
Tartu University

Faculty of Science and Technology

Institute of Technology

Lilou Gras

Exploring Smartphone-Based Reinforcement Learning Control for
Educational Robotics: Implementation on OpenBot

Master’s thesis (30 EAP)
Robotics and Computer Engineering

Supervisor: Dr. Naveed Muhammad

Tartu 2024

Resümee/Abstract

Nutitelefonil põhineva tugevdusõppe juhtimise uurimine haridusrobotikas: rakendamine
OpenBotil
See uurib võimalust rakendada Tugevdamisõppe (RL) algoritme täielikult nutitelefonis, et juhtida
hariduslikku robotplatvormi OpenBot. Selle uuringu eesmärk on välja selgitada, kas RL-i saab
teostada Android-nutitelefonides ilma simuleeritud keskkondadeta ja kas see oleks õpilastele
ja entusiastidele praktilise RL-projektina kättesaadav. Algselt testiti Sügav Q-Õpe (DQL) ja
Poliitikagradiendi (PG) algoritme standardsete RL-stsenaariumide Cartpole ja Pong abil. See
võimaldas saada ülevaate mõlemast algoritmist ja sellest, mida edukas RL-koolituses oodata.
Seejärel rakendati poliitikagradiendi algoritm täielikult OpenBoti juhtivas nutitelefonis, et sõita
15 sekundi jooksul üle raja. Üldiselt suudab agent pärast ligikaudu 400 poliitikagradienti ka-
sutavat koolitusepisoodi edukalt navigeerida rajal sihitud 15 sekundi jooksul pooltel katsetest.
Vaatamata uuringu julgustavatele tulemustele on mõned tehnilised väljakutsed endiselt lahtised,
nagu plahvatuslikud gradiendid, kaalu lähtestamise juhuslikkus ja inseneriprobleemid, nagu
suur akukulu.1

CERCS: T125 Automatiseerimine, robootika, juhtimistehnika; P176 Tehisintellekt

Märksõnad: Tugevdusõpe, kontroll, robootika, openbot, poliitikagradiendiv

Exploring Smartphone-Based Reinforcement Learning Control for Educational Robotics:
Implementation on OpenBot
This research explores the feasibility of implementing Reinforcement Learning (RL) algorithms
entirely on a smartphone to control an educational robotic platform, OpenBot. This study aims
to determine if RL can be executed on Android smartphones without simulated environments
and whether it would be accessible for students and enthusiasts as a practical RL project. Ini-
tially, Deep Q-Learning (DQL) and Policy Gradient (PG) algorithms were tested on standard
RL scenarios, Cartpole and Pong. This allowed to gain insights on both algorithms and what
to expect in a successful RL training. The policy gradient algorithm was then implemented
entirely on the smartphone controlling OpenBot to drive across a track for 15 seconds. In gen-
eral, after approximately 400 episodes of training using policy gradient, the agent was able to
successfully navigate the track for the aimed 15 seconds in half of its attempts. Despite the
encouraging results of the study, some technical challenges remain open, such as, exploding
gradients, the randomness of weight initialization, and engineering challenges such as high bat-
tery consumption.

CERCS: T125 Automation, robotics, control engineering; P176 Artificial Intelligence

Keywords: reinforcement learning, control, robotics, openbot, policy gradient

1The abstract was translated by Anastasia from Fiverr.

2

Contents

Resümee/Abstract 2

List of Figures 6

Abbreviations. Constants. Generic Terms 8

1 Introduction 9
1.1 Context . 9
1.2 Problem Statement and Objectives . 9
1.3 Structure of the Manuscript . 10

2 Introduction to Reinforcement Learning 12
2.1 Origin and Application . 12
2.2 First Steps into Reinforcement Learning . 13

2.2.1 Introduction to terms used in Reinforcement Learning 13
2.2.2 Markov Decision Processes . 15
2.2.3 Bellman equations . 16
2.2.4 Exploration vs Exploitation in Reinforcement Learning 17

2.3 Challenges with Reinforcement Learning . 18
2.3.1 Challenges of Implementing Reinforcement Learning on Hardware-Constrained

Platforms . 18
2.3.2 Challenges of Implementing Reinforcement Learning on a Smartphone 19

3 Reinforcement Learning Methods and Algorithms Studied in this Thesis 20
3.1 Q-Learning . 20
3.2 Artificial Neural Networks . 21
3.3 Deep Q-Learning . 23
3.4 Policy Gradient . 24

4 Presentation of OpenBot 25
4.1 Description of OpenBot . 25

4.1.1 Hardware Components . 25
4.1.2 Mechanical Assembly & Electrical Configuration 26

4.2 Presentation of the App . 26
4.3 Introduction to the Server and Python Scripts 27

4.3.1 Python Server . 27
4.3.2 Python Scripts . 29

3

5 Foundational Experiments 30
5.1 Preliminary Attempt at Implementing Reinforcement Learning on OpenBot . . 30

5.1.1 Experiment Description and Objectives 30
5.1.2 Adding the OpenCV library to Android Studio and OpenBot’s Base Code 31
5.1.3 Creating the new Feature . 31
5.1.4 Implementation of the Reward: . 32
5.1.5 Experiment Protocol . 35
5.1.6 Results . 36
5.1.7 Conclusion and Discussion . 38

5.2 Implementing Reinforcement Learning Algorithms In Different Scenarios . . . 39
5.2.1 Cartpole . 39
5.2.2 Pong . 42
5.2.3 How These Examples Help Prepare for the Implementation of Rein-

forcement Learning on OpenBot . 48

6 Methodology to Implement Reinforcement Learning on OpenBot 49
6.1 Updated Experiment and Objectives . 49
6.2 Implementing Reinforcement Learning Features 51

6.2.1 State . 51
6.2.2 Reward . 52
6.2.3 Actions and Termination . 52
6.2.4 Epsilon-greedy . 53

6.3 Creating the Model and Implementing Policy Gradient 54
6.3.1 Model initialization . 54
6.3.2 Model Forward and Backward pass 54
6.3.3 Gradient Ascent . 54
6.3.4 Training Process . 55

6.4 Difficulties Arising with Implementation . 56
6.4.1 Using ArrayLists . 56
6.4.2 Errors with the Random Action . 57
6.4.3 Crashing if Restarting too Fast . 57
6.4.4 Time and Battery Consumption . 57
6.4.5 Exploding Gradient . 57

6.5 Protocol . 58

7 Ensuring Safety of the Robot and its Surrounding 59
7.0.1 Manual Emergency Stop Using Controller 59
7.0.2 Automatic Stop When Exiting the Open Circuit 59
7.0.3 Pre-existing feature on OpenBot . 59

8 Results 60
8.1 Training Duration and Variability . 60
8.2 Learning Progress and Performance Milestones 60
8.3 Crashing and Losing Models . 60

9 Discussion 62
9.1 Interpretation of the Results . 62
9.2 Limitations of the Study . 63
9.3 Recommendations for Future Research or Work 63

4

9.4 Additional Notes . 63

10 Conclusion 65

Bibliography 67

Appendices 70
10.1 External Tools Used in the Making of this Thesis 70
10.2 Implementing OpenCV on Android Studio . 70
10.3 Forward and Backward Policy . 72

Non-exclusive license 74

5

List of Figures

2.1 Illustration of the Cat (agent) situation and its two possible action. 14
2.2 Graphical representation of epsilon evolution over 10000 episodes with initial ϵ

set to 0.15 and decay rate to 0.999. 18

3.1 Simplified Artificial Neural Network with a picture of a cat of size 128x256x3
as the input, followed by an undetermined number of hidden layers and nodes
and finally the output layer with two nodes; probability of the image to be a dog
and probability to be a cat. In between each layer, there are Weights connecting
each node to all the following nodes of the next layer. 22

4.1 Picture of OpenBot Ready-To-Run model with smartphone mounted. From
OpenBot’s GitHub [28]. 25

4.2 Wiring diagram. Electrical connections between battery, motor driver, micro-
controller, speed sensors, sonar sensor and indicator LEDs. From the OpenBot
GitHub and paper [27] [28]. 26

4.3 Preview of the data collected with pictures flashed consecutively like a video,
the option to move directory is also displayed as ’Actions’. 27

4.4 Screenshot of the server’s model uploading scheme. The same model can be
uploaded multiple times under different names and uploaded models can be
deleted. 28

4.5 Screenshot of the models details, the model is uplaoded to the OpenBot app by
clicking the ’Push to Phone’ button. 28

5.1 Illustration of the reinforcement learning process in the line following scenario
on the left and picture of the circuit on the right. 31

5.2 Display of photos before and after processing to detect the line to follow. On
the left is displayed the ideal result of line detection. On the right is example on
how the luminosity impacts the result and could be problematic. 33

5.3 Simplified Flow Chart of the Reinforcement Learning protocol in the prelimi-
nary experiment. 36

5.4 Screenshot of the Cartpole game with a cart attached on an horizontal axis and
the pole vertically standing above. 39

5.5 Data flow of the algorithm for training a DQN agent to play cartpole. Diagram
taken from the tutorial [34]. 41

5.6 Graphs of 4 different instance of training the model on Cartpole, with the same
hyperparameters for each, showing how training varies from one training to
another. 42

6

5.7 Picture of Pong-v0 from the OpenAI gymnasium library [33] rendered in rgb array.
On the left, in brown, is the computer simply following the ball and playing
against the agent in green, on the right. 43

5.8 Illustration of the ANN model trained to play Pong. Image from Andrej Karpa-
thy’s blog [37]. 45

5.9 Plot showing the moving average of rewards over the last 100 episodes during
the 50k-episode training. 46

5.10 Graphical representation of the performance of the two models, in blue the orig-
inal and in orange the modified model with two outputs. Performance is calcu-
lated using the reward moving average of the last 100 episodes and the models
were trained on 15k episodes. 48

6.1 Picture of an extremity of the open circuit, displaying the setup of a black plastic
bag over a clear floor and white tape to structure the track. 50

6.2 Screenshot of the new policy gradient feature added when first opening the
OpenBot app. 51

6.3 Processed image received by the model, the image is of size 128x30. 51
6.4 Screenshot of the UI on a Redmi Note 11 of the POLICYGRADIENT feature

showing the different possible interactions such as the possibility to enter an
epsilon value and to toggle the resume training. 53

6.5 Simplified Flow Chart of an episode in this experiment. 56

7

Abbreviations, Constants, Generic Terms

AI - Artificial Intelligence

ANNs - Artificial Neural Networks

app - Mobile Application

CPU - Central Processing Unit

DQL - Deep Q-Learning

DRL - Deep Reinforcement Learning

GPU - Graphics Processing Unit

ML - Machine Learning

MDP - Markov Decision Process

MoR - Mean of Rewards

MSE - Mean Squared Error

PG - Policy Gradient

PS4 - PlayStation 4

OTG - On-The-Go

RL - Reinforcement Learning

RMSProp - Root Mean Square Propagation

ROS - Robotic Operating System

RTR - Ready-To-Run

UI - User Interface

8

1 Introduction

1.1 Context
With the current rapid evolution of Artificial Intelligence and Machine Learning (ML), Rein-
forcement Learning (RL) is becoming increasingly sophisticated, allowing machines to learn
complex behaviors and make autonomous decisions in dynamic environments. Machine learn-
ing in general is also becoming more accessible to the public and is used in many fields. How-
ever, reinforcement learning remains less popular than supervised and unsupervised learning.
There are generally fewer classes and courses focusing on reinforcement learning compared to
supervised and unsupervised learning. Nonetheless, reinforcement learning is an emerging and
promising field with thousands of research paper published every year [1].

At the same time, the spread of smartphones presents a unique opportunity. According
to the Global System for Mobile Communications Association, as of 2023, 54% of the world
population owns a smartphone [2] and smartphones keep getting better sensors, cameras and
computing power. Smartphones also have familiar interfaces and people are used to manipulate
them. This makes smartphones accessible and interesting tools in learning or teaching robotics.

Additionally, there already are works aiming to introduce smartphones to robotics such as
the work on ROS-Mobile, implementing the Robot Operating System (ROS) to Android [3].
ROS is a widely used framework in robotics research and industry for building robot software.
By bringing ROS to mobile platforms, such as smartphones, researchers and developers gain ac-
cess to a wide range of tools and libraries for developing robotic platforms running with smart-
phones. Other works in integrating smartphone to robotics to help with education in robotics
can date as far as 2014 [4].

While not quite there yet, machine learning training is also making its way to smartphones,
using TensorFlow Lite [5] the model can be read by the Android phone. However, concerning
training directly on the smartphone, not many libraries exist and the models often require to be
hand-made. This means the learning is not as efficient and limited to small models.

1.2 Problem Statement and Objectives
While using a smartphone in robotics can have its advantages, it also comes with challenges.
Training Artificial Neural Networks (ANNs) can require a lot of computation and cause latency
when giving orders to the agent or during the update. Moreover, making complex calculations
for an extended amount of time drains the battery of the phone that needs to be recharged
multiple times during training. While computation and battery constraints present challenges,
there are also difficulties related to the programming environment.

Java is a powerful and rapid programming language but it is not as used as its counterpart
Python for machine learning, especially on mobile apps. It does not share as many libraries
and tools to train models or set up RL environments. Additionally, there are limitations when

9

running the program on a smartphone compared to a computer, with regulations and harder to
implement external libraries/packages. In addition to these technical challenges, the approach
to RL training in the real world environment adds another layer of complexity.

Most projects available online for reinforcement learning use a simulated environment [6],
but, while it is safer, ML and RL aim to ultimately be used in real world scenarios. RL training is
usually done in simulated environments for various reasons, the most notable ones being safety
and time. Indeed, training in simulated environment can be greatly accelerated especially if the
environment does not need to be rendered. Moreover, the environment is waiting for the agent’s
update to update itself which is not the case when training in the real world. Additionally,
some systems do not have simulated environments attached able to integrate RL or that can
translate perfectly into the real-world environment. Although training directly in the real world
poses numerous challenges, it is also the final goal in robotics to have the model work on a real
robot. These challenges include safety of exploration during training, the large computation and
possible latency resulting from it or the time and manpower required for the training. However,
in a real world environment, having to train an agent for 40 hours can be hard to manage. It is
also notably more difficult to train in parallel with numerous episodes running simultaneously
and updating the same model.

