receiving the data from these payloads on Earth.

The goals of this thesis are to integrate the COTS HISPICO transmitter to the ESTCube-
2 HSCOM subsystem and to build a receiver for receiving the HSCOM data at the GS of
ESTCube-2. After analysing the system, the following tasks were agreed upon to achieve those
goals:

• Create device drivers for interacting with the HISPICO transmitter on the HSCOM MCU.

• Create and implement transmitter daemon for the high level logic and operations of trans-
mission required by ESTCube-2.

• Create a payload handler in HSCOM, with knowledge of all payloads connected to the
ESTCube-2 payload bus, for recognizing and handling different packet types.

• Build the receiving pipeline in GNURadio for receiving, demodulating, decoding and
deframing packets received from ESTCube-2 HSCOM.

21

5 Firmware Development

The HSCOM firmware is written for the STM32L462CE MCU in C, using FreeRTOS [25]. The
ESTCube-2 team uses a Hardware Abstraction Layer (HAL) written in-house, as well as HAL
drivers ensuring safe access to peripherals and preventing race conditions.

The firmware development of HSCOM consists of the device driver consisting of the logic
required to operate the HISPICO, and the high-level transmission logic for correctly framing
and transmitting the data.

5.1 Device Driver

The device driver enables safe and easy access to the device by presenting all of the device
functionality in callable functions containing the necessary logic and safety precautions. If the
device is ever replaced, only the modification of the device driver is necessary, ensuring the
high-level application logic stays the same.

Operation of the HISPICO transmitter can be divided into three main functions: initialization,
telemetry reception, and transmission.

5.1.1 Initialization and Power Up

The initialization of the HISPICO transmitter requires certain steps to be followed.

22

Figure 5.1: Flowchart of the HISPICO transmitter turning on sequence.

Firstly, the ENABLE pin of the HSCOM must be set HIGH by the MCU to turn on the
power rail supplying the transmitter. Secondly, the MCU has to choose the correct HISPICO
firmware slot through the ADR 0 and ADR 1 pins. Possible values of the ADR pins and
their corresponding firmware configurations can be seen in Table 3.1. The ADR pins must
be set before the initialization of the transmitter occurs, and must not be modified during the
initialization process.

After the ADR pins are set, the transmitter self-initialization can be started by setting the
EXT ON pin HIGH. The internal initialization process takes a variable amount of time, re-
ported in the transmitter documentation to be between 500 ms to one second. For determining
the exact time the initialization is complete, the READY pin can be used. The initialization
sequence and the expected states of the EXT ON and READY pins can be seen in Fig. 5.2.

The READY pin is set HIGH by the transmitter when the EXT ON pin is set HIGH, and re-
mains HIGH throughout the initialization process. Once initialization is complete, the READY

pin is set to LOW. The device driver checks the READY pin until it is set to LOW, or a timeout
occurs after one second. If a timeout has occurred, an exception is raised. If not, the initializa-
tion sequence is completed successfully.

23

Figure 5.2: EXT ON and READY signals during bootup. The time at which the READY

signal might go low is highlighted in yellow.

5.1.2 Telemetry

The HISPICO transmitter outputs a telemetry block of 203 bytes every 5 seconds on the TTL
serial interface over UART through the V24 DX pin. The UART configuration uses 8 data bits,
no parity, and one stop bit, with a baud rate of 38400.

Due to an error present on the breakout board (Section 3.3) as well as the flight model of the
HSCOM subsystem, the UART configuration deviates from the normal operation configuration.
This error will be explained in more detail in Section 5.1.3. The solution to this error requires
the UART RX pin, used to receive the HISPICO telemetry, to be disabled. To be able to receive
the telemetry without the use of the RX pin, two registers in the UART configuration of the
STM32L4 MCU must be changed. Setting the HDSEL bit (half-duplex communication, using
only the TX pin) and SWAP bit (TX and RX pins are swapped) at the same time allows the MCU
to disable the RX pin, while using the TX pin to receive the telemetry. The HAL as well as the
UART drivers present in the ESTCube-2 firmware did not offer configuration settings for these
bits and therefore had to be modified by the author to support the required configuration.

24

Telemetry Block Variable Name Example Explanation

firmware version 01.03.00 Firmware version.
firmware compilation time May 30 2011 17:44:59 Compilation date of firmware in

use.
running time 2597 Current running time in sec-

onds.
firmware crc F2A3 CRC16 of the current firmware.

config crc 1A1A CRC16 of the current configu-
ration data.

temperature +039 Internal transmitter temperature
in celsius.

received commands 23 Numbers and repetition of re-
ceived Telecommand bytes.

unknown commands 11 Numbers and repetition of un-
known Telecommand bytes.

last commands 0 Numbers and repetition of last
Telecommand bytes.

frequency 2425000 Configured transmission fre-
quency in hertz.

txpo 208 Configured transmission power.
operating mode ON Normal 1.02 State, operating mode, FEC

rate.
transmitted data 0010000000 Transmitted data since power

up..
data interface UART 115200 Operating mode of data inter-

face.
crc 3EF0 CRC16 of telemetry block.

Table 5.1: Information contained within the telemetry block of HISPICO.

The device driver offers a function to wait for, receive, and format the telemetry block. The
telemetry block starts with a preamble sequence of 4 bytes 0x1B 0x5B 0x32 0x4A, allowing the
firmware to subscribe to a character match interrupt on the serial line for the first character in
the sequence. Upon the triggering of this interrupt, the device driver then reads the following
characters of the preamble, checking whether the entire sequence is received. When the last
character of the preamble is received, the driver then reads 199 bytes, as this is the remaining
bytes expected in the telemetry block. The next expected character of the telemetry block after
the preamble is always ’H’, and this information is used to verify the expected telemetry block
is received. Upon reception of the entire telemetry block, it is parsed and mapped to variables

25

within the telemetry struct. The variables, example values, and explanation of these variables
can be found in 5.1. The driver then returns the filled telemetry struct. These values are then
used to fill the housekeeping data of the HSCOM system. At the moment, the CRC fields of
the telemetry block are only used in the housekeeping data, thus the validity of the data can be
checked by the receiving GS.