This thesis aims to see the feasibility of implementing RL entirely on an Android smart-
phone. Moreover, implementing it on an educational platform such as OpenBot to verify the
potential for an educational and pratical RL project. The policy gradient algorithm is imple-
mented on the smartphone to train a model to stay on the track of a simple circuit for 15 sec-
onds. The OpenBot platform used in this thesis is described in chapter 4, it is accessible and
affordable to build and use. OpenBot has no simulated environment, its learning is done only
with real-world interactions.

In this study, the smartphone used is a Samsung Galaxy S22 Ultra with for its GPU the
Samsung Xclipse 920 and the Octa-core CPU. The computer used has the NVIDIA GeForce
RTX 4070 Ti for GPU or the 13th Gen Intel(R) Core(TM) i7-13700F as CPU. Android Studio
is the software used to program the OpenBot app.

The execution of this research project relied heavily on the insights offered in the second
edition of Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto
[7]. This influential textbook provided a great framework for understanding the principles and
methodologies of reinforcement learning.

1.3 Structure of the Manuscript
The remainder of the manuscript is structured as follows:

• Chapters 2 and 3 introduce Reinforcement Learning:

– The sections 2.1 and 2.2 present the origin, important concepts and keywords in RL

– The section 2.3 discusses challenges with RL encountered during this thesis

– The chapter 3 describes different RL algorithms and introduces Artificial Neural
Networks

• Chapter 4 presents the robotic platform OpenBot :

– The section 4.1 describes the hardware components, mechanical assembly and elec-
trical configuration

10

– The sections 4.2 and 4.3 introduce the mobile application (App), the python scripts
and the python server

• Chapter 5 describes three foundational experiments:

– A preliminary experiment to implement RL on OpenBot is presented in section 5.1

– Section 5.2 shows the implementation of the previously introduced RL algorithms
in two scenarios: Cartpole in subsection 5.2.1 and Pong in subsection 5.2.2

• Chapter 6 presents the methodology for implementing RL on OpenBot:

– The experiment and its objective are presented in section 6.1

– The state, rewards, actions, termination and exploration-exploitation are implemented
in section 6.2

– The section 6.3 describes how the Model is initialized and how policy gradient is
implemented

– The difficulties encountered during the implementation are presented in section 6.4

– Section 6.5 provides a simple protocol to repeat this experiment

• Safety features are presented for the robot and its surrounding during training in chapter
7

• The results are presented in chapter 8

• chapter 9 discusses the results:

– The results are interpreted and the limitations of the study discussed in sections 9.1
and 9.2

– Section 9.3 proposes recommendations for future research or work

– Section 9.4 presents additional notes concerning the choice of the algorithm and the
foundational experiments in

• Chapter 10 is the conclusion of this study

11

2 Introduction to Reinforcement Learning

This chapter introduces reinforcement learning, starting with its origin. Next, the terms fre-
quently used in RL are listed and Markov Decision Processes (MDPs) are rapidly explained.
Then, the Bellman equations at the base of most RL algorithms are presented. The equations
are followed with an important part of reinforcement learning: exploration vs. exploitation
during training. This allows the model to learn from new experiences during exploration and
exploiting what it has learned afterwards. Finally, the challenges of implementing RL directly
in the real-world environment and entirely on a smartphone are discussed.

2.1 Origin and Application
Reinforcement learning is a type of machine learning where an agent learns to make decisions
by trying different actions and observing the outcomes. The agent aims to maximize the rewards
it receives from its actions over time. The idea behind it comes from psychology research such
as the one from Thorndike [8] in 1911 in Animal Intelligence, that gives the following Law of
Effect:

”The Law of Effect is that: Of several responses made to the same situation, those
which are accompanied or closely followed by satisfaction to the animal will, other
things being equal, be more firmly connected with the situation, so that, when it
recurs, they will be more likely to recur; those which are accompanied or closely
followed by discomfort to the animal will, other things being equal, have their con-
nections with that situation weakened, so that, when it recurs, they will be less
likely to occur. The greater the satisfaction or discomfort, the greater the strength-
ening or weakening of the bond.”

Other psychological studies also affirmed and contributed to the beginning of RL such as the
work of B.F Skinner [9] [10] in The Behavior of Organisms or Science and Human Behavior
adding to the theory of behavioral learning from rewards and punishment.

But it was only later, in the 50s that RL started to apply to machine learning with the multiple
contributions of Richard Bellman. He introduced Dynamic Programming [11], Markov Deci-
sion Processes (MDPs) [12] and laid the foundations of Bellman equations commonly used in
reinforcement learning and described in subsection 2.2.3. Then, Arthur Samuel worked on one
of the first practical application of reinforcement learning using the game of checkers [13]. In
his study, he explained how the model is ”looking-ahead” each possible moves and computing
positional advantage to select the ”best move” which can be compared to trying different actions
and observing the outcome to make decisions based on positive and negative values.

12

Afterwards, many fundamental algorithm in reinforcement learning such as Q-learning [14],
Temporal Difference [15], Sarsa [15], Dyna-Q [16], Deep Q-Learning [17] and Policy Gradient
[18] were introduced. Q-learning, Deep Q-learning and Policy Gradient are presented in chapter
3 and used in this study.

Research in reinforcement learning extends across various domains. In robotics, for in-
stance, researchers can focus on training robotic hands to manipulate objects with precision
and agility. Notable examples include the work of an OpenAI team focused on reorienting
a cube in a desired configuration using an intricate robotic hand [19]. In gaming, RL algo-
rithms have made significant progress, as showed by the work of Mnih et al. who employed the
Deep-Q-Network algorithm to train models to play Atari games [17]. Achieving human-level
performance or better, these models represent a significant advancement in gaming AI. Then,
in healthcare, RL can be used to optimize treatment strategies, with promising results observed
in applications such as sepsis treatment [20]. Furthermore, RL techniques have found applica-
tions in finance and trading, one example is algorithms aiming to maximize cumulative returns
through portfolio management strategies [21]. RL can also be used with autonomous system,
the interesting work of Kendall et al. shows the possibility of a real car to learn to stay on
the road in a efficient time manner which has a similar objective to the work presented in this
study [22]. However, they first used a simulated environment in order to fine tune hyperparam-
eters which is not done in this research and the computation is done on board using a NVIDIA
Drive PX2 computer. The NVIDIA Drive PX2 is designed specifically for training autonomous
cars. This allows the training of a complex Deep Reinforcement Learning (DRL) model which
is currently not feasible on a smartphone.

While the field of reinforcement learning is evolving rapidly, it remains primarily in the
experimental and research stages. It has only a few industrial applications, unlike more es-
tablished machine learning methods such as supervised learning, which already have multiple
industrial applications. Although its potential has been demonstrated multiple times, reinforce-
ment learning still faces numerous challenges. These include issues with sampling efficiency,
designing robust reward functions, and the increasing dependence of DRL on specific environ-
ments [23]. Finally, RL is not taught as much as the other ML methods such as Supervised and
Unsupervised Learning making it less accessible for beginners and students despite its potential
for solving complex real-world problems.

2.2 First Steps into Reinforcement Learning
This section introduces the foundational concepts of reinforcement learning. It begins with
an explanation of key terms and concepts, followed by the presentation of Markov Decision
Processes (MDPs) and Bellman equations. Finally, the concept of exploration and exploitation
in RL is presented.

2.2.1 Introduction to terms used in Reinforcement Learning
Following is a list of all the important terms in RL and their meaning, they will be used through-
out this study and can be referenced back here.

1. Agent: The entity or system that learns and interacts with the environment in RL.

2. Environment: The external system or surroundings with which the agent interacts.

3. State s: A specific situation or configuration of the environment at a particular time. The
state at time t is written as St.

13

4. Action a: The decision or choice made by the agent in response to a given state. The
action at time t is written as At.

5. Reward R: A scalar value that indicates the immediate feedback or outcome received by
the agent after taking an action in a specific state.

6. Return G: The return corresponds to the sum of the rewards.

7. Policy π: The strategy or set of rules that governs the agent’s decision-making process,
mapping states to actions.

8. Value Function vπ(s): A function that estimates the expected cumulative reward or value
of being in a particular state and following a particular policy.

9. Q-Value (Action-Value Function) on policy qπ(s, a): A function that estimates the ex-
pected cumulative reward of taking a particular action in a particular state and following
a particular policy thereafter.

10. Q-Value (Action-Value Function) off policy q(s, a): A function that estimates the ex-
pected cumulative reward of taking a particular action in a particular state, computed
using past experience.

11. Off-Policy Learning: A learning method in RL where the agent learns from a different
policy than the one it uses to select actions.

12. On-Policy Learning: A learning method in RL where the agent learns from the same
policy that it uses to select actions.

Let’s take a simple example, a cat (considered here the agent) in its initial position that can
choose between two actions: going right or going left. On its left, there is a dog, and on its right,
there is a mouse. The cat does not know the consequence of each action and will be moving at
random. Since the cat is moving at random, the policy is equiprobable, meaning the probability
of taking the action a (left or right) in any state s ∈ S, S being all the possibles state in the
environment, under the policy is π(a|s) = 0.5 with a any action in the set of possible action
A. This situation is illustrated in the figure 2.1 below. Here, the cat is pleased to find a mouse
so going right would provide a positive reward R = 1. However, if the cat goes to the left, it
will meet the dog and will be displeased, the reward is then set to R = −1. In this scenario,
let’s define the two actions as follows: [left, right] ∈ A, the action-value function obtained is
qπ(S0, right) = 1 and qπ(S0, left) = −1, S0 being the initial state. Finally, in this situation, the
agent is as likely to go to the left as the right, meaning its value function under the equiprobable
policy in the initial state S0 would be vπ(S0) = 0.5 ∗ 1 + 0.5 ∗ −1 = 0.

Figure 2.1: Illustration of the Cat (agent) situation and its two possible action.

14

2.2.2 Markov Decision Processes
A Markov Decision Process (MDP) is the mathematical framework used to model decision-
making problems in which an agent interacts with an environment over a series of discrete time
steps. MDPs serve as the foundational framework within reinforcement learning. Using the
previous scenario with the cat, here is how it would be described as a MDP:

• States (S):

– S0: Initial position of the cat.

– Sdog: Cat meeting the dog.

– Smouse: Cat meeting the mouse.

• Actions (A):

– Move left: left

– Move right: right

• Transition Probabilities (P):

– Deterministic transitions:

P (Sdog|S0, left) = 1

P (Sdog|S0, right) = 0

P (Smouse|S0, right) = 1

P (Smouse|S0, left) = 0

• Rewards (R):

– Immediate rewards:

R(S0, left) = −1
R(S0, right) = 1

• Policy (π):

– Equiprobable policy:

π(left|S0) = 0.5

π(right|S0) = 0.5

Describing the scenario as a MDP is helpful when programming the algorithm and under-
standing how to use the Bellman equations explained just below.

15

2.2.3 Bellman equations
Previously, a simple scenario was presented, however, the environment is not usually as simple,
with more actions and states available. The value function v under the policy π was simple to
compute, but rapidly becomes more complex when adding steps and possible actions.

Following is the general equation for the value function:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)] (2.1)

The value vπ(s) corresponds to the expected cumulative reward also called return that the
agent gets from being in a state s ∈ S and following a policy π. The first sum

∑
a

π(a|s)

indicates the probability of taking each action a in state s under the policy π. The second sum∑
s′,r

p(s′, r|s, a) summing over all possible outcomes of the action a in state s, weighted by their

probabilities p(s′, r|s, a), in here s′ is the next state and r the immediate reward for reaching
this new state. The last expression [r + γvπ(s

′)] calculates the immediate reward r received
upon transitioning to state s′ from state s after taking action a and the discounted value γvπ(s

′)
of the next state under the same policy. The discount factor γ is a tunable hyper-parameter that
ensures immediate reward are valued more than future rewards.

Another important function is the value-action function qπ(s, a) corresponding to the ex-
pected cumulative reward that the agent gets from being in a state s and then taking the specific
action a. It is similar to the value function, except the action is already selected, the first sum is
removed and the value-action function is obtained:

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)] (2.2)

The two equations 2.1 and 2.2 are the ”Bellman Expectation Equation”, they compute the
expected returns from a state or state-action pair following a specific policy π. Now, the aim
of reinforcement learning is to optimize the return. For it, there are the ”Bellman Optimality
Equations”, they characterize the optimal policy and compute the optimal value of the state and
state-action pairs. They use the max operation function to find the optimal action, following are
the Bellman Optimality Equations:

v∗(s) = max
a∈A(s)

q∗(s, a)

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]

(2.3)

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)] (2.4)

The ∗ represents the optimal policy (with the largest return), so the equation 2.3 corresponds
to the optimal value function v∗(s) for state s. It is the maximum expected return that can be
achieved from state s by following the optimal policy. It indicates that the value of state s is
equal to the largest expected return obtained by taking the maximum over all possible actions
a and summing over all possible next states s′ and immediate rewards r that can occur when
taking action a in state s.

The second equation 2.4 corresponds to the optimal action-value function for state-action
pair (s, a). It represents the maximum expected return that can be achieved by taking action a in
state s under the optimal policy. It sums over all possible next states s and immediate rewards r

16

that can occur when taking action a in state s, weighted by their probabilities p(s′, r|s, a). Each
term in the sum represents the immediate reward r obtained upon transitioning to state s′ from
state s by taking action a, plus the discounted maximum value γmax

a′
q∗(s

′, a′) of the next state

s′ under the optimal policy ∗. Once again, the discount factor γ is a tunable hyper-parameter
that ensures immediate reward are valued more than future rewards.

More information about the Bellman’s equation can be found in the Chapter 3 of the second
edition of Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto
[7].

2.2.4 Exploration vs Exploitation in Reinforcement Learning
In RL, exploitation involves selecting the action with the highest expected return according to
the current policy, while exploration is trying alternative actions to discover potentially bet-
ter strategies. Exploration often involves random selection of actions and significant research
is devoted to finding optimal strategies for balancing exploration and exploitation effectively.
Additionally, considerable effort is directed toward optimizing exploration strategies since ex-
ploring randomly can be very time consuming.