5.1.3 Transmission

The HISPICO uses SPI with a maximum clock frequency of 1.06 MHz for downlinking data.
As was previously mentioned in Section 3.1, the HISPICO firmware was custom-made for use
with STM32 SPI protocol, and in particular, the TI mode. The custom-made SPI signal timings
can be seen in 5.3. The implementation of the TI mode was not supported in the ESTCube-2
HAL and SPI driver, and the support for hardware controlled chip-select as well as controlling
the register for activating the TI mode had to be implemented by the author.

Figure 5.3: An oscilloscope screenshot received from the manufacturers of HISPICO, showing
the modified timings of SPI lines that HISPICO accepts. Note that there are 9 clock pulses per
byte, with the Chip Select pulse before the first bit of the byte.

Upon implementation of the TI mode, the data transmission was tested. The telemetry data

26

received from the HISPICO indicated that the amount of bytes transmitted by the transmitter
did not match the data input by the MCU. However, the analysis of the data output from the
MCU with a logic analyzer showed all bytes were being transferred to the transmitter correctly.
During testing, a ground truth was not present, and it could not be established whether the errors
existed on the transmitter, receiver, or both.

The manufacturers of HISPICO were contacted with regards to this issue, and an agreement
was made to borrow a HISPICO receiver for development of the HSCOM subsystem. Upon
testing of the HSCOM system with the HISPICO receiver, it could be seen that the majority of
the received bits were ones. Further testing was done by connecting the SPI lines on board to
an oscilloscope. The results showed that the DATA line had a HIGH-level voltage of 3.3 V as
expected, but a LOW-level voltage of 1.46 V, which can be seen in Fig. 5.4.

Figure 5.4: Inspecting the SPI MOSI line with an oscilloscope revealed the logic LOW signal
never going below 1.45 V.

The datasheet for the HISPICO indicates that the HISPICO expects 2 - 3.3 V for HIGH-level
voltage, and 0 - 0.8 V for LOW-level voltage. Further analysis revealed that two data lines on
the HSCOM PCB, the UART TX, and the SPI MOSI, were erroneously connected together.
At the time of the discovery of the bug, the flight model of the ESTCube-2 had already been

27

prepared for launch and could not be modified. Therefore, a solution in software was required.
As mentioned in Section 5.1.2, disabling the UART TX pin by setting the HDSEL and SWAP
registers allows the UART to transmit with the UART RX pin, and fixes the SPI MOSI voltage
level error.

Furthermore, testing with the HISPICO receiver revealed the presence of missing bytes from
the transmitted data. Logic analyzer results showed that the CS and CLOCK signal timings of
the SPI TI mode, as recommended by the manufacturer, did not match the timings required by
the HISPICO firmware (Fig. 5.3).

Despite the graph showing nine clock cycles per 8-bit byte in accordance with the SPI TI mode,
the extra clock cycle is after the last bit of the byte, whereas for the TI mode the extra clock cycle
happens before the first bit of the byte. This mistiming resulted in bytes being discarded.

Instead of using TI mode, the signal timings required by the HISPICO firmware can be matched
by using the NSSP mode. The comparison of NSSP and TI modes can be seen in 5.5.

Figure 5.5: Comparison of SPI TI mode and SPI NSSP mode. The differences in Clock and
Chip Select lines are highlighted in red.

5.2 High Level Transmission Logic

The HSCOM subsystem is connected to both the ICP and the payload buses, as seen in Fig.
3.5. Though the main purpose of the HSCOM subsystem is to transmit payload data, it can
also transmit data received via an ICP packet as back-up. Any data received via the payload
bus is first received by the HSCOM payload handler, ensuring the reception of full payload
packets. The full logic of the payload handler is explained in Section 5.2.1. Both the payload
packets through the payload handler, and the packets received through ICP are then sent to
the transmission daemon, which offers forward error correcting capabilities, and then sent to

28

the HISPICO transmitter. The full logic of the transmitter daemon is explained in Section 5.2.2.
The full flow of the high-level logic present in HSCOM subsystem can be seen in Fig. 5.6.

Figure 5.6: Block diagram of the high level transmission logic of ESTCube-2 HSCOM.

5.2.1 Payload Handler

The format of the payload data received may differ depending on the source payload. A payload
handler was created to determine when a full packet of payload data is received. The payload
handler has information about the payloads capable of transmitting data through the payload
bus, and the format of the packets. During the work described in this thesis, only one payload,
the CAM subsystem, was present and capable of using the payload bus. The CAM subsystem
uses Consistent Overhead Byte Stuffing (COBS) packets, delimited with two zero bytes at the
beginning, and one zero byte at the end.

The payload handler is initialised at power-up of the HSCOM MCU. The main task of the pay-
load handler then begins waiting for the zero byte delimiters of the CAM packets. When there
is a zero byte present on the payload bus, a character match interrupt occurs, resuming the main
task of the payload handler. Once awoken, the payload handler also wakes the transmission
daemon. The payload handler then receives the data present on the payload bus, and checks
whether two zero bytes in succession are received. Upon receiving the double zeroes, the pay-
load handler fills the internal buffer with the data from the payload bus until the end delimiter
zero byte is received. When an entire packet has been received, the payload handler sends the
buffer contents to the transmission daemon and starts waiting for another packet. The full flow
of the payload handler can be seen in Fig. 5.7.

29

Figure 5.7: Flowchart of the high level payload handler logic of ESTCube-2 HSCOM.