In this study, the epsilon-greedy method is employed as the exploration strategy. Its origin
is difficult to trace but was made popular by Richard S. Sutton and Andrew G. Barto in the first
edition of their book published in 1998 [7]. The epsilon-greedy method is simple but is still a
very popular approach for balancing exploration and exploitation. Here’s how it works:

At the start of the learning process, the value of epsilon (ϵ) is initialized. If it is initialized
to a value close to 1, it indicates that the agent prioritizes exploration over exploitation. As the
learning progresses, epsilon gradually decreases over time according to a predefined decay rate.
During each iteration or time step, the agent faces a decision: whether to explore or exploit.
To make this decision, the agent generates a random number between 0 and 1. If this random
number is less than epsilon, the agent chooses to explore by selecting a random action from
the action space. However, if the random number exceeds epsilon, the agent follows its current
policy and exploits the action with the highest estimated value. By gradually reducing epsilon
over time, the agent’s behavior shifts from exploration towards exploitation as it gains more
experience and confidence in its learned policy.

In Figure 2.2, the evolution of epsilon is illustrated with an initial epsilon value of 0.15 and
a decay rate of 0.999 over 10000 episodes. In the first few episodes, there should be a bit more
than 1 in 10 actions that are exploratory (random) and near 6000 episodes the exploration is
over.

17

Figure 2.2: Graphical representation of epsilon evolution over 10000 episodes with initial ϵ set
to 0.15 and decay rate to 0.999.

2.3 Challenges with Reinforcement Learning
The section below addresses the difficulties encountered when applying reinforcement learning
in real-world scenarios and on mobile devices.

2.3.1 Challenges of Implementing Reinforcement Learning on Hardware-
Constrained Platforms

There are two main challenges of implementing RL on a platform without simulated environ-
ments (Hardware-Constrained) discussed in this study: Safety and time consumption coming
with training a model.

Training an agent in the real world comes with an obvious safety concern, as any action
taken by the agent have real-world consequences. Potentially the agent could cause harm to it-
self, its surrounding or even someone. Fortunately, the platform used in this study and presented
later in chapter 4 is relatively robust. Most pieces are replaceable, moreover, they are unlikely
to break because of a crash even at the maximum speed. However, it is important to stay careful
of stairs or steps since the smartphone is the most valuable item that can be damaged if the robot
falls badly. The most likely pieces to break are the push sensors in the front and the back of the
robot but they are easily replaced or disconnected. Nevertheless, it is important to implement
safety features during training to protect the robot, its surrounding and people or pets that may
be present during training. The implementation of two safety features are discussed in chapter
7 to avoid the robot straying and putting itself or others in danger.

Finally, training an agent using reinforcement learning can be very time-consuming. Indeed,
it can take tens of thousands of episodes for the agent to reach an optimal policy, and even
without rendering the environment and accelerating the process, it can take days to train, as
seen in teaching an agent to play Pong in the section 5.2.2. In the real-world environment,
accelerating the process by skipping frames or not rendering is not a possibility. Having multiple
agents running in parallel to train the same model, while maybe conceivable using a single main

18

computing unit training the model with all the agent reporting to it, would require a person per
agent to monitor and can become very expensive.

In this study, only one agent is available and one person to monitor it. To avoid taking too
long making a model from scratch and dealing with trial and errors in the real environment, first
trials were made on two scenario : Cartpole presented in section 5.2.1 and Pong presented in
section 5.2.2.

2.3.2 Challenges of Implementing Reinforcement Learning on a Smart-
phone

There are multiple challenges in implementing RL on a smartphone, such as the computing
power of smartphones compared to traditional desktop or server setups and the battery con-
sumption during learning. While there are efforts to develop machine learning frameworks on
smartphones, with TensorFlow Lite [5] making models in a readable format to Android devices
for instance, they often lack functionality, performance and the community support that Python
has with ML.

The computing power difference can cause latency when computing the forward pass of
the model, especially in deep ANNs that can end up with millions of parameters. This also
significantly drains the battery, can heat up the smartphone and is also due to the absence of
optimization for ML in smartphones. The model has to be shallow and the task simplified
in order to achieve a successful RL implementation. Otherwise, the latency caused by the
computation during the forward pass is a concern for an agent interacting in the real world. The
external environment is not waiting for the agent to update to update itself. Moreover, by the
time the action is sent to the agent, there is the possibility that the agent is in a different position
and will crash.

19

3 Reinforcement Learning Methods and Al-
gorithms Studied in this Thesis

In this chapter, the different algorithms used and discussed in this study are introduced. This is
a simple introduction to these algorithms and their applications are discussed later in Chapters
5 and 6. Artificial Neural Networks (ANNs) are also introduced since Deep Q-Learning and
Policy Gradient use them. To learn more about these algorithms, reading the Chapters 5, 6, 9
and 13 of the book Reinforcement Learning: An Introduction [7] is highly recommended since
they were used as a base for this research.

3.1 Q-Learning
Q-Learning is considered one of the early breakthroughs of reinforcement learning, it was in-
troduced by Christopher Watkins in 1989 [14] in his thesis Learning from Delayed Rewards and
was detailed in a technical note published in 1992 [24]. Q-learning is considered an off-policy
control method because it approximates the optimal action-value function q∗ without taking into
account the policy. This means the agent is learning using its past experience and updating after
each new experience.

As a reminder, the action-value function is defined in 2.2.1 as the estimation of the expected
cumulative reward of taking a specific action in a particular state. It is defined by

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
(3.1)

The action-value function Q at state St and opting for the action At at time t is updated
after observing the new state St+1 and obtained reward Rt+1 after taking that action. For this,
Q needs to be arbitrarily initialized for all states s ∈ S and all actions a ∈ A except for the
terminal state that is set to Q(terminal, ·) = 0.

Instead of following a policy, this equation 3.1 uses max
a

Q(St+1, a) that returns the largest
expected return when in the new state St+1 by comparing the value for all the possible action in
that state. It is then multiplied by a discounting factor γ that needs to be determined. The pair
St, At is updated with a step size α, the obtained reward and the value of the best state-action
pair in the new state St+1 after taking the action At.

Then, after visiting the states enough times and selecting various action, the action-value
function should reach optimality. The algorithm below for Q-learning is quite straightforward
and should reach optimality as long as all pair continue to be updated, this is proved in the book
Reinforcement Learning: An Introduction [7] in Chapter 5.

20

Algorithm 1 Q-Learning with ϵ-greedy
Parameters: step size α ∈ (0, 1], small epsilon for ϵ-greedy ϵ > 0, discounting factor γ
Initialization: Initialize arbitrarily Q(s, a) for all s ∈ S+ and all a ∈ A. Initialize the
terminal state Q(sterminal, ·) = 0
for all Episodes do

Initialize S
for all Steps of Episode do

Choose action A from S using ϵ-greedy
Take action A and observe resulting state S ′ and rewardR
Q(S,A)← Q(S,A) + α

[
R + γmax

a
Q(S ′, a)−Q(S,A)

]
S ← S ′

end for
end for

3.2 Artificial Neural Networks
Artificial Neural Networks (ANNs), as the name implies, are models inspired by the structure
and function of biological neural networks in the brain. One of the first work introducing ANNs
is from Warren S. McCulloh and Walter Pits in 1943 [25]. ANNs consist of interconnected
nodes (or neurons) organized into layers: an input layer and output layer, with hidden layers
in-between. The model can be shallow with only one hidden layer or deep with multiple hidden
layers. Each node of each layer is connected to all the node of the following layer with different
weights. In addition to these connections, each node applies an activation function to its input
before passing it to the next layer. This activation function introduces non-linearity into the
network, enabling it to capture complex relationships in the data. This allows the model to find
features in the input leading to the final output. A common example is a model taking as input
pictures and giving as output whether the image is a dog or a cat as seen in figure 3.1. The
features extracted by the model can be focusing on colors, angles and are not easily understood
by humans when the model is deep and complex. However, image recognition and labeling has
become more and more accurate over the years thanks to Convolutional Neural Networks and
other methods but they are not discussed in this study.

ANNs are mostly used for non-linear function approximation, meaning for cases where the
relationship between variables are not linear which is the most common scenario. This non
linearity is achieved thanks to the activation function. The activation function is applied to the
weighted sum z at a node, the most common ones are:

• Sigmoid function:

σ(z) =
1

1 + e−z
(3.2)

• Hyperbolic Tangent (tanh) function:

tanh(z) =
ez − e−z

ez + e−z
(3.3)

• Rectified Linear Unit (ReLU) function:

ReLU(z) = max(0, z) (3.4)

21

• Softmax function:
softmax(zi) =

ezi∑n
j=1 e

zj
(3.5)

Figure 3.1: Simplified Artificial Neural Network with a picture of a cat of size 128x256x3
as the input, followed by an undetermined number of hidden layers and nodes and finally the
output layer with two nodes; probability of the image to be a dog and probability to be a cat.
In between each layer, there are Weights connecting each node to all the following nodes of the
next layer.

In order to have good results, the model requires training, before starting the training, the
weights connecting the nodes are initialized. There are different ways for initialization, the
random initialization with a small range, the normal or naive initialization where the values
are drawn from a normal distribution with mean 0 and small standard deviation. Finally, in this
study is also used the Xavier or Glorot initialization with the weights initialized using the first
equation of their study [26]:

Wij ∼ U

[
− 1√

n
,

1√
n

]
(3.6)

Where U [−a, a] is the uniform distribution in the interval (−a, a) and n is the size of the
previous layer (the number of columns of W).

The objective of ANNs is to have the model learn or discover features to give the most
accurate output. During training, the weights need to be updated, in order to have better results.
In supervised learning, the model has labeled data known as ground truth to which it can
compare how far away from the truth it was when it was given the input and provided the
output. In reinforcement learning, there are no ground truth to compare the results, what is given

22

is whether the action taken had a positive, negative or neutral impact to reach the given objective
compared to the expected outcome. In supervised learning, the discrepancy between predicted
and actual values is typically quantified using a loss function, while in reinforcement learning,
the assessment of the agent’s actions against the desired objective is similar to the concept of a
loss function.

The action of giving the input to the model that will then compute the output is called the
forward pass, the weights are not updated during this forward pass. After the forward pass,
the accuracy of the prediction is computed in order to update the weights. The updating of
the weights is done after what is called the backward pass. During this backpropagation, the
gradient of the loss function with respect to each weight in the network is calculated, which
indicates how much each weight contributed to the error. Then, using this gradient information,
the model updates its weights to minimize the error, improving its performance over time.

ANNs have become increasingly powerful and are now commonly used in everyday ap-
plications. They greatly helped advance the field of reinforcement learning, particularly with
algorithms like deep Q-learning and policy gradient, which are presented below.

3.3 Deep Q-Learning
Deep Q-Learning (DQL) was introduced in 2013 by DeepMind to play Atari games [17], it is a
mix between Q-Learning discussed in the section 3.1 and the Artificial Neural Networks in the
section 3.2. Many Atari games have images as input with other parameters such as life points
or different bonuses. It is impossible to compute all possible states if the image is coloured and
is even as small as 32 ∗ 32 ∗ 3 pixels, there are 2563072 different combinations. This is why the
use of ANNs is so powerful, if done properly, it can find the important features of the input in
order to provide an accurate output.

In DQL, the ANN is used to compute the action-value function Q(S, a) for each action
a ∈ A at a particular state S. The output size is then the size of the number of action. Here is
the algorithm for Deep-Q Learning inspired by the study [17]:

Algorithm 2 Deep Q-Learning with ϵ-greedy and Experience Replay
Parameters: small epsilon for ϵ-greedy ϵ > 0, discounting factor γ
Initialization: Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
for all Episodes do

Initialize state s1 = x1 and preprocessed state ϕ1 = ϕ(s1)
for all Steps of Episode do

Select random action with probability ϵ
Otherwise select at = max

a
Q∗(ϕ(st), a; θ)

Take action at and observe resulting image xt+1 and reward rt
Set st+1 = st, at, xt+1 and preprocess ϕt+1 = ϕ(st+1)
Store transition (ϕt, at, rt, ϕt+1) in D
Sample random minibatch of transitions (ϕt, at, rt, ϕt+1) from D

Set y =

{
rj for terminal ϕj+1

rj + γmax
a′

Q(ϕj+1, a
′; θ) for non-terminal ϕj+1

Perform a gradient descent step on (yj −Q(ϕj, aj; θ))
2

end for
end for

23

In this algorithm, x corresponds to the image given by the Atari game, it is preprocessed
using the function ϕ so useless features are already removed to help with computation and time
required for learning. To reduce computation, random minibatch from the memory are taken
to train the model, meaning the order is not important and the state-action pair are randomly
’visited’ by the model.

Using this method, they were able to play 7 Atari games. Their approach surpassed previous
methods in 6 of these games and even outperformed human experts in 3 of them. In this study,
the method is used in playing Cartpole in section 5.2.1 and completed its training in less than
600 episodes.

3.4 Policy Gradient
Policy gradient is another interesting reinforcement learning method. Unlike Q-Learning and
DQN, in policy gradient methods, the aim is to improve the policy using gradients to update
the ANN model during backpropagation. The aim is to maximize the rewards when updating
the model, using gradient ascent. These type of PG methods were introduced in 1992 and were
called REINFORCE algorithms [18]. In this case, the PG learns a parametrized policy that
can select an action without using a value function. A value function can still be interesting
to learn the policy parameter but is not required during action selection. As the objective is to
maximize the performance, the update of the model is done using gradient ascent using a scalar
performance measure J(θ):

θt+1 = θt + α ̂∆J(θt) (3.7)

Here, θ represents the parameters of the policy, in this case the weights of the model, and
J(θ) is a performance measure indicating how well the policy performs. By iteratively ad-
justing θ in the direction of increasing J(θ), the policy improves over time, leading to better
performance in the given task.

Parameterized policies (ANNs) offer flexibility and can adapt to different environments
without explicitly computing value estimates for each action. This approach simplifies the
learning process and allows for more direct optimization of the policy. PGs can be implemented
in various ways and depends on the situation. In this study, the policy gradient algorithm is used
when updating the weights of the ANN model. The Root Mean Square Propagation (RMSProp)
is the performance measure ̂∆J(θt) and is presented in subsection 5.2.2 with the equation 5.9 .

24

4 Presentation of OpenBot

This chapter introduces OpenBot, an accessible and innovative platform for real-world exper-
imentation. OpenBot’s hardware, mechanical assembly and electrical configuration are pre-
sented. Then, the app used to control Openbot is introduced as well as the connected server and
python codes.

4.1 Description of OpenBot
OpenBot is a small robotic platform seen in Figure 4.1 made by Matthias Müller and Vladlen
Koltun in 2020 [27]. It is an accessible platform with open-source code. The small robotic
car has a smartphone as its main computing unit, it is used for control and various sensors.
This robot was designed to be cost efficient and use supervised learning algorithms to solve
different tasks such as people following, object tracking or point goal navigation. The code is
well documented on their GitHub [28] and provides explanation about training one’s own model
for a specific task.

Figure 4.1: Picture of OpenBot Ready-To-Run model with smartphone mounted. From Open-
Bot’s GitHub [28].

4.1.1 Hardware Components
The OpenBot platform has the following key hardware components:

• A standard RC car chassis, either bought or 3D printed.

• Four DC motors with tires.

25

• An Android smartphone for Control and Computation

• Arduino Nano

• Custom PCBs

• A USB on-the-go (OTG) cable for communication between the smartphone and the mi-
crocontroller.

• Various sensors, including the smartphone’s buit-in camera for vision-based navigation
and accelerometer, ultrasonic or push buttons for obstacle detection.

• Another phone or controller (PS4, Xbox,...) is required to send controls to the OpenBot.

For more information on how to build your robot, where to order it or about the custom
PCBs, please refer to the OpenBot paper [27] and GitHub repository [28]. For this thesis, the
OpenBot was the Ready-To-Run (RTR) model seen in Figure 4.1.

4.1.2 Mechanical Assembly & Electrical Configuration
OpenBot is designed to be compact, housing its microcontroller, motors, and PCBs within the
3D printed mount. It has an adjustable smartphone mount suitable for various sizes. While the
RTR model is chargeable, the Do It Yourself (DIY) version operates using three 18650 batteries.

Figure 4.2 shows the configuration with four motors and the various components enclosed
within the mount. The paired motors ensure synchronous control of the right and left wheels.
When a single motor stops functionning, the paired motor also ceases to operate despite receiv-
ing the command.

Figure 4.2: Wiring diagram. Electrical connections between battery, motor driver, microcon-
troller, speed sensors, sonar sensor and indicator LEDs. From the OpenBot GitHub and pa-
per [27] [28].

4.2 Presentation of the App
OpenBot uses a simple Android app for control and different feature, with the following being
the most pertinent for this study:

26

• Autopilot: This feature uses a trained tflite model uploaded to the smartphone, using data
from the phone such as the camera, accelerometer, gps and more as inputs. In a prior
project [29], this feature was successfully employed for autonomous navigation around a
predefined circuit.

• Model Management: This is an interface for managing all uploaded models on the smart-
phone. Users can organize, delete, or download models, categorizing them as needed.

• Data Collection: A critical aspect of this experiment, the Data Collection feature records
data from various sensors and the control log, saving the information in .txt or .png
formats. This data is then uploaded to the smartphone or a remote Python server for
machine learning algorithm training.

• Free Roam: This feature enables users to control the robot either through a controller
or another Android phone equipped with the controller app, available on the OpenBot
GitHub repository [28].

4.3 Introduction to the Server and Python Scripts
As mentioned earlier, smartphones currently lack the capability to train complex machine learn-
ing models directly on-device due to the absence of libraries and limited computational power
compared to common computers. To address this limitation, OpenBot uses a Python server used
to exchange data between the smartphone and a computer. This allows the use of Python scripts
for model training with TensorFlow [5].

4.3.1 Python Server
The Python server takes care of the flow of data between the robot and the computer. The
process involves the robot transmitting compiled data to the server. The folder containing the
datasets is stored in the designated ’uploaded’ directory. This folder features a preview option
seen in fig 4.3 and the users can relocate it to either the training or testing directory, or delete it
in case of issues.

Figure 4.3: Preview of the data collected with pictures flashed consecutively like a video, the
option to move directory is also displayed as ’Actions’.

After training, the server recognizes the model in tflite format, this can be seen in figure
4.4. This registered model, customizable with a user-specified name, can be uploaded to the

27

OpenBot app as seen in figure 4.5. It is important to note that assigning an existing model name
will replace the older model.

Figure 4.4: Screenshot of the server’s model uploading scheme. The same model can be up-
loaded multiple times under different names and uploaded models can be deleted.

Figure 4.5: Screenshot of the models details, the model is uplaoded to the OpenBot app by
clicking the ’Push to Phone’ button.

28

4.3.2 Python Scripts
There are 12 different python scripts to process the data and train the models. There are also 10
scripts for the python server used for transmitting data from OpenBot to the computer, however,
they were not modified because of a lack of knowledge in Python servers programming. Finally,
there is a notebook in the .ipynb format for running all the scripts and training the models.

Here is a list of the 12 python scripts and what they do:

• init : This script takes care of the project structure and verifies the existence of essen-
tial directories for storing data and models.

• associate frames: The script is for synchronization between frames and control signals
as well as frames and rewards, for further analysis and training of machine learning mod-
els.

• callbacks: They are used for optimizing and monitoring the training of neural network
models. They can be employed based on specific requirements during the training pro-
cess.

• data augmentation: This script can be used to add diversity to the training dataset, which
can improve the generalization and robustness of machine learning models trained on the
data. However, it is not adapted to take into account rewards.

• dataloader: This class is designed access the labeled data for training neural network
models.

• losses: This script regroups all the loss functions.

• metrics: These metrics are designed to evaluate the performance of models in predicting
angles, specifically focusing on the absolute difference and the correct direction of the
angles.

• models: This script regroups all the available models for training.

• tfrecord: The script is used to generate TensorFlow Record (TFRecord) files from a
collected dataset. These TFRecord files are a more robust and efficient way of loading
data for training the model.

• tfrecord utils: This script is used for manipulating TensorFlow records (TFRecords).

• train: The train script is a training script for a neural network using TensorFlow. It
includes components for handling data in both directory format and TFRecord format, as
well as training and evaluation procedures. The script can be configured to train different
models (specified in the –model argument) with various hyperparameters. Additionally, it
supports loading data either from directories or TFRecord files, and it provides an option
to create TFRecord files from the raw data.

• utils: This script includes utility functions for working with TensorFlow and some related
libraries. These utilities cover a range of tasks related to machine learning and deep
learning workflows.

29

5 Foundational Experiments

This chapter presents three foundational experiments for this thesis. First, an attempt at imple-
menting reinforcement learning to the OpenBot platform using the python server and scripts
was done. This attempt allowed a better understanding of the OpenBot app, codes, how to
make a reward function and what are the next steps to implement RL directly on the smart-
phone. Then, deep Q-learning is implemented to a simple scenario: Cartpole, introducing a
first demonstration of a successful RL algorithm. Finally, policy gradient is used to train an
agent to play Pong, showing a second successful RL algorithm. All these experiments serve as
a strong base for the final implementation on the smartphone.

5.1 Preliminary Attempt at Implementing Reinforcement Learn-
ing on OpenBot

This section presents a preliminary attempt at implementing RL on OpenBot and the writing re-
flects what was believed at the time. This attempt used rewards, added them to the loss function
in order to maximize them, following the main idea of the ’Law of Effect’ behind RL. However,
it lacked the basic RL format, it was not following a MDP nor using a specific RL algorithm.
These differences are discussed in the Conclusion and Discussion in the subsection 5.1.7. While
this preliminary attempt had a flawed foundation, it was still crucial for this study as it was also
an introduction to the methodology for modifying and working with the OpenBot platform and
get more familiar with the app, programming in Java and creating a reward function.

5.1.1 Experiment Description and Objectives
The first experiment is a simple line following scenario described in figure 5.1. The main
objective is to have the agent learn to do laps on the circuit also seen in figure 5.1 without
straying too far away from the line. For this objective, a new feature on the app needs to be
created with a reward function. The python code also needs to be modified to take into account
the new reward and add it to the update of the model in order to maximize it. The ANN model
used is the same as the one used in Supervised Learning for OpenBot and the two methods are
compared to make laps around the circuit.

30

Figure 5.1: Illustration of the reinforcement learning process in the line following scenario on
the left and picture of the circuit on the right.

5.1.2 Adding the OpenCV library to Android Studio and OpenBot’s Base
Code

OpenCV [30] is a well-known open-source computer vision and machine learning software
library used for its vast array of image processing capabilities. It offers many functions for
image and video analysis, including feature detection, object recognition, and motion tracking.
It has extensive documentation and an active community support to help with its use.

The integration of the OpenCV library within Android Studio can be difficult, often requir-
ing a good understanding of versioning intricacies across OpenCV, Android Studio, and the
custom code. This process requires careful attention to version compatibility to avoid conflicts
and ensure a correct integration.

The integration of the OpenCV library was first done in a simple code environment be-
fore being applied to the OpenBot app codebase. This preliminary step helped gain a better
understanding of the installation process, which proved to be challenging. Ensuring compati-
bility with the correct versions required updates to both the Java programming language and the
Gradle build system from the OpenBot app.

The details for installing OpenCV to the OpenBot app is given in the appendices in section
10.2.

5.1.3 Creating the new Feature

How to Add a New Feature to the OpenBot App

Following are the steps to incorporate a new feature into the OpenBot app:

1. Creating a New Fragment and Layout File: Create a new Fragment along with its
corresponding layout file to provide the necessary User Interface (UI) components for the

31

new feature. The naming convention is ChosenNameFragment.java for the java file
and fragment chosen name.xml for the UI.

2. Extending the Relevant Class: Depending on the requirement for the camera preview,
extend to your class either the ControlsFragment.java or the CameraFragment.java
class to ensure seamless integration of the new feature within the app’s framework.

3. Update in FeatureList.java: Add the new feature to the FeatureList.java file,
specifying its category, subcategory, title, icon, and color. An example of this update is
shown below:

1 ArrayList<SubCategory> subCategories = new ArrayList<>();
2 ...
3 subCategories.add(new SubCategory(POLICY_GRADIENT,

R.drawable.rtr_tt, "#7268A6"));↪→

4 ...
5 categories.add(new Category(ALL, subCategories));

4. Update in nav graph.xml: Add the fragment within the nav graph.xml file and
linked to the mainFragment to ensure the navigation within the app.

5. Navigation Integration: Inside the switch block in the onItemClick method of
MainFragment.java, add the new feature title as a new case. The navigation to the
screen is facilitated using its specific action ID, as showed below:

1 Navigation.findNavController(requireView())
2 .navigate(R.id.action_mainFragment_to_AIFragment);

By following these steps, one can integrate a new feature into the OpenBot app, adding their
own algorithm to do a specific task.

5.1.4 Implementation of the Reward:

The Reward Function in the Line Following Scenario

In this case, the goal is to have the robot follow a line marked on the ground. A straightforward
approach involves a basic reward function, assigning positive numerical values when the robot
remains on the line and negative values when it deviates. However, this simplistic setup poses a
challenge: what if the robot learns that staying stationary yields the most rewards? To counter
this, the system can either assign a positive reward when the robot is in motion or impose
negative rewards when no command is given. Another alternative is manual rewarding, where
a supervisor can press a button on the controller to administer positive or negative feedback
during training, as deemed appropriate.

32

How the Reward Function was Implemented

Due to limited experience in JavaScript programming, the decision was made to develop and
fine-tune the reward function using OpenCV in Python, analyzing images captured at different
times of the day. The outlines of the detected line and its centroid were obtained. The centroid
calculation is simple, it is the mean of all the contour points’ X position.

Following this, a simple Android application was created using Android Studio, where
OpenCV was integrated as a library. The interface was designed to display the line contours and
centroid, alongside the centroid’s distance from the expected central position. Once this code
worked properly, it was incorporated to the OpenBot app.

The calculated centroid position is then compared to an ideal one. The ideal centroid posi-
tion was determined by putting the robot at an ideal position at different points of the circuit and
taking the mean value of the centroid. This compared distance is used to determine the reward.
The reward r can take the following values:

r = [−15,−1, 1, 10, 15]

With −15 and 15 negative or positive feedback from the supervisor. Reward is set to +1 if the
computed distance is inferior to 300, it is set to +10 if the distance is inferior to 100 and to −1
when the distance is larger than 300. These value were determined through trials and errors.

On the upside, the computation for this reward function is lightweight and integrates with
the standard data logging process without issues. The calculation is performed directly on the
smartphone and is transmitted alongside other sensor data, including images, command value
logs, and accelerometer readings.

However, there are downsides to consider. First, the reward function’s applicability is lim-
ited to the specific circuit. Additionally, its sensitivity to variations in light sources, time of day,
and weather conditions can lead to inconsistent performance as seen in figure 5.2. To avoid
detecting white from objects on the wall or furniture, only the bottom 20% of the picture is
taken into account. There are instances where the function fails to detect the line even when it
is clearly visible, which can be problematic during the model training phase. And a bad reward
function can potentially hinder the learning process and affect the model’s performance.

Figure 5.2: Display of photos before and after processing to detect the line to follow. On the
left is displayed the ideal result of line detection. On the right is example on how the luminosity
impacts the result and could be problematic.

The reward function was implemented directly in the Logger Fragment of the OpenBot app,
which means it was calculated while the model is running and the data is collected. In the
processFrame function, the OpenCV processing is applied to the same bitmap (image) as the

33

frame collected and the processed image is then saved to a new folder. These images are just to
ensure the processing goes as planned and are not used in the model.

Here is the detail of how the image is processed using OpenCV:

1. Conversion to grayscale

2. Addition of contrast to the image with a factor of 1.2.

3. Normalization of the image values to a range between 0 and 255 after contrast adjustment.

4. Detection of white pixels using trial-and-error determined lower and upper bounds of
[200, 170, 170] and [254, 254, 254], respectively.

5. Application of median blur with a factor of 9 to the image.

6. Utilization of the Canny function from OpenCV in JavaScript to obtain edges.

7. Retention of only the Region of Interest, specifically the bottom 20% of the image.

8. Calculation of the centroid, with only the x-value considered in computing the reward
function.

The processed images are showed in figure 5.2.

Following the code from the Autopilot Fragment and pre-existing code in the Logger Fragment,
adding the necessary functions such as startAutonomousDriving, stopAutonomousDriving,
handleDriveCommandAutonomous and processFrameForAutonomous, are pretty straight-
forward. There are also the functions to change the reward to +15 or -15 using the command
inputs from the controller and the function changing the reward using the distance between the
calculated centroid position and the ideal centroid position. Refer to the GitHub repository [31]
for more details on the code.

Presentation of the Model and Algorithm
After implementing the reward to the OpenBot app, it is added to the other sensors like ac-
celerometer, control Logs, etc that are sent to the Python Server. The python scripts need to be
modified to retrieve the data concerning the rewards and add them to the loss function so the
model tries to maximize them.