5.2.2 Transmission Daemon

The transmission daemon is initialised at the power-up of the HSCOM MCU. Like the payload
handler, the main task of the transmission daemon is then suspended. The transmission daemon
offers a function for waking up the main task, powering up and turning on the transmitter. This
function can be called from either the payload handler for downlinking of any payload data, or
from an ICP command to the HSCOM for downlinking of any other data. The steps followed

30

for powering up the transmitter are explained in Section 5.1.1. After the transmitter power-
up is complete, the input queue of the transmission daemon is read and stored in an internal
buffer.

Due to the circumstances mentioned in Section 3.1, no hardware FEC can be used. To alleviate
this problem, the transmission daemon offers the possibility of FEC encoding packets before
transmission. If the FEC option is enabled, the transmission daemon then awaits for a set
amount of bytes to be encoded before transmission. If no FEC is used, the transmission daemon
waits until there is enough data to fill one HISPICO frame to full.

If no data is received after 10 seconds, the transmission daemon transmits any data remaining
in its internal buffer, powers down the transmitter, and suspends its main task. The full flow of
the transmission daemon logic can be seen in Fig. 5.8.

Forward Error Correction

Due to not having access to the FEC chip on the transmitter, two simple FEC algorithms were
implemented in the firmware on the MCU. As the HISPICO already uses FEC for its frame
headers, the same FEC algorithm was implemented for the payload for simplicity when decod-
ing. The algorithm is a rate n = 1/2 convolutional code with a constraint length k = 9 and
polynomials g0 = 753, g1 = 561. The rate of the convolutional code affects the data rate. For
every bit of the payload data, two bits must be transmitted. Furthermore, the algorithm used in
the header of the HISPICO frames use 16 tailbits. These bits are produced when k � 1 zero
bits are input into the encoder after the payload data is encoded. This ensures that the encoder
starts and ends in an all-zero state, simplifying the decoding process. Therefore, using the given
convolutional code algorithm decreases the data rate by:

L

n[L+ (k � 1)]

where the L is the data bits input into the encoder.

In addition to convolutional codes, another FEC algorithm was added to offer less of a data
rate loss. Reed-Solomon code was implemented as 255 byte blocks, with 223 data bytes and
32 parity bytes, according to the CCSDS standard. [26] Phil Karn’s FEC library [27] was used
to implement the Reed-Solomon algorithm in the firmware. If there is a need to encode a
block smaller than 223 bytes, Reed-Solomon offers the possibility of lowering the data rate
by padding zero bytes to the end of the block until 223 bytes are reached, before the data is
encoded. After encoding, the zero bytes are removed, and the resulting block is transmitted.
The decoder on the receiving end must also append the same amount of zero bytes to the data
before decoding.

For both FEC implementations, the decoder at the receiving side must know how many bytes
were put into the encoder to be able to decode each block of data. This can be solved by

31

appending the data block size to the encoded block of data, with the caveat that the data block
size information can not be encoded along with the data. Therefore any corruption, however
small, would result in inability to decode the original data. Alternatively, the data block size
can be separately encoded, adding the possibility to recover data size information in the event
of corruption, but would lower the data rate further.

To solve this issue, the HSCOM firmware always encodes a fixed amount of data per block.
When a block of data is received, it is divided into 223 byte sections for both FEC algorithms
and transmitted. If the data is not divisible by 223, the last section with size that is less than 223
byte is either padded for Reed-Solomon, or encoded as is for Convolutional Code.

32

Figure 5.8: Flowchart of the high level transmission daemon logic of ESTCube-2 HSCOM.

33

6 Reception, Demodulation, Decoding

For development and testing of reception, a LimeSDR Mini with a 20 dB attenuator chain was
connected to the antenna cable of the transmitter.

The HISPICO transmits at a constant symbol rate of 1.2 MHz. According to the datasheet
supplied by the manufacturer, each frame transmitted is made of three sections:

• a preamble of 126 bits modulated with BPSK,

• a header of 66 bits modulated with Differential Binary Phase Shift Keying (DBPSK),

• the payload of 4096 bits modulated with DQPSK.

In a frame, the 1120, 1121, 2242 and 2243rd symbols are blank. Furthermore, every 2047th
frame consists of completely blank symbols.

A GNURadio Companion flowchart was created using the gr-satellites library [28] and
three custom blocks to demodulate, decode, and deframe the incoming packets. The flowchart
can be used with a LimeSDR source block or raw recordings. The signal has an RF bandwidth
of 1.3 MHz. Therefore, a sampling rate of at least 3 MHz is recommended to capture the entire
signal. The Symbol Sync block was used to perform clock recovery, and a Costas Loop was
used to perform carrier recovery.

Instead of demodulating the BPSK sections of the frame separately than the QPSK payload,
thus increasing complexity and efficiency, a Costas Loop of 4th order followed by a QPSK
demodulator was used, effectively decoding the BPSK parts as QPSK. This is possible due to
both demodulation schemes using the phase of the received signal - a BPSK modulated signal
only uses phases of 0° and 180°, while QPSK uses 0°, 90°, 180° and 270°. Therefore, a BPSK-
modulated signal is a valid QPSK signal, as well.

34

Figure 6.1: Constellation diagram of a; (a) BPSK modulated signal. The data points are divided
between 0° and 180°. (b) QPSK modulated signal. The data points are divided between 0°, 90°,
180° and 270°.

The full flowchart for receiving, demodulating, decoding, and parsing packets can be found in
Fig. 6.2.

35

out in
Throttle

Sample Rate: 1.2M
Limit: None

outcmd
Soapy LimeSDR Source
Sample Rate: 5M
Center Freq (Hz): 2.425G

Options
Title: HSCOM pr...eader print
Author: Melis Doğan
Output Language: Python
Generate Options: QT GUI

Variable
ID: alpha
Value: 350m

Variable
ID: baudrate
Value: 1.2M

Variable
ID: frame_len
Value: 2.244k

Variable
ID: nfilts
Value: 16

Variable
ID: rrc_taps
Value: firdes.root_raised_...