In this scenario y corresponds to the command sent to the robot’s motors, going from 0
to 255 but is divided by 255 during computation, it takes this form: (motorleft,motorright).
The input to the complex model is the 256*96 picture that goes through 5 convolutional layers
before adding the controls y, using Concatenate and Dense until the output of size 2 for the
future command sent to OpenBot. The model also uses batch-normalization and dropout. The
model is better described in the OpenBot paper [27]. All the modifications made to the scripts
are available on the remote repository [31].

Adding the Reward to the Pre-Existing Loss Function
In RL, the aim of the model is to maximize the reward, so in this preliminary experiment,
the loss function was modified to take into account the reward and try to maximize it. The
determination of the loss function was made through trial and error. Initially, the cumulative
sum of rewards and the Mean Squared Error (MSE) 5.2 between ytrue and ypred were employed.

34

However, difficulties appeared as the sum of rewards increased with the addition of new data,
particularly when striving for unbalanced rewards, predominantly positive. This complexity in
weighting led to difficulties and resulted in the poor training of models.

One solution consisted on transitioning to the mean of the rewards (MoR) 5.3, with the
objective of maximizing it, noting that it would never surpass 15, the maximum reward possible.
Yet, a new challenge emerged. Minimizing the raw difference between prediction and true
values resulted in models that overfit and overly generalized decisions.

The supervised learning model implemented in OpenBot adopted a different strategy to
compute the loss, focusing on the angle 5.1 rather than the raw difference between values given
to the right and left motors. By subtracting the command from the left motor from the command
from the right motor, a negative value indicated a right turn, and vice versa. Additionally, this
approach approximated the sharpness of the turn, with higher absolute values suggesting a
sharper turn. This ensured that, even with variations in the robot’s speed, the turn remained
consistent with expectations.

Replacing the MSE of the raw values with the MSE of the angle value showed promising
results. However, in situations where both motors had identical values, the model opted to as-
sign 0 as the value for each motor, as the difference was the same: 0. Finally, the determination
of the loss function was accomplished by integrating both raw values and the angle, as outlined
in 5.4. The mean of the rewards is subtracted as the expectation is to get the loss to a minimal
value while maximizing the rewards. All three have weights that can be tweaked for optimal
results, in this experiment, the final weights were wMSE = 1 for the MSEs and wMoR = 0.8 for
the mean of rewards.

angle = motorleft −motorright (5.1)

MSE =
1

n

n∑
i=1

(ytrue − ypred)
2 (5.2)

MoR =
1

n
(

n∑
i=1

rn) (5.3)

loss function = wMSE · (MSEAngle +MSERaw)− wMoR ·MoR (5.4)

5.1.5 Experiment Protocol
This section describes the protocol for both experiment, the new RL implementation and the
original Supervised Learning training already existing within the OpenBot app.

Experiment with Reinforcement Learning

The protocol followed to repeat the experiment using RL is shown below. Figure 5.3 seen at the
bottom is a simplified flowchart of the protocol.

1. Setup: Turn on the python server following the guide in the OpenBot github [28]. Make
sure the phone and computer are connected to the same network and the OpenBot app
connects to the server. Note: Verify that the phone is not in ’Lock Orientation’ mode.

2. Initial samples: To speed up the time-consuming process, a small number of correct
laps are taken initially. This method helps improve exploration by reducing excessive
randomness.

35

3. Train first model: Train a first model with the data, name it ’reinforcement learning’
and upload it to the OpenBot app.

4. Initiate Exploration: Begin by uploading the trained model and use it for exploration.
Issue a negative reward from the controller when the vehicle deviates from the line, and
issue a positive reward when the vehicle remains close to the line. If the vehicle devi-
ates excessively, halt the exploration, reposition the robot onto the line, and start again.
The controller can still compel the robot to approach the track while in autopilot. This
phase demands considerable time and requires the undivided attention of the supervisor.
Continue until enough data is gathered to update the model.

5. Update the model: Move the collected data to their corresponding repository, most
should go into training. Launch the notebook for training the model. Upload the updated
model to the OpenBot app. Note: To avoid losing all progress with a faulty new model, it
is good practice to save the previous model, especially if it is showing promising result.

6. Repeat: Repeat step 4 and 5 until obtaining a satisfactory result or determining that the
process is unsuccessful.

Figure 5.3: Simplified Flow Chart of the Reinforcement Learning protocol in the preliminary
experiment.

Experiment with Supervised Machine Learning

1. Setup: Turn on the python server following the guide in the OpenBot github [28]. Make
sure the phone and computer are connected to the same network and the OpenBot app
connects to the server. Note: Verify that the phone is not in ’Lock Orientation’ mode.

2. Data collection: Collect approximately 20 minutes of data of the robot making laps. For
better results, take more at different times of day and weather.

3. Train the model: Move the collected data to their respective directory. Keep the best
data for testing, and delete all folders with poor data. Train the model using ’pilot net’ as
model.

4. Upload the model: Upload the new model to the phone. Use it with autopilot and see
how it performs.

5.1.6 Results
In this subsection the results from the described method are given, as well as results on the same
task using the Supervised Learning method, expected for OpenBot.

36

Results using Reinforcement Learning:

Training Performance

The experiment protocol was followed. Approximately 5 minutes of data was collected, 3 min-
utes for training and 2 minutes for testing. The first model, named ’reinforcement learning’,
was trained and uploaded. The model ran and continuously collected data until it deviated sig-
nificantly from the circuit, resulting in significant negative rewards (-15). Manual intervention
was required to bring the robot back on track.

Every 2 minutes of data collected triggered an update of the model. It took approximately 6
to 7 updates before any noticeable progress was made in decision making. Due to the predomi-
nance of left or right turns in the laps, the model struggled to turn in the less common direction.
Guiding the robot, imposing penalties for undesirable behaviour and selectively adding data to
address incorrect decisions helped to mitigate this problem.

However, an unresolved challenge remained - the robot would continue straight ahead if it
lost sight of the track, posing a safety risk and cost times with bad data collection.

Task Performance

The conclusive model demonstrated the ability to follow the line and complete up to 4 laps
before losing track. The model stayed close to the line and appeared to decelerate during turns.
Issues appeared particularly on the side of the circuit closer to the windows with bright lighting,
where the likelihood of losing track and keep running straight was greater.

Time Efficiency

Achieving successful laps required about 30 minutes of data, but training from scratch took a
total of 8 to 10 hours.

Sensitivity Analysis

As previously noted, the model showed difficulties in areas illuminated by natural white light-
ing, affecting the robot’s behavior. Moreover, the robot exhibited susceptibility to specific
changes; for instance, adjusting the position of a red handbag led to the robot missing a turn.
However, the removal of a wooden box or a chair did not appear to have a discernible impact
on the model.

Results using Supervised Learning
Training Performance Still following the protocol, a total of approximately 20 minutes of data
was collected, focusing on keeping only high-quality data without deviations from the line.
The model underwent training using the Python Server and was then uploaded to the phone.
There were no notable challenges with this method, with the exception of occasional ground
slipperiness causing long runs of data collection to become unusable.

Task Performance

The Supervised Learning model exhibited the capability to complete up to 7 laps before devi-
ating too significantly from the line and encountering obstacles. Interestingly, the model did
not consistently rely on the line as a guideline but rather seemed more attuned to details from
the surrounding environment. While successfully navigating all turns, the model spent minimal

37

time on the line itself. Notably, the performance of the model was highly impacted by various
lighting conditions and weather.

Time Efficiency

The entire process of data gathering and model training took approximately 2 hours. Notably,
the familiarity with the circuit significantly contributed to the success of data gathering time
efficiency.

Sensitivity Analysis

As previously highlighted, the Supervised Learning model demonstrated sensitivity to various
lighting sources. To mitigate this, data collection was conducted at different times of the day
and on diverse weather conditions. The model also exhibited high susceptibility to moving
objects, such as a cat passing by.

5.1.7 Conclusion and Discussion
Creating a reward function, adding it to the loss function of the model in order to maximize
it resembles the RL algorithms but some important parts were missing. The model running
on the circuit after a short prior training and kept being updated to perform better without
being controlled by a human and learning from its experience made it appear like reinforcement
learning. However, it was not using the typical RL framework and was not implemented as a
MDP. In the end it is more similar to Supervised Learning with an additional reward since ’bad’
data, meaning instances where the robot strayed from the line, was not used during learning but
was instead deleted. In RL, the ’bad’ data is as valuable as good data so it learns what not to do
but since the update imitated Supervised Learning, bad data was usually removed. The model
learned using training data and testing data to see if the model is able to make correct predictions
in never seen before data. That is a process specific to supervised learning and not used in
reinforcement learning. The experiment was not properly designed from the start to make a RL
algorithm, there were no Markov Decision Process and well-defined actions or states. While
RL is possible with continuous action and states space, there are usually techniques to surpass
that such as discretizing the action space by using uniform distribution for different discrete
intervals.

Despite the misconceptions, this preliminary experiment was a crucial part for this study.
It was a first approach to coding in Java for Android Studio, designing a reward function and
noticing its challenge, working with OpenBot and understanding all the already existing code.
It allowed to see what are some of the challenges of implementing reinforcement learning to
Openbot, such as the luminosity issue with the reward function, the bad design for a RL algo-
rithm, the complexity of a continuous action space. Moreover, the hope with this project was to
implement RL directly on the phone and this preliminary work allowed to start the new experi-
ment with a better base, knowledge on what still needs learning, new objectives and hypothesis.

38

5.2 Implementing Reinforcement Learning Algorithms In Dif-
ferent Scenarios

This section discusses the implementation of different RL algorithms in two different scenarios
and their relation with the implementation of the algorithm on OpenBot. The codes are available
on the repository [31] under the Cartpole and Pong folders. In the Cartpole scenario, deep Q-
learning is used to train the model and in Pong, the policy gradient algorithm is used. The
results of the training for each agent is in a video showing the agents play one episode of their
respective game [32].

5.2.1 Cartpole
Cartpole is a simple game with a pole placed on a cart that can only move on the horizontal axis
as shown in Figure 5.4. The aim is to keep the pole attached at equilibrium vertically above the
cart. To simulate Cartpole, the gymnasium library from OpenAI [33] is used. The tutorial from
Pytorch [34] was used for this study and will be rapidly presented. Only a few modifications
had to be made for the model to work nicely. The algorithm followed for training this agent is
Deep Q-Learning as described in the section 3.3.

Figure 5.4: Screenshot of the Cartpole game with a cart attached on an horizontal axis and the
pole vertically standing above.

Since Cartpole is a simple game, only a few parameters are provided for the state instead
of the entire image seen in the figure. This greatly simplifies the computation since training
a model to understand an image requires way more work than working on the 4 parameters
making the state in Cartpole. The 4 parameters are:

• Cart Position ∈ [−4.8, 4.8]

• Cart Velocity ∈]−∞,∞[

• Pole Angle ∈ [−24◦, 24◦]

• Pole Angular Velocity ∈]−∞,∞[

The model is initialized as follows using the torch libraries:

39

1 class DQN(nn.Module):
2

3 def __init__(self, n_observations, n_actions):
4 super(DQN, self).__init__()
5 self.layer1 = nn.Linear(n_observations, 128)
6 self.layer2 = nn.Linear(128, 128)
7 self.layer3 = nn.Linear(128, n_actions)
8

9 # Called with either one element to determine next action, or a batch
10 # during optimization. Returns tensor([[left0exp,right0exp]...]).
11 def forward(self, x):
12 x = F.relu(self.layer1(x))
13 x = F.relu(self.layer2(x))
14 return self.layer3(x)

It is a pretty simple model, with n observations = 4, 4 being the parameters discussed
earlier and two possible actions n actions = 2; going right or going left. There are 2 hidden
layers of size 128. The activation functions are both ReLU 3.4 and the optimization is AdamW
also from torch libraries.

The loss L used is the Huber loss which is the mean squared error when the temporal
difference error δ is small, and the mean absolute error when the error is large. The temporal
difference error δ is the difference between the predicted value of a state or state-action pair and
the actual observed value:

δ = r + γmax
a

Q(s′, a)−Q(s, a) (5.5)

The Huber loss is then:

L =
1

|B|
∑

(s,a,s′,r)∈B

L(δ) (5.6)

Where

L(δ) =

{
1
2
δ2 for |δ| ≤ 1

|δ| − 1
2

otherwise.

B is a batch of transitions sampled from the replay memory. The replay memory stores the
transitions that the agent observes and random selection of batches are used during training in
order to decorrelate the transitions. The tutorial states that it stabilizes and improves the DQN
training procedure.

The reward is computed by giving +1 for each time step until termination or reaching the
threshold of 500 timesteps. Termination occurs when the pole angle exceeds its limit of either
−24◦ or +24◦ or the cart position exceeds −4.8 or +4.8 on the x-axis.

Here is a simple MDP description of Cartpole:

• States (S):

– Cart Position ∈ [−4.8, 4.8]
– Cart Velocity ∈]−∞,∞[

– Pole Angle ∈ [−24◦, 24◦]

40

– Pole Angular Velocity ∈]−∞,∞[

• Actions (A):

– Move left: 1

– Move right: 2

• Rewards (R):

– R = +1 at each time step without termination

– R = +0 at termination

• Termination:

– Angle exceeding limits

– Position exceeding limits

– 500 timesteps reached

Figure 5.5 is the diagram that illustrates the overall resulting data flow. In blue there are
actually two models that are initialized identically, the Policy Net and the Target Net. The Policy
Net is the model deciding the action and calculating Q(s, a). The Target Net is a slightly ’older’
version of the Policy net used to compute the expected value of the actions r + γmax

a
Q(s′, a)

when computing the temporal difference error δ seen in Eq 5.5. The algorithm uses ϵ-greedy
method for exploration.

Figure 5.5: Data flow of the algorithm for training a DQN agent to play cartpole. Diagram taken
from the tutorial [34].

With a GPU, the training can last between 5 and 10 minutes but results vary from one
training to the other because of the randomness in the exploration. Most of the time, the model
is able to converge and last for the entire 500 timesteps without termination in less than 600
episodes, but that is not always the case. Different results of training can be seen on the figure
5.6, the code is the same for all four examples.

41

Figure 5.6: Graphs of 4 different instance of training the model on Cartpole, with the same
hyperparameters for each, showing how training varies from one training to another.

5.2.2 Pong
Pong is a famous arcade game simulating a game of Ping-Pong where two opponents try to
score by sending a ball in the opponent’s goal. Each player can move on the y-axis and if the
ball gets behind their respective paddle, the opponent scores a point. The first to reach 21 points
wins the game. Unlike the Cartpole scenario, this time the agent will learn to play Pong with
the pre-processed image of the game as its input. A rendered image of the agent playing the
game can be seen in Figure 5.7.

The agent was trained using policy gradient introduced in the section 3.4. In this study, the
tutorial from Omkar Vedpathak [35] was followed and the code from his repository [36] used.
Omkar’s work was itself heavily inspired on the work of Andrej Karpathy [37]. However, the
code and tutorial are from 2019 and most of the code is depreciated and required an update
to work. The original version from Omkar is presented, then the modifications made to adapt
better to the need for this study are described. The two are compared in the end of the section.
But first, the base from both codes is introduced.

Base for both algorithms

In Pong, the reward is simple; for each point scored by the agent, a reward of +1 is given and
for each point scored against the agent the reward is -1. This means that if the final reward is
negative, the agent lost the game and, similarly, if the reward is positive the agent won the game.
The best possible score at the end of an episode is +21 meaning the agent score 21 to 0 and the
worst is -21 meaning the agent was not able to score a single point. The agent is training against
a computer programmed to follow the ball position on the y-axis but has a maximum velocity
so that it can actually lose the game.

42

Figure 5.7: Picture of Pong-v0 from the OpenAI gymnasium library [33] rendered in rgb array.
On the left, in brown, is the computer simply following the ball and playing against the agent
in green, on the right.

Here is a simple MDP description of Pong:

• States (S):

– Pixel representation of the game screen

• Actions (A):

– Move up: 2

– Move down: 3

• Rewards (R):

– R = +1 if agent scores a point

– R = −1 if opponent scores a point

– R = 0 for all other time steps

• Termination:

– Opponent reaches 21 points

– Agent reaches 21 points

During training, a discounted reward is used in order to attribute more accurately the reward
with the action that is likely an important contributor to the reward. This is because the action
just before losing a point are not as relevant if the paddle was far away from the ball anyway,

43

the paddle should have moved sooner towards the ball and that is why discounting the reward
depending on the timestep is relevant. Here is the equation for the discounted reward Rt so each
action has its corresponding reward:

Rt =
T−t∑
k=0

γk · rt+k (5.7)

With γ the discount factor.
Both models have 3 layers, the input layer, an hidden layer of 200 nodes and the output

layer. ReLU (refer to Equation 3.4) is the activation function in the hidden layer in both cases
but they use different activation function on the output layer.

They both use policy gradient to update, so they both use gradient ascent at the end of each
episode/game to update the model. The image is also pre-processed in order to simplify the
problem, only the relevant part of the image is kept, the background is erased and the image
is collapsed into a simple column vector of size 75 ∗ 80 so of size 6000. Since it is important
to know the movement of the ball and paddle, the image fed to the model is actually the older
image subtracted to the new image so only the difference between the two remains, except for
the first image since there are no previous image.

The Root Mean Square Propagation (RMSProp) is an optimization algorithm used when
updating the models. RMSProp helps to scale down the learning rate for parameters that have
large gradients and scale up the learning rate for parameters that have small gradients. It is often
implemented as follows:

θt+1 = θt −
η√

E[g2]t + ϵ
· gt (5.8)

With

• θt: The parameters (weights) at time step t.

• η: The learning rate.

• E[g2]t: The decaying average of the squared gradient at time t.

• ϵ: A small constant added to avoid dividing by 0.

• gt: The gradient of the loss function with respect to the parameters at time step t.

However, since the aim is to maximize the return, the equation needs to be slightly changed
to be using gradient ascent:

θt+1 = θt +
η√

E[g2]t + ϵ
· gt (5.9)

Both methods use the same following hyperparameters:

• H = 200 : number of hidden layer neurons

• batch size = 1 : used to perform a RMSprop param update every batch size steps

• learning rate = 1e-3 : learning rate used in RMS prop

• gamma = 0.99 : discount factor for reward

44

• decay rate = 0.99 : decay factor for RMSProp

Finally, there a three possible actions when playing Pong, moving UP, moving DOWN or
staying at the same place.

Original Method

In the original code from Omkar [36], the model is simplified with having only one output: the
probability of moving UP. If this probability is high enough, the paddle goes UP, otherwise it
goes DOWN. The model is described in Figure 5.8.

Figure 5.8: Illustration of the ANN model trained to play Pong. Image from Andrej Karpathy’s
blog [37].

In his code, Omkar does not use ϵ-greedy exploration, instead the action is decided as fol-
lows:

1 action = 2 if np.random.uniform() < aprob else 3

With 2 being going UP, 3 going DOWN and aprob being the probability of moving UP
computed by the model. This means that instead of using a decaying ϵ, this algorithm ’forces’
the model to give high values for the probability of moving UP in order to be certain the paddle
will move UP and low value for it to go DOWN. However, there is still a random factor that can
make the paddle go UP when the probability is low and vice-versa. Nonetheless, as the model
learns, its value for the probability will become either very close to 1 or very close to 0, making
the randomness less likely to occur.

The activation function used for the output is the sigmoid function (refer to Equation 3.2),
if the value given to the activation function is negative, the probability will be less than 0.5 and
if positive higher than 0.5. This works well with this singular output.

The weights are initialized using Xavier or Glorot [26] initialization described in the section
3.2 and given equation 3.6 as follows:

1 model = {}
2 model['W1'] = np.random.randn(H,D) / np.sqrt(D)
3 model['W2'] = np.random.randn(H) / np.sqrt(H)

45

In here, H corresponds to the number of nodes/neurons in the hidden layer and D the size of
the input. The shape of W1 is (HxD) so (200x6000) and the shape of W2 is (200,). While it
can be managed during the forward pass, the shape of W1 is a bit counter-intuitive. If reading
the model in Figure 5.8 from left to right, first, the image of size 6000 is fed to the model and
goes through the weights W1. Then, from the hidden layer of size 200 and after the activation
function, it is multiplied by the weights W2 to give the output. It would be more intuitive to
have the weights W1 set as (DxH) for clarity.

Nevertheless, this method works well with the agent being able to beat the computer most
of the time after 8k episodes. For the sake of testing where it would converge, a model was
trained on 50k episodes and its results are shown in Figure 5.9.

Figure 5.9: Plot showing the moving average of rewards over the last 100 episodes during the
50k-episode training.

The agent is able to beat the computer with an average of 21-11 at the end of training and
appears to still be learning slowly. However, the training gradually takes more time as the
episodes get longer with one round sometimes counting up to 10 exchanges. Training over 50k
took around 50 hours to complete, but no GPU is set for this code since the model is created
manually (forward and backward pass both manually implemented).

Modified Method

To make the algorithm more relevant to this study’s experiment, the output of the model was
changed from a singular probability of going up to two outputs: probability of going up and
probability of going down. While the change seem unnecessary for this task, this was important
to understand how to design the model for the experiment on OpenBot. Further explanation can
be found in the following section 5.2.3.

To change the output to an array of probabilities with a size of 2, the softmax activation
function was used (refer to Equation 3.5). Moreover, the method for exploration had to be

46

changed and ϵ-greedy was implemented. The new action selection is done as follows:

1 def choose_action(output, epsilon):
2 is_random = False
3 if np.random.uniform() < epsilon:
4 is_random = True
5 return np.random.choice([2, 3]), is_random
6 else:
7 action = np.random.choice(len(output), p=output)
8 return action + 2, is_random

Here, there is a probability of ϵ that the taken action is random and a probability of 1−ϵ that
the action will be selected depending on the probability of each action. The action selected is
not always the one with the highest probability. Nevertheless, if the model assigns a probability
close to 1 to one of the action, it is more likely to be selected than the other. The new boolean
is random is used when updating the model because when the action taken is random there’s
no explicit strategy or intention behind it and it needs to be reflected in the update. The outcome
is still taken into account, but since the decision did not depend on the probability given by the
model, the probability is not included in the computation for this action when updating the
model.

For this model, ϵ was initialized at 0.15 with a decaying rate of 0.999. At the end of each
episode, it is updated by multiplying itself with the decay rate.

Since the model has two outputs, the weights and layers in the model had to be modified.
The issue of counterintuitivity raised before with the initialization of the weights was also taken
care of, following is the new initialization, taking into account the modified output:

1 model = {}
2 model['W1'] = np.random.randn(D, H) / np.sqrt(D)
3 model['W2'] = np.random.randn(H, 2) / np.sqrt(H)

The size of the input is D, the shape of W1 is (DxH), the shape of W2 is (Hx2) and the
output is of size 2. The forward and backward pass had to be slightly adapted to this change but
remain very similar to the original model.

The original model performed slightly better overall than the modified model when using the
same hyperparameters. Both model were able to beat the computer, however, while not apparent
on the Figure 5.10, the performance of the new model fluctuated more than the original model
with sometimes winning 3 games in a row with +10 as final reward to losing a game with a -19
final reward. It is important to note that the model can vary like discussed in cartpole even with
the same hyperparameters due to the randomness in the exploration and the variety of situations
in the environment (Pong). Moreover, the hyperparameters might not be optimal, but training
the model is very time consuming with up to 8 hours of training for 10k episodes.

47

Figure 5.10: Graphical representation of the performance of the two models, in blue the original
and in orange the modified model with two outputs. Performance is calculated using the reward
moving average of the last 100 episodes and the models were trained on 15k episodes.

5.2.3 How These Examples Help Prepare for the Implementation of Re-
inforcement Learning on OpenBot

The implementation of these examples served two purposes: getting more familiar with rein-
forcement learning and its algorithms and using interesting features of each to the new experi-
ment on OpenBot. Before starting this research, there was no prior knowledge in reinforcement
learning beyond a very basic explanation provided during a machine learning course. This is the
reason why the preliminary approach was incorrect and required an entire rework. Implement-
ing the algorithms on simpler (Cartpole) or more studied (Pong) environments greatly helped
with the understanding of what was lacking in the prior experimentation.

The interesting similarity with cartpole and implementing RL on OpenBot to remain on a
circuit is that both aim to have the agent ’survive’ as long as possible before reaching termina-
tion. The shaping of the reward with having a positive reward for each timestep the pole stays
within boundary stated in the environment will inspire the reward shaping for the OpenBot
experiment as it seems the most appropriate. However, the model and Deep Q-Learning is not
feasible directly on the phone due to the lack of machine learning libraries and computing power
required. Moreover, the input of the model is not a picture so the cartpole algorithm might not
work with images as inputs. This is where the Pong code is really interesting: a working, simple
and manually implemented model that can be imitated in Java on Android Studio. Moreover,
the Pong scenario uses preprocessed images as input similarly to OpenBot. The algorithm used
in Pong seems to fit pretty well to the new objective stated below and not too complicated to
implement. The modified version of Pong is necessary since OpenBot has 3 different possible
actions and not two; going left, going right or going forward. Testing it on Python before testing
it on Android Studio and on the phone helps greatly with the debugging and finding clues on
where difficulties may arise.

48

6 Methodology to Implement Reinforcement
Learning on OpenBot

This Chapter describes how the reinforcement learning algorithm was implemented on the
OpenBot app. The original code is available on OpenBot’s GitHub [28], the code used in this
study forked their code around September 2023 and, in order to avoid conflicts, was not updated
with the official’s code updates. The code for this study is available in a remote repository [31].

The code implementation of RL in OpenBot is done in the feature PolicyGradientFragment,
the Model is a runnable class called MyModel and used by PolicyGradientFragment. Fi-
nally the layout is a copy of the LoggerFragment layout with some modifications to it.

6.1 Updated Experiment and Objectives
Learning from the preliminary experiment, an updated experiment with a new open circuit,
method and objective was required. The mistakes from earlier are now taken into account for
this update and a new base is designed.

It is important to view the new experiment as a RL problem, each run on the circuit is now
called an episode and each time the model receives an image and selects an action is a timestep.
To simplify the continuous action space, the possible actionsA are reduced to 3 simple actions:
moving right, left and forward. The robot is forced to move forward so it cannot gain rewards
in remaining still and just spinning around will not let it remain on the track. The input is the
pre-processed image seen by the smartphone mounted on OpenBot. In order to counter the
issue with luminosity from the preliminary experiment, the circuit was modified to black plastic
bags on the ground over a clear ground and white guidelines as seen in Figure 6.1. This serves
two purposes, it counters the luminosity issue pretty well and allow a supplementary security
feature of terminating the episode when leaving the circuit instead of manually terminating it.
The entire circuit can be seen in the video showing the training of the agent [38].

49

Figure 6.1: Picture of an extremity of the open circuit, displaying the setup of a black plastic
bag over a clear floor and white tape to structure the track.

For the updated experiment, a simple Markov Decision Process to describe the RL environ-
ment is important to set the base:

• States (S):

– Pixel representation of what the phone mounted on OpenBot captures

• Actions (A):

– Move left: 0

– Move right: 1

– Move forward: 2

• Rewards (R):

– R = +1 every 2 seconds remaining on the track

– R = +10 if running for 15 seconds without termination

– R = −4 if episode terminated before 15 seconds threshold

• Termination:

– Exiting the circuit

– Manual termination (emergency stop)

– Running for 15 seconds

The new objective is to create a new feature on the OpenBot app for the entire RL pro-
cess. Not using the pyhton server or python scripts. An ANN model needs to be manually
implemented with the forward and backward pass. For this task, the policy gradient algorithm
introduced in the section 3.4 and with Pong in the subsection 5.2.2 are used. A new reward
function is created and termination when exiting the circuit is added. The aim is to see if the
agent will be able to make turns and remain on the track for 15 seconds. Figure 6.2 shows
the UI of the implemented new feature for this experiment. The new feature was implemented
using the method presented in subsection 5.1.3.

50

Figure 6.2: Screenshot of the new policy gradient feature added when first opening the OpenBot
app.

6.2 Implementing Reinforcement Learning Features
This sections introduces the implementation to OpenBot of the main components in reinforce-
ment learning: the state, the reward, the actions, the termination and the exploitation-exploration
strategy.

6.2.1 State
As introduced in section 6.1, the current state of the agent is the processed image from the
camera on the smartphone. The image is processed to make the model and computation simpler,
it only keeps the bottom of the image so it is not disturbed by objects in the room and only sees
the ground close to it. To simplify it even further the image is binary, with 0 meaning white and
1 for black pixels. An example of the process image can be seen in Figure 6.3.