Variable
ID: samp_rate
Value: 5M

Variable
ID: sps
Value: 4.16667

Variable
ID: syncc
Value: 33330333...03030000003

Constellation Object
ID: variable_constellation_0
Constellation Type: Variable Constellation
Symbol Map: 0, 1, 2, 3
Constellation Points: ...1-1j
Rotational Symmetry: 4
Dimensionality: 1
Normalization Type: Amplitude

in

File Sink
File: output.u8
Unbuffered: Off
Append file: Overwrite

out

File Source
File: ...00000_5000000_fc.raw
Repeat: Yes
Add begin tag: ()
Offset: 0
Length: 0

out in
Multiply Const
Constant: 1j

out in
Multiply Const
Constant: -1

out in
Multiply Const
Constant: -1j

out in
Constellation Decoder

Constellation Object: ...b70>

out in
Constellation Decoder

Constellation Object: ...b70>

out in
Constellation Decoder

Constellation Object: ...b70>

out in
Constellation Decoder

Constellation Object: ...b70>

out

frequency

phase

error

in

noise

Costas Loop
Loop Bandwidth: 10m
Order: 4

out

error

T_inst

T_avg

in

Symbol Sync
Timing Error Detector: y[n]y'[n] Maximum likelihood
Samples per Symbol: 4.16667
Expected TED Gain: 1
Loop Bandwidth: 10m
Damping Factor: 1
Maximum Deviation: 10m
Output Samples/Symbol: 1
Interpolating Resampler: Polyphase Filterbank, MF
Filterbank Arms: 16
PFB MF Taps: rrc_taps

out inheaderPrinter

Import
Import: pi

Import
Import: np

outpdus
PDU to Tagged Stream

Length tag name: packet_len

in
QT GUI Constellation Sink
Number of Points: 1.024k
Autoscale: No

outin
RMS AGC

Alpha: 10m
Reference: 1

out in

Sync and create PDU
Packet length (bits): 17.952k
Syncword: 333303...3030000003
Syncword threshold: 10

out in

Sync and create PDU
Packet length (bits): 17.952k
Syncword: 333303...3030000003
Syncword threshold: 10

out in

Sync and create PDU
Packet length (bits): 17.952k
Syncword: 333303...3030000003
Syncword threshold: 10

out in

Sync and create PDU
Packet length (bits): 17.952k
Syncword: 333303...3030000003
Syncword threshold: 10

out inpayloadHandler

General ReceptionPreamble

HeaderPayload

Figure 6.2: The GNURadio Companion Flowchart for Reception of ESTCube-2 HSCOM.

36

6.1 Preamble

The preamble is a 63-bit sequence, transmitted twice consecutively with a BPSK modulated
wave. The hexadecimal sequence, 0x3F566ED271794610, is transmitted in little-endian bit
order with its last bit discarded. This results in the sequence

111101111001110101100001011100011011010010001001100101010000001,

repeated twice at the start of each packet.

Due to QPSK demodulation instead of the intended BPSK, each bit is repeated. This is due to
QPSK encoding two bits for each symbol - therefore 0° maps to the symbol 00, and 180° maps
to the symbol 11. Packing these two bits into one symbol results in a sequence of 0 and 3 -
therefore the sequence to sync becomes

333303333003330303300003033300033033030030003003300303030000003.

Furthermore, the BPSK modulation introduces a phase ambiguity of 180°. However, because
it is demodulated by QPSK, which introduces a phase ambiguity of 90°, the preamble must
be searched on all four possible shifted constellations. Only one of these branches results in a
successful synchronizing of the sync word. Therefore, 4 parallel branches, all shifted by 90°
from each other are used to sync to the preamble.

The ”Sync and Create Protocol Data Unit (PDU)” block from the gr-satellites is used to sync to
the preamble. This block only takes syncwords of a maximum of 32 bits; therefore, it can only
sync to half of the preamble. For this thesis, this block was not modified, and the second part of
the preamble ”check” is made through the custom headerPrinter block. This block also handles
the discarding of the second PDU received from the Sync and Create PDU block, which syncs
to the second instance of the preamble in a frame.

6.2 Header

For demodulating, decoding and parsing the header, a custom block was created. This block
takes in PDUs that were created by the Sync and Create PDU block.

The header is modulated with DBPSK - a phase difference of 0° equaling to the bit 0 and 180°
equaling to the bit 1. This decoding is handled in the custom block.

The payload bits are also FEC coded using rate n = 1/2 convolutional coding, with the octal
polynoms g0 = 753, g1 = 561 and a constraint length of k = 9. At the time of writing, there
was no block available in the GNURadio Companion or any third party extension for decoding
this coding scheme. The Python module scikit-dsp-comm [29] was used in the custom
block to perform Viterbi decoding with the correct polynomials and the constraint length.

37

After decoding, the bits are then parsed according to Table 6.1.

Bits Data

00 - 08 Number of valid bytes supplied by user.
09 - 11 Identifier for FEC used for this packet. See Table 3.1 for details.

12 Type of data in the next field. Can be 0 or 1.
13 - 20 Information field. If the bit 12 was 0, this field consists of the temperature of the

transmitter. If the bit 12 was 1, this field consists of an incrementing frame counter.
21 - 24 4-bit CRC calculated with the polynom 0x1B.
25 - 32 Tailbits used for convolutional coding.

Table 6.1: Data contained within the header bits of a HISPICO frame.

This parsed data is printed to the console for a visual guide. The incrementing frame counter
can be used to see if any packets were dropped or not received.