Figure 6.3: Processed image received by the model, the image is of size 128x30.

While the dark flooring was added to help with the luminosity issue, it is not matte and can
be reflective in sunny days. Nevertheless, the threshold for black and white can be changed
pretty easily by modifying the values 120 and 255 in the function OpenCV Processing:

51

1 Imgproc.threshold(inputMat, inputMat, 120, 255,
Imgproc.THRESH_BINARY);↪→

If the training is done in the evenings instead of during the day, it is also a possibility to have
the the real ground to also be seen as black pixels and then the only white pixels are the lines
of the track seen in figure 6.1. The safety feature terminating when exiting the path still works
using percentage of black pixels instead of percentage of white pixel threshold. This is done
by simply replacing the return of calculateWhiteP ixelPercentage by 100 − percentage. In
the code available in the remote repository, the image is cropped and resized to 128x30 in the
processFrame function and is turned into binary in the OpenCV Processing function.

6.2.2 Reward
The aim is to have the agent remain on the open circuit for 15 seconds. This objective is similar
to the cartpole scenario where the aim is to keep the pole within boundary for 500 timesteps. At
first, the OpenBot scenario was following the same rewarding process with +1 for each timestep
still on the circuit. However, this caused exploding gradient, discussed in the subsection 6.4.5
and the reward was slightly modified. Instead of having +1 after each timestep, the reward
is given every 2 seconds, so after approximately 20 timesteps. A negative reward is given
upon termination by straying from the path or emergency stop of -4 and positive reward when
reaching 15 seconds without straying of +10. The maximum total reward of an episode can
reach 16, not 17 because the +1 at the 14th second turns into +10 for reaching termination.
There is also the possibility to add +10 or -10 manually using the controller but it is usually
avoided.

Similarly to Pong, the discounted reward is used when updating the model since the error
of exiting the track is often due to a decision happening in earlier timesteps than the last one.
However, timesteps from the beginning of the episode may not be responsible for exiting the
track later on.

6.2.3 Actions and Termination
There are only three actions that OpenBot can select: going left, going right or going forward.
This is implemented with a simple function MoveAction, if action is set to 0, the agent is
turning left, if the action is set to 1, the agent is turning right and finally, if the action is set to 2,
the robot is going straight. The function is simple, and sets the control to be sent to the robot,
here is how going straight is programmed:

1 if (action == 2) {
2 vehicle.setControl(0.45f, 0.45f);
3 handleDriveCommand();
4 }

Concerning termination, there are three possible termination:

• Exiting the track, so if more than 80% of the image is white when it is during the day
or when more than 95% of the image is black during the evening. The difference in
percentage is because most of the track is also black, so the threshold needs to be bigger

52

to avoid stopping the agent while still on the course. This termination will give a negative
reward, stop the agent and update the model.

• Staying on the circuit for more than 15 seconds, or 15000 millis in the code, will give a
positive reward, stop the agent and update the model.

1 if(elapsedTime >= LOGGING_DURATION_MILLIS)

• In case the first termination fails or something happens that requires to stop the agent,
pressing (X) on the PS4 controller will stop the agent, give a negative reward and update
the model.

6.2.4 Epsilon-greedy
For this implementation, while still using Epsilon-greedy, it is manually set by the supervisor
and can be changed to be larger or smaller between every episodes. An entry is added to the
layout to enter a number. If it feels like the agent needs more exploring then the supervisor can
give a larger epsilon value. The model can also be tested in one episode by setting the epsilon
value to 0. This method is implemented in the ChooseAction function. Figure 6.4 shows the UI
of the implemented feature, the place to enter the epsilon value is visible as well as the different
toggles available such as the ’Resume training’ discussed later.

The ChooseAction function takes as input the output of the Model which is the proba-
bility for each action. First, a random value between 0 and 1 using the Random library and
random.nextDouble() is compared to the epsilon provided by the user. If the value is smaller
than epsilon, the action chosen is random, otherwise, the action with the highest probability is
selected.

Figure 6.4: Screenshot of the UI on a Redmi Note 11 of the POLICYGRADIENT feature
showing the different possible interactions such as the possibility to enter an epsilon value and
to toggle the resume training.

53

6.3 Creating the Model and Implementing Policy Gradient
This section discusses the initialization of the model, its weights, the forward and backward
pass and finally, the implementation of the policy gradient for updating, using RMSProp.

6.3.1 Model initialization
The ANN model and its function are created in a separate class called MyModel. It can be
initialized by giving two inputs: the dimension of the model’s input and the dimension of the
hidden layer. The input dimension is the processed image of size 128∗30 = 3840 and the num-
ber of nodes in the hidden layer is 200. The output layer is always of size 3 for the probability
of each action. The weights are initialized the same way than for Pong, using Xavier/Glorot
initialization [26]. The function is public so it can be used in the PolicyGradientFragment
and is called initializeWeights.

A new model is initialized if Resume Training is not toggled. If it is toggled, the already
existing model is taken instead and the model is not initialized again. After every episode,
the model is updated and saved on the phone, replacing the older one. This is done using the
functions saveModel and loadModel.

6.3.2 Model Forward and Backward pass
The forward pass policyForward and backward pass policyBackward are the same as in the
Pong example, however the data types work differently in Python than in Java. The forward
pass takes the image as input and outputs the probability for each action. The Backward pass
takes the states, hidden state, and the probabilities multiplied by the discounted reward and
outputs the gradient.

It is discussed further in the challenges encountered implementing RL, section6.4, that using
ArrayLists can be messy with Java since Numpy is not available and no suitable libraries for
facilitating calculations and ArrayLists manipulation have been identified. So all the values are
turned into Matrices for computation and then turned back into double[][] for the weights of the
model. The ReLU 3.4 and softmax 3.5 activation functions are also manually implemented as
private functions of the MyModel class. The functions are not optimized and most of the time
iterate through each values of the arrays, fortunately the Java programming language is quite
fast with computations.

The specific codes for the Forward pass and Backward pass can be found in the appendices
10.3.

6.3.3 Gradient Ascent
The Gradient Ascent is the same as in Pong, following the equation:

θt+1 = θt +
η√

E[g2]t + ϵ
· gt (6.1)

With

• θt: The parameters (weights) at time step t. (modelArray in the code)

• η: The learning rate.

54

• E[g2]t: The decaying average of the squared gradient at time t. (the RMSPropCacheArray
in the code)

• ϵ: A small constant added to avoid dividing by 0. (1e− 5 in the code)

• gt: The gradient of the loss function with respect to the parameters at time step t. (g in
the code)

Here is the code used to update the model using Gradient Ascent, it is also shown to demon-
strate how the functions aren’t optimized with iteration through each values of the array, the
update can take 2 to 3 seconds.

1 public Map<String, double[][]> updateModel(Map<String, double[][]>
gradBuffer, Map<String, double[][]> rmsPropCache, double
decayRate, double learningRate) {

↪→

↪→

2 Map<String, double[][]> updatedModel = new HashMap<>();
3 for (String key : model.keySet()) {
4 double[][] g = gradBuffer.get(key); // Gradient
5

6 // Update rmsProp_cache
7 double[][] rmsPropCacheArray = rmsPropCache.get(key);
8 for (int i = 0; i < g.length; i++) {
9 for (int j = 0; j < g[0].length; j++) {

10 rmsPropCacheArray[i][j] = decayRate *
rmsPropCacheArray[i][j] + (1 - decayRate) *
Math.pow(g[i][j], 2);

↪→

↪→

11 }
12 }
13

14 // Update model
15 double[][] modelArray = model.get(key);
16 for (int i = 0; i < g.length; i++) {
17 for (int j = 0; j < g[0].length; j++) {
18 modelArray[i][j] += learningRate * g[i][j] /

(Math.sqrt(rmsPropCacheArray[i][j]) + 1e-5);↪→

19 }
20 }
21

22 // Reset batch gradient buffer
23 gradBuffer.put(key, new

double[modelArray.length][modelArray[0].length]);↪→

24

25 // Store updated model
26 updatedModel.put(key, modelArray);
27 }
28 return updatedModel;
29 }

6.3.4 Training Process
The training is simple and requires the supervisor to be positioned where they can see the
entirety of the open circuit. The learning process is summarized, simplified and explained in

55

the flow-chart seen in figure 6.5. The figure represents what happens during one episode of
training, it is repeated until the agent is able to remain on the track for more than 15 seconds or
if no changes are noticed after numerous episodes. The exploration vs exploration is ϵ-greedy in
this scenario. Termination is either exiting the track, lasting more than 15 seconds or emergency
stopping.

Figure 6.5: Simplified Flow Chart of an episode in this experiment.

6.4 Difficulties Arising with Implementation
This section presents some of the difficulties encountered while implementing RL on the smart-
phone and what can be expected when trying to replicate the experiment.

6.4.1 Using ArrayLists
While it is intuitive to work with Python arrays and lists, it is a bit more complex in Java for
those used to the Python programming style. In Java, a versatile datatype is the ArrayList, ca-
pable of holding various types of data such as double, int, double[], double[][], RealMatrix and
more. However, manipulating values inside of the lists is more complicated. It often requires
to convert the ArrayList of double for instance to a double[] or an ArrayList of double[] to
double[][]. It requires multiple functions to manipulate them, the rewards is an ArrayList of
double, the hidden state has to be stored in a vertical array, so in a double[][], same for the input

56

x and the probability from the Model is a double[]. Each require a function to turn them back
into arrays so they can be manipulated and another to put the new arrays back into the List.
Moreover, as stated previously, most operation done with arrays like double[] require a function
iterating through each values of the array. This meant more than 9 functions to work with the
ArrayLists and it becomes rapidly confusing.

After looking for a simpler and more readable way of handling the values, the RealMatrix
and MatrixUtils packages appeared as the simplest solution. The packages can handle vertical or
horizontal matrices and make the basic calculations such as multiplication and transpose without
requiring a manually implemented function. It makes the code more readable, ArrayLists are
still used since appending the matrix after each step only requires a simple .add() to it. The
packages also can turn arrays into matrices and matrices back to arrays in a simple line.

6.4.2 Errors with the Random Action
After a few trials of training, the model always appeared to favor turning left. And this even
when the first turn was going right. After further inspection, it appeared the random selection of
action was not set correctly and would only steer the vehicle to the right and forward. It seemed
the model was countering the random actions by turning left.

6.4.3 Crashing if Restarting too Fast
Another issue when training is restarting the training before the model is updated. The model
is quick to update, at most it can take a few seconds. However, the button to the emergency
stop is the same as the starting button, if it is pressed in fear of the exiting circuit termination
failing and the termination is not failing, it will crash the app. The app crashing is not too bad,
but the epsilon value needs to be set again and if the Resume Training is not toggled, the
previous model can be replaced. It requires to be careful but it is manageable, although can be
time consuming.

6.4.4 Time and Battery Consumption
Each training episode lasts less than 15 seconds, and resetting the robot takes only a few seconds
using the controller to reposition it. If the robot requires as many episodes to complete the route
from different starting points as it does to beat the opponent in Pong, then around 8,000 episodes
would be required. With 15 seconds total for the episode and repositioning the robot it would
take around 33 hours. Unlike Pong, this training needs to be supervised and Pong’s training is
already verified to work properly. Additionally, the smartphone needs to charge after around 4
hours of training, OpenBot’s battery lasts around 20 hours but takes longer to charge. In that
timeframe, the weather or luminosity change. However, if the model is capable of learning,
it should be able to adapt to new environments, although this requires additional training and
always exploring. This means a simpler task than Pong is required with lower expectations in
order to have a shorter training time.

6.4.5 Exploding Gradient
Another issue is exploding gradient, which occurs when the gradients in a neural network be-
come so large during training that they cause instability and hinder the learning process. While
gradient explosion did not occur when training Pong, it occured when training OpenBot. A
possible explanation is that the rewards are given too frequently or are too large. Since Cartpole

57

is not updated the same way as Pong, spacing the reward to every second or two instead of every
timesteps helps with gradient explosion. Finally, reducing the learning rate also helps with ex-
ploding gradient. So instead of using 10−3 as the learning rate, 10−5 is used during the training
of this thesis. However, even with these modifications, the exploding gradient still inexplicably
occurs. It is maybe happening when the data is corrupted by a crash or instant termination.

6.5 Protocol
This section describes the protocol to repeat the experiment from this thesis:

1. Start training by placing the robot at any extremity of the track.

2. Connect a controller to the smartphone using Bluetooth.

3. Turn on the OpenBot app and select the PolicyGradient icon.

4. Choose an input for epsilon, in this thesis the initial value for epsilon is 0.5.

5. Start a first episode, pressing (X) on the PS4 controller to start the episode.

6. Pressing (X) while the episode is running to terminate the episode in case the safety for
exiting the circuit fails to terminate.

7. Check the processed images in the OpenBot file in the smartphone to see if the threshold
for the binary image is set correctly for the current luminosity.

8. If necessary, modify the threshold as seen in the subsection 6.2.1.

9. When this is done, move the robot back to the extremity of the track, either by hand or
using the controller.

10. Start the first episode again until termination.

11. Toggle ”Resume Training” to train the model, otherwise a new model with new weight is
initialized every time and the updated model is replaced.

12. After each termination, put the robot back to the starting place, without being too precise
on the starting position and orientation.

13. Repeat episodes until the agent succeeds the first turns multiple times without exiting the
track.

14. Decrease the epsilon value accordingly.

15. To check how the model is doing so far, set the epsilon to 0.

16. In order to avoid losing a good progress of the model, save the model on the smartphone
in a new folder inside the OpenBot folder every 100 episodes or so.

17. Repeat episodes and modifying epsilon accordingly until the agent is able to remain on
track or until no further progress is observed.

58

7 Ensuring Safety of the Robot and its Sur-
rounding

This chapter presents the different safety measures taken to avoid damaging the robot and its
environment without impacting the training. This is a very important part in training a RL
model in real-world environment since random action can cause the robot to crash, fall down
the stairs or hit someone.

7.0.1 Manual Emergency Stop Using Controller
The first security measure implemented was an ’emergency’ stop on the controller. By pressing
the (X) button on a PS4 controller when the model is running and the robot is moving will
immediately send the order to the motors to stop. It is a pretty simple code but important to
have with any robot/machine active in real-world environments. This feature does not require
to be very close to the robot and able to reach it, it can be done at a reasonable distance as long
as the Bluetooth connection is still activate.