The number of valid bytes in each packet is then used to trim the payload. It must be noted
that the number of valid bytes in the header do not include the empty symbols. Therefore, for
a payload exceeding 232 bytes two additional empty symbols must be counted in the total size
of the payload block. Another two empty symbols must be counted for payloads exceeding 511
bytes. The resulting payload after the trimming of dummy data is then passed into the next
block.

6.3 Payload

The payload is modulated with DQPSK and always consists of 4096 bits. These bits are filled
with the user data according to the FEC rate chosen and the clock rate of the communication.
The remaining bits are filled with dummy data. The payload bits are extracted according to the
information in the header and passed into the payload handler block.

The payload block includes 4 empty symbols; two in the middle of the frame at indexes 1120
and 1121, and towards the end of the frame at indexes 2242 and 2243. These empty symbols
must be removed from the payload before the differential decoding occurs.

The differential decoding is done by iterating over the payload symbols and using the current
symbol and the next symbol, which are transformed to their phase degree counterparts accord-
ing to Table 6.2, then subtracted. The resulting phase difference is then transformed back to
symbols, once again according to 6.2. For the first symbol, an initial pre-start symbol with a
phase of 180�must be used to calculate the phase difference and the resulting initial symbol.
After the decoding is complete, the symbols are packed into bytes and a PDU is created and
output.

38

The PDU is then saved to a file by converting it back to a tagged stream and input into the
file sink block. As the originally transmitted payload packets (or FEC packets encapsulat-
ing these payload packets, if FEC was enabled) might be divided between HISPICO frames,
concatenating all the HISPICO frame payload sections ensures the rejoining of these divided
packets.

Phase Symbol

0° 00
90° 01
180° 11
270° 10

Table 6.2: The DQPSK constellation used in HISPICO.

Forward Error Correction

If no FEC is used, the reception ends in the previous step (6.3). If FEC is used, two additional
blocks are used. The custom block for convolutional code decoding uses the same Viterbi
decoder from scikit-dsp-comm. For Reed-Solomon decoding, since it uses the CCSDS
standard, there is a block available for it in gr-satellites.

The input to these blocks must be a complete encoded packet. Therefore the output of payload
handler can not be directly piped in, as each HISPICO frame might not have a full packet, and
it might have been split between frames. It is also important to know which encoding algorithm
was used. For a packet that is 223 bytes pre-encoding, the amount of bytes to decode differs
for each of them - 448 for CC and 255 for RS. The output is piped to a file, in which the
concatenation and joining of split CAM packets are handled. The full flowchart of the FEC
decoding can be seen in Fig. 6.3.

Options
Title: HSCOM FEC decoder
Author: Melis Doğan
Output Language: Python
Generate Options: No GUI
Run Options: Run to Completion

in

File Sink
File: decoded_fec.u8
Unbuffered: Off
Append file: Overwrite

out

File Source
File: output.u8
Repeat: No
Add begin tag: ()
Offset: 0
Length: 0

outin
Stream to Tagged Stream
Packet Length: 255
Length Tag Key: packet_len

outin
Throttle

Sample Rate: 1M
Limit: None

out incustomCCDecoder

out pdus
PDU to Tagged Stream

Length tag name: packet_len
pdus in

Tagged Stream to PDU
Length tag name: packet_len

out in
CCSDS Reed-Solomon Decoder
Basis: Conventional
Interleave depth: 1

Figure 6.3: The GNURadio Companion Flowchart for decoding of FEC in ESTCube-2
HSCOM.

39

7 Testing

At the time of testing the HSCOM, no payloads were available to connect to the payload bus.
The HSCOM firmware was used to simulate the payloads by re-mapping the ICP bus pins and
connecting them to the payload bus pins. This way, the HSCOM MCU could send data to its
own payload pins, which were then received and handled by the payload handler. It should be
noted that for testing transmission through ICP commands, the ICP pins must be mapped to
their original purpose.

The system was initially tested end-to-end by transmitting known sequences of bytes of varying
lengths. Upon successful transmission and receiving of the bytes, the system was tested further
by using different FEC and by varying the SNR levels. This was achieved by adding simulated
Additive White Gaussian Noise (AWGN) to the recorded transmissions. The AWGN is a ran-
dom noise model and can simulate random errors and noise sources that would normally occur
during satellite communications.

The reception was modified for low SNR conditions. Low SNR leads to high BER, which
causes the reception pipeline to miss preambles with high errors or produce faulty data from
the frame headers, leading to the system extracting the incorrect amount of bytes of data from
the payload. While this is expected behavior from the reception, for the purposes of testing, the
preamble syncing and the extraction of payload bytes from the frame were done by a separate
script to ensure even the frames with high BER were included in the final data file. For FEC
testing, further corrections were made to the CCSDS Reed-Solomon decoder block from the
gr-satellites library. Originally, the block did not output the packets it could not decode due to
the amount of errors exceeding its maximum error correction capability. For fair analysis, the
block was modified to output all packets.

The results of the testing, created with MATLAB’s berfit command, can be seen in Fig.
7.1

40

2 4 6 8 10 12 14 16

SNR	(dB)

10-5

10-4

10-3

10-2

10-1

100

B
E
R

Comparison	of	Forward	Error	Correction	algorithms	of	the	ESTCube-2	HSCOM

No	FEC

Convolutional	Code

Reed-Solomon

Figure 7.1: Comparison of Forward Error Correction algorithms of the ESTCube-2 HSCOM.

The transmission without using any FEC leads to errors in higher SNR levels than the FEC-
coded transmissions. While Reed-Solomon initially performs better than transmissions without
FEC, as the errors increase pre-decoding, its performance decreases. This is because Reed-
Solomon codes perform better when correcting burst errors. It has the capability of correcting
up to 16 bytes of errors with a block size of 255 bytes. The error correction capability of 16
bytes is regardless of how many bits are corrupted in a byte. Whether every bit is corrupted in a
byte or a single one, it counts as one byte of error - in the best-case scenario, 16 ⇤ 8 = 128 bits
can be corrected. Therefore, when a burst error corrupts successive bits, they can be pooled into
one single error in a byte. However, random errors are not successive and can cause a single
bit error in 16 different bytes in a worst-case scenario, leading to a maximum of 16 bits being
corrected. For this reason, while Reed-Solomon codes are useful in high SNR conditions due
to their higher data rate compared to convolutional codes, they perform similarly to no-FEC in
low SNR conditions.

In comparison, convolutional codes perform better than both the Reed-Solomon and the no-
FEC transmissions, due to their strength in correcting random errors as opposed to burst errors.
However, as a trade-off, they lower the data rate by more than half, and do not perform well for
burst errors, which were not tested here.

41

There are options for increasing the error correcting capabilities of the system, such as inter-
leaving the symbols to translate burst errors into random errors, or using concatenated codes by
wrapping convolutional code in a Reed-Solomon code. However, the HISPICO already offers
TURBO codes, which perform better than concatenated codes and offer better data rates. They
are also on a dedicated hardware chip inside the transmitter, allowing the encoding to occur
more efficiently than implementing it through software. Therefore, for the purposes of this
thesis, any further implementations of FEC are outside of the scope.

In addition to BER testing, an image was stored on board the HSCOM MCU to test large image
downlinking. The MCU had limited storage available for an image file, as it is not meant to
store files in normal operation. An image with a size of 76.8 kB was stored on board and
transmitted without any FEC, with an SPI clock rate of 1.06 MHz. The reception spanned over
318 HISPICO frames with 242 bytes per frame, taking a total of 0.6 seconds. This leads to a
data rate of 1.02 Mbps. The manufacturers were contacted regarding the documentation of the
HISPICO system, which notes that the SPI communications must not exceed a clock rate of
1.06 MHz. When using a clock rate of 1.06 MHz, the maximum data rate one can achieve is
only 1.02 Mbps, which is below the advertised data rate of 1.6 Mbps. Increasing the clock rate
of the SPI communication leads to the HISPICO frames reporting wrong user data bytes present
in the payload, or dropping of bytes altogether. However, no response from the manufacturers
was received at the time of writing.

42

8 Conclusion

The goal of this master’s thesis was to integrate a high-speed transmitter into ESTCube-2.
The work covered both the onboard firmware for controlling the transmitter, and the receiving
pipeline for the GS. In total, the practical section of the work presented in this thesis took a year,
partly due to delays in communicating with the manufacturer to receive necessary information
for using HISPICO, such as the HISPICO frame specifications datasheet.

To achieve the goal, the following tasks were completed:

• Creation of onboard firmware for controlling the functionality of the transmitter

• Creation of onboard firmware for high-level logic of payload data transmission

• Implementation of a fix in firmware for an issue caused by the hardware

• Building of a receiving pipeline in GNURadio Companion for the GS

• Implementation of two FEC algorithms to replace the hardware FEC present within the
transmitter, to which ESTCube-2 was not given the permission to access

• Testing of end-to-end image transmission

In-orbit testing and validation could not be performed, as following the launch in October 2023,
ESTCube-2 did not successfully detach from its deployer and is assumed to be destroyed.

The work done in this thesis is considered for use in future satellites built by the Estonian Stu-
dent Satellite Foundation. However, for future work, the author strongly suggests either gaining
access to the functionality of HISPICO, which were restricted by the manufacturers by not shar-
ing relevant information, or building another transmitter in-house to replace HISPICO.

43

Acknowledgements

I would like to extend my endless gratitude to;

• everything that makes me happy, including but not limited to fruits, drinks, sights, smells,
video games, the wind, the sea, the sun

• my friends, classmates and coworkers

• Daniel Estévez, for his blog and his work

• my thesis advisors, for their unbelievably vast experience and wisdom

• my parents, for everything, and for calling me to ask if ESA would let them go to the
moon if they sit real quiet in the spacecraft

• my sister, the graphic designer and the funniest person I know, I did not use any generative
AI in this thesis to ensure your future job security

• Kristo Allaje, I do not think anybody can be a better coworker, boss, advisor, team leader,
or most of all, friend, than you

• my partner, I love you

44

Bibliography

[1] CubeSat Design Specification Rev 14. 2022. https://www.cubesat.org/s/CDS-REV14 1-
2022-02-09.pdf

[2] NASA, State-of-the-Art of Small Spacecraft Technology, Communications,
https://www.nasa.gov/smallsat-institute/sst-soa/communications. Accessed May 20,
2024.

[3] A. Zedaan and T. Khattab, A Critical Review of Baseband Architectures for CubeSats
Communication Systems, 2022, DOI:10.48550/arXiv.2201.09748.

[4] Aalto University, Contract signed for Aalto-1 satellite launch.,
https://www.aalto.fi/en/news/contract-signed-for-aalto-1-satellite-launch. Accessed
May 20, 2024.

[5] Aalto University, Aalto-1 was launched into space a year ago – the Otaniemi
ground station is already being prepared for the launch of the next satellites,
https://www.aalto.fi/en/news/aalto-1-was-launched-into-space-a-year-ago-the-otaniemi-
ground-station-is-already-being. Accessed May 20, 2024.

[6] J. Praks, M.R. Mughal, R. Vainio, P. Janhunen, J. Envall, P. Oleynik, A. Näsilä, H.
Leppinen, P. Niemelä, A. Slavinskis, J. Gieseler, P. Toivanen, T. Tikka, T. Peltola, A.
Bosser, G. Schwarzkopf, N. Jovanovic, B. Riwanto, A. Kestilä, A. Punkkinen, R. Punkki-
nen, H.-P. Hedman, T. Säntti, J.-O. Lill, J.M.K. Slotte, H. Kettunen, A. Virtanen, Aalto-
1, multi-payload CubeSat: Design, integration and launch, Acta Astronautica, 2021
DOI:https://doi.org/10.1016/j.actaastro.2020.11.042.

[7] I. Iakubivskyi, P. Janhunen, J. Praks, V. Allik, K. Bussov, B. Clayhills, J. Dalbins, T.
Eenmäe, H. Ehrpais, J. Envall, S. Haslam, E. Ilbis, N. Jovanovic, E. Kilpua, J. Kivastik, J.
Laks, P. Laufer, M. Merisalu, M. Meskanen, R. Märk, A. Nath, P. Niemelä, M. Noorma,
M. R. Mughal, S. Nyman, M. Pajusalu, M. Palmroth, A. S. Paul, T. Peltola, M. Plans, J.
Polkko, Q. S. Islam, A. Reinart, B. Riwanto, V. Sammelselg, J. Sate, I. Sünter, M. Tajmar,
E. Tanskanen, H. Teras, P. Toivanen, R. Vainio, M. Väänänen, and A. Slavinskis, Coulomb
drag propulsion experiments of ESTCube-2 and FORESAIL-1, Acta Astronautica, vol.
177, pp. 771–783, 2020. DOI:https://doi.org/10.1016/j.actaastro.2019.11.030.

45

https://www.cubesat.org/s/CDS-REV14_1-2022-02-09.pdf
https://www.cubesat.org/s/CDS-REV14_1-2022-02-09.pdf
https://www.nasa.gov/smallsat-institute/sst-soa/communications
https://doi.org/10.48550/arXiv.2201.09748
https://www.aalto.fi/en/news/contract-signed-for-aalto-1-satellite-launch
https://www.aalto.fi/en/news/aalto-1-was-launched-into-space-a-year-ago-the-otaniemi-ground-station-is-already-being
https://www.aalto.fi/en/news/aalto-1-was-launched-into-space-a-year-ago-the-otaniemi-ground-station-is-already-being
https://doi.org/10.1016/j.actaastro.2020.11.042
https://doi.org/10.1016/j.actaastro.2019.11.030

[8] J. Praks, P. Niemela, A. Nasila, A. Kestila, N. Jovanovic, B. Riwanto, T.
Tikka, H. Leppinen, R. Vainio, P. Janhunen, Miniature spectral imager in-
orbit demonstration results from Aalto-1 Nanosatellite Mission, IGARSS 2018 -
2018 IEEE International Geoscience and Remote Sensing Symposium, Jul. 2018.
DOI:https://doi.org/10.1109/igarss.2018.8517658

[9] J. Jussila, S-band transmitter for Aalto-1 nanosatellite, Master’s Thesis, Aalto University,
2013, URL:https://aaltodoc.aalto.fi/handle/123456789/10453.

[10] Texas Instruments, MSP430F22x2, MSP430F22x4 Mixed Signal Microcontroller
datasheet (Rev. G), SLAS504G, July 2006 [Revised Aug. 2012].

[11] Texas Instruments, Low-Cost Low-Power 2.4 GHz RF Transceiver datasheet (Rev. C),
SWRS040C, Jan. 2005 [Revised May 2008].

[12] Aalto University, Radio Amateurs, S-Band Science Data Downlink.
https://wiki.aalto.fi/display/SuomiSAT/Radio+Amateurs. Accessed May 20, 2024.

[13] Texas Instruments, EV76C664 Datasheet 1.3 Mpixels Monochrome and Sparse CMOS
Image sensor, Dec. 2016.

[14] M. Barthelemy, E. Robert, V. Kalegaev, V. Grennerat, T. Sequies, G. Bourdarot, E. Le
Coarer, J.-J. Correia, and P. Rabou, AMICal Sat: A sparse RGB imager on board a 2U
CubeSat to study the Aurora, IEEE Journal on Miniaturization for Air and Space Systems,
vol. 3, no. 2, pp. 36–46, Jun. 2022. DOI:https://doi.org/10.1109/JMASS.2022.3187147.

[15] Université Grenoble alpes, AMICal Sat Project, https://www.csug.fr/projects/amical-sat-
project/. Accessed May 20, 2024.

[16] AMICal Sat Downlink Technical Information. Rev 0.4. 2020. http://amicalsat.univ-
grenoble-alpes.fr/assets/AmicalSat%20downlinks%20technicals%20informations%20v0.4-
ba04019f31330c558c47f6618551195fdd10cb43273a4a9715fd8977feefaea1.pdf

[17] D. Estévez, “Decoding AMICal Sat in-orbit images”,
https://destevez.net/2020/10/decoding-amical-sat-in-orbit-images/. Accessed May
20, 2024.

[18] B. Mero, K. A. Quillien, M. McRobb, S. Chesi, R. Marshall, A. Gow, C. Clark,
M. Anciaux, P. Cardoen, J. De Keyser, Ph. Demoulin, D. Fussen, D. Pieroux, S.
Ranvier, PICASSO: A State of the Art CubeSat, Proceedings of the 29th Annual
AIAA/USU Conference on Small Satellites, Logan, Utah, USA, August 8-13, 2015.
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3179&context=smallsat

[19] D. Estévez, “K2SAT S-band image receiver”, https://destevez.net/2018/07/k2sat-s-band-
image-receiver/. Accessed May 20, 2024.

46

https://doi.org/10.1109/igarss.2018.8517658
https://aaltodoc.aalto.fi/handle/123456789/10453
https://wiki.aalto.fi/display/SuomiSAT/Radio+Amateurs
https://doi.org/10.1109/JMASS.2022.3187147
https://www.csug.fr/projects/amical-sat-project/
https://www.csug.fr/projects/amical-sat-project/
http://amicalsat.univ-grenoble-alpes.fr/assets/AmicalSat%20downlinks%20technicals%20informations%20v0.4-ba04019f31330c558c47f6618551195fdd10cb43273a4a9715fd8977feefaea1.pdf
http://amicalsat.univ-grenoble-alpes.fr/assets/AmicalSat%20downlinks%20technicals%20informations%20v0.4-ba04019f31330c558c47f6618551195fdd10cb43273a4a9715fd8977feefaea1.pdf
http://amicalsat.univ-grenoble-alpes.fr/assets/AmicalSat%20downlinks%20technicals%20informations%20v0.4-ba04019f31330c558c47f6618551195fdd10cb43273a4a9715fd8977feefaea1.pdf
https://destevez.net/2020/10/decoding-amical-sat-in-orbit-images/
http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3179&context=smallsat
https://destevez.net/2018/07/k2sat-s-band-image-receiver/
https://destevez.net/2018/07/k2sat-s-band-image-receiver/

[20] IQ Spacecom, Highly Integrated S-Band Transmitter for Pico and Nano Satellites,
https://confluence.tudengisatelliit.ut.ee:8433/display/ESTELLECOM/HSCOM?preview=/45974914/51578763/HiSPiCO specifications.pdf.
Accessed May 20, 2024.

[21] STMicroelectronics, STM32L462CE, https://www.st.com/en/microcontrollers-
microprocessors/stm32l462ce.html. Accessed May 20, 2024.

[22] STMicroelectronics, STM32F7 - SPI - Serial Peripheral Interface,
https://www.st.com/content/ccc/resource/training/technical/product training/group0/3e/ee/cd/b7/84/4b/45/ee/STM32F7 Peripheral SPI/files/STM32F7 Peripheral SPI.pdf/ jcr content/translations/en.STM32F7 Peripheral SPI.pdf.
Accessed May 20, 2024.

[23] Rogers Corporation, RO4000® Series High Frequency Circuit Materials, https://www.rf-
microwave.com/resources/products attachments/5e38437d990bf.pdf. Accessed May 20,
2024.

[24] J. Dalbins, K. Allaje, H. Ehrpais, I. Iakubivskyi, E. Ilbis, P. Janhunen, J. Ki-
vastik, M. Merisalu, M. Noorma, M. Pajusalu, I. Sünter, A. Tamm, H. Teras,
P. Toivanen, B. Segret, A. Slavinskis, Interplanetary student nanospacecraft: De-
velopment of the LEO demonstrator ESTCube-2, Aerospace. 10 (2023) 503.
DOI:https://doi.org/10.3390/aerospace10060503.

[25] Amazon Web Services, The FreeRTOS™ Kernel, https://www.freertos.org/RTOS.html.
Accessed May 20, 2024.

[26] CCSDS, TM Synchronization and Channel Coding Blue Book 131.0-B-5, Sept. 2023.
https://public.ccsds.org/Pubs/131x0b5.pdf

[27] P. Karn, DSP and FEC Library, http://www.ka9q.net/code/fec. Accessed May 20, 2024.

[28] D. Estévez, gr-satellites, https://github.com/daniestevez/gr-satellites. Accessed May 20,
2024.

[29] M. Wickert, scikit-dsp-comm, https://github.com/mwickert/scikit-dsp-comm. Accessed
May 20, 2024.

47

https://confluence.tudengisatelliit.ut.ee:8433/display/ESTELLECOM/HSCOM?preview=/45974914/51578763/HiSPiCO_specifications.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32l462ce.html
https://www.st.com/en/microcontrollers-microprocessors/stm32l462ce.html
https://www.st.com/content/ccc/resource/training/technical/product_training/group0/3e/ee/cd/b7/84/4b/45/ee/STM32F7_Peripheral_SPI/files/STM32F7_Peripheral_SPI.pdf/_jcr_content/translations/en.STM32F7_Peripheral_SPI.pdf
https://www.rf-microwave.com/resources/products_attachments/5e38437d990bf.pdf
https://www.rf-microwave.com/resources/products_attachments/5e38437d990bf.pdf
https://doi.org/10.3390/aerospace10060503
https://www.freertos.org/RTOS.html
https://public.ccsds.org/Pubs/131x0b5.pdf
http://www.ka9q.net/code/fec
https://github.com/daniestevez/gr-satellites
https://github.com/mwickert/scikit-dsp-comm

Non-exclusive licence to reproduce thesis and
make thesis public

I, Melis Doğan

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to reproduce,
for the purpose of preservation, including for adding to the DSpace digital archives until
the expiry of the term of copyright,

“Integration of a High Speed Communications System into ESTCube-2”

supervised by Kristo Allaje, Viljo Allik, and Tõnis Eenmäe.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to
the public via the web environment of the University of Tartu, including via the DSpace
digital archives, under the Creative Commons licence CC BY NC ND 3.0, which allows,
by giving appropriate credit to the author, to reproduce, distribute the work and commu-
nicate it to the public, and prohibits the creation of derivative works and any commercial
use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intellec-
tual property rights or rights arising from the personal data protection legislation.

Melis Doğan
20.05.2024

	Resümee/Abstract
	List of Figures
	List of Tables
	Acronyms
	Introduction
	High Speed S-Band Communications in CubeSats
	Aalto-1
	AMICal Sat
	PICASSO
	Summary

	ESTCube-2 High Speed Communication Subsystem
	HISPICO Transmitter
	Patch Antenna
	High Speed Communication Breakout Board
	High Speed Communication Subsystem at the Start of the Thesis

	Thesis Scope
	Firmware Development
	Device Driver
	Initialization and Power Up
	Telemetry
	Transmission

	High Level Transmission Logic
	Payload Handler
	Transmission Daemon

	Reception, Demodulation, Decoding
	Preamble
	Header
	Payload

	Testing
	Conclusion
	Bibliography
	Non-exclusive license