7.0.2 Automatic Stop When Exiting the Open Circuit
Another safety measure implemented for the new Experiment is to terminate the episode if the
robot exits the circuit. As seen in the Figure 6.1, the flooring is quite clear with a dark plastic
representing the path to follow. The image is processed and is then in black and white. The
percentage of white pixels is computed and if it exceeds 80% the motors are ordered to stop and
the episode is terminated. This appear to be working quite well if there is enough lighting on
the circuit but is not foolproof, if the OpenBot strays too far without terminating the episode,
the manual emergency stop should be used.

7.0.3 Pre-existing feature on OpenBot
OpenBot has 2 push buttons on the front and the back of the vehicle for obstacle detection.
When either of the 4 detector is pressed, the motor stops and some LED lights up to alert the
vehicle is in contact with an obstacle. While this prevents the robot to forcefully move against
an obstacle, the object often has to be hit before the robot stops and could damage the robot or
its push button. In a previous project, one of the push button was damaged and started to stop
the motors just with the friction of moving forward. Fortunately, the button is easily replaceable
and cheap.

59

8 Results

This chapter presents the result of training an agent to remain and move across a simple track.

8.1 Training Duration and Variability
The training takes around an afternoon but the total time depends on the initialization that has a
random component to it. Sometimes the model initializes quite nicely and other times it will be
more likely to select one action than another. The training time is also dependant on the random
actions since it can take a long time before random actions help make the first turn. In general,
the training takes 3 to 4 hours.

8.2 Learning Progress and Performance Milestones
The experiment was conducted 15 times and the model training was successful 8 times. The
other 7, either a crash of the app caused a bad update of the model which is hard to recover, or
exploding gradient made it impossible for the model to continue learning with new data.

In a successful training, it takes 50 to 100 episodes for the model to start learning to do
the first turn, this is dependant on the random actions and initial weights. After 100 more
episodes, the agent rarely misses the first turn but often has a tendency to prefer turning in the
same direction even when the turn is completed. After approximately 300 episodes, the agent
is starting to remain on the track more than 15 seconds although rarely. This can also happen
randomly before thanks to the random actions, however, it is very unlikely to repeat. Finally,
after around 400 episodes, the agent is able to remain on track for 15 seconds half of the time,
sometimes missing a turn that seemed like it was able to do easily before just from a slight shift
to the right or left. Training the agent with more episodes will often deteriorate its performance.
When the agent starts to miss the turns more frequently than before, it is time to stop the training
since it will rarely go back to its peak performance.

These results and the progress during training are summarized in a short video [38].

8.3 Crashing and Losing Models
The mobile app sometimes crashes, either because the emergency stop button was pressed al-
most simultaneously with the termination from exiting the circuit, or because the robot was
moved or a new episode started before the model finished updating. It can also occasionally
crash when an episode is too short (immediate termination) because of empty arrays, even with
a few prevention such as not updating the model if there are less than 5 timesteps. This can
also cause to update the weights of the model with values set to infinity and the new output of
the model become NaN (Not a Number). It is important to save the model in a folder inside

60

the OpenBot folder when a milestone seems to be reached or at least every 100 episodes. If the
model is saved elsewhere than the OpenBot folder, it will not be readable because there are no
authorizations set up on the OpenBot app to read external storage.

61

9 Discussion

The primary aim of this thesis was to assess the feasibility of implementing reinforcement
learning entirely on an Android smartphone. This meant verifying if the computation time
will not hinder the ability of the agent to fulfill its goal and the overall time necessary for the
implementation and training is reasonable. The secondary objective was to determine if this
implementation could serve as a practical reinforcement learning project for students or enthu-
siasts. In this chapter, the results are discussed and interpreted, followed by an examination of
the study’s limitation. Then, some recommendations for future research or how to ameliorate
this experiment are discussed. Finally, some personal notes about the choice for the algorithm
and the results from the foundational experiments are discussed.

9.1 Interpretation of the Results
The results show that implementing RL on a smartphone is reasonably feasible. The training
does not need to be conducted consecutively and can be divided into multiple sessions, with
a total duration of 5 hours at most. Using a simple model updating after every episode is not
causing any visible latency issue and the training is not unreasonably long. This is encouraging
for implementing smartphones into robotics and the eventuality to create a practical RL project
accessible to students and enthusiasts. OpenBot being an affordable platform, it opens door for
a project done showing reinforcement learning in a real world scenario and that could be tuned
for different objectives than staying on a track such as obstacle avoidance or mapping.

Moreover, this study shows that modern smartphones can be used to train machine learning
models without requiring prior knowledge of Java programming for mobile apps as long as one
is willing to learn about the language. It also displays an interesting potential if linked with
the work to implement the Robot Operating System (ROS) for Android [3]. ROS is highly
popular in robotics and is now becoming accessible on smartphones which allows even more
implementation of smartphones in robotics. Additionally, robotics is often taught using ROS,
presenting another opportunity to create a practical project that integrates both reinforcement
learning and robotics.

Finally, the model deteriorating after reaching a peak performance is not unusual in machine
learning and ANNS. It can be caused by overfitting, where the agent will perform very well in
a know route on the circuit but a small shift will make it perform poorly. The overfitting can
be caused by the lack of regularization or excessive training without enough new scenarios. It
is also possible that the model is too simple, without enough neurons to capture the features of
the environment to allow a better performance.

62

9.2 Limitations of the Study
Although the study shows promising results in implementing reinforcement learning on a mo-
bile app, there are some limitations to consider. First, the experiment was mostly conducted
with one smartphone. The Feature was also tested on a Redmi Note 11 and appeared to work
just as well. Nevertheless, all the complete training were done on the smartphone provided
by the University: a Samsung Galaxy S22. It is important to note that the study might not be
reproducible on some older phones with an Android version older than 11. A low-performance
smartphone might also have a more difficult time with the computations.

Secondly, this experiment was done in only a simple scenario where binary colors were used
and the robot is not moving at maximum speed, giving it more time to correct its trajectory. The
algorithm might not work in other scenarios with more complex inputs.

Finally, there were still issues with the training such as exploding gradients and the applica-
tion crashing. At its most successful state, the algorithm had only 8 out of the 15 trained model
that were successful and this is without taking into account all the previous crash and problems
during the implementation. Once the model has a problematic update with exploding gradients
or due to a crash, it is usually irrecoverable and requires to either take an older version of the
model if saved and hope exploding gradients will not occur or start over.

9.3 Recommendations for Future Research or Work
Future research could focus on finding the origin of the exploding gradients and overfitting to
find ways to mitigate it such as using gradient clipping or L2 regularization. It also seems that
the model could be more complex, provided that the code is optimized. Additionally, other
algorithms or a different method than RMSProp to update could be tested to see if a faster
convergence or better performance could be reached.

Other work could focus on making it an accessible and interactive feature to learn about
reinforcement learning. Adding a simple interface allowing to change the size of the model,
the hyperparameters, preprocessing of the image or the possibility to design a reward function
would help users better understand reinforcement learning by letting them experiment with
different aspects of the model. This approach could make learning more engaging and allow
users to see firsthand how these factors influence the model’s behavior.

9.4 Additional Notes
For this research, policy gradient was chosen for the reinforcement learning algorithm although
deep Q-Learning was proven a powerful algorithm with the DeepMind’s team demonstration
on Atari games [17]. This is not due to the model being more complex in DQL, since as it was
shown in Cartpole in the section 5.2.1 that only two hidden layers can be sufficient but because
an update is done at each timestep. This is an efficient method but using a memory buffer and
replay to update at each timestep would almost certainly cause latency when running it in the
real world scenario. Indeed, in simulation, having a slow computation would only slow the
rendering but the environment should not change faster than the agent in the simulation, so the
agent will be slow but the environment will also slow down. This is not possible when training
in the real world since the environment is not linked to the agent. Moreover, the agent would
be still sending controls to the motors when it is computing what the next move should do and
the environment would already be different when the new command is sent, this poses a safety

63

concern. This is why the first implementation was a simple policy gradient model with only one
hidden layer and 200 nodes. It can also explain why the model is not that performant either,
with not being able to successfully remain on the track at every try but at most half of the time.

Finally, even though the aim of the study was to implement RL on a smartphone, a lot of
work was put into the foundational experiments in chapter 5 that were not conducted directly
on the smartphone. The three experiments were important for the final implementation but also
had potential on their own. Although the preliminary attempt on OpenBot was not following
the usual framework for reinforcement learning, the OpenBot app with the python scripts and
server offer a great opportunity to implement a powerful reinforcement learning algorithm.
With python and the GPU from the computer, the model used can be as complex as necessary
and there are less concerns with the memories and computation power needed for training. The
updating can be done sampling over all the data each time instead of only using the last episode
and could converge faster.

The experiment with Pong from the section 5.2.2 was also very interesting to learn about
reinforcement learning, machine learning and neural networks in general. Most codes available
online are from a few years ago and are depreciated, requiring to change parts of the code.
However, the code was malleable, easy to understand and work with. Every part of the code is
accessible and not using libraries such as pytorch or keras as seen in Cartpole, makes it more
readable and clear for a future user. Moreover, this was the only code found to successfully train
the agent to play Pong after updating it, even after testing 8 different codes from various blogs
and GitHub repositories. For any course or project on reinforcement learning, starting with this
Pong algorithm is highly recommended. It has examples with multiple reinforcement learning
algorithms and demonstrates how a successful RL training looks like.

64

10 Conclusion

In Conclusion, this thesis has shown the feasibility of implementing reinforcement learning
on an Android smartphone. The results indicate that training RL models on smartphones are
manageable, with reasonable computation and training time. However, the experience was con-
ducted only on one smartphone although also tested on another. The reproducibility of the
experiment is not guaranteed for older versions of Android or with a smartphone with lower
computing power than a Samsung Galaxy S22 Ultra or the Redmi Note 11. Additionally, there
were still issue such as the app crashing causing a bad model update, sometimes making the
model irrecoverable, high battery consumption and exploding gradient. Recommendations for
future research include addressing issues like exploding gradients and experiment with imple-
menting more complex models. Future work could focus on creating an interactive interface to
modify the model, hyperparameters, image processing and ability to change the reward function
to make an interesting reinforcement learning teaching platform. Moreover, insights from the
foundational experiments underscore the value of accessible RL projects, highlighting platforms
like OpenBot and games like Pong as useful learning tools. Overall, this study contributes to
making RL more accessible and comprehensible, potentially expanding its use in mobile com-
puting and robotics.

65

Acknowledgements

I want to express my sincere thanks to my family and my partner for their great support through-
out my academic journey. Your encouragement and understanding have been my pillars of
strength.

I would also like to express my appreciation to my supervisor, Naveed Muhammad, for his
positivity and support.

Additionally, I want to thank the University of Tartu and the Institute of Technology for making
this learning experience possible.

Finally, I am very grateful for Matthias Müller, who generously donated 4 OpenBot platforms
to the University and allowed this research to be possible.

This achievement would not have been possible without the collective support and encourage-
ment from my loved ones and mentors. Thank you for being an integral part of this rewarding
experience.

66

Bibliography

[1] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep
reinforcement learning that matters,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, 09 2017.

[2] GSMA, “The state of mobile internet connectivity 2023.”
https://tinyurl.com/4jtjj4rv, 2023.

[3] N. Rottmann, N. Studt, F. Ernst, and E. Rueckert, “Ros-mobile: An android application
for the robot operating system,” 2020.

[4] S. Pedre, M. Nitsche, F. Pessacg, J. Caccavelli, and P. De Cristóforis, “Design of a
multi-purpose low-cost mobile robot for research and education,” 09 2014.

[5] “TensorFlow Lite: Machine Learning for Mobile and Embedded Devices.”
https://www.tensorflow.org/lite. last last accessed: 2024-05-20.

[6] PROJECTPRO, “15 python reinforcement learning project ideas for beginners.”
https://www.projectpro.io/article/
reinforcement-learning-projects-ideas-for-beginners-with-code/
521. last accessed: 2024-05-19.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. second ed.,
2018.

[8] E. L. Thorndike, Animal Intelligence. 1911.

[9] B. F. Skinner, The Behavior of Organisms. 1938.

[10] B. F. Skinner, Science and Human Behavior. 1953.

[11] R. Bellman, “On the theory of dynamic programming,” Proceedings of the National
Academy of Sciences, vol. 38, no. 8, pp. 716–719, 1952.

[12] R. Bellman, Dynamic Programming and Markov Processes. 1957.

[13] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM
Journal of Research and Development, vol. 3, no. 3, pp. 210–229, 1959.

[14] C. Watkins, “Learning from delayed rewards,” 1989.

[15] R. Sutton, “Learning to predict by the method of temporal differences,” Machine
Learning, vol. 3, pp. 9–44, 1988.

67

https://tinyurl.com/4jtjj4rv
https://www.tensorflow.org/lite
https://www.projectpro.io/article/reinforcement-learning-projects-ideas-for-beginners-with-code/521
https://www.projectpro.io/article/reinforcement-learning-projects-ideas-for-beginners-with-code/521
https://www.projectpro.io/article/reinforcement-learning-projects-ideas-for-beginners-with-code/521

[16] R. S. Sutton, “Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming,” in Machine Learning Proceedings 1990
(B. Porter and R. Mooney, eds.), pp. 216–224, San Francisco (CA): Morgan Kaufmann,
1990.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” 2013.

[18] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Learning, vol. 8, pp. 229–256, May 1992.

[19] OpenAI, M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew,
J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin,
P. Welinder, L. Weng, and W. Zaremba, “Learning dexterous in-hand manipulation,”
2019.

[20] A. Raghu, M. Komorowski, I. Ahmed, L. Celi, P. Szolovits, and M. Ghassemi, “Deep
reinforcement learning for sepsis treatment,” 2017.

[21] G. Huang, X. Zhou, and Q. Song, “Deep reinforcement learning for portfolio
management,” 2022.

[22] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Bewley,
and A. Shah, “Learning to drive in a day,” 2018.

[23] L. Lyu, Y. Shen, and S. Zhang, “The advance of reinforcement learning and deep
reinforcement learning,” in 2022 IEEE International Conference on Electrical
Engineering, Big Data and Algorithms (EEBDA), pp. 644–648, 2022.

[24] P. D. CHRISTOPHER J.C.H. WATKINS, “Q-learning, technical note,” Kluwer Academic
Publishers, vol. 8, pp. 279–292, 1992.

[25] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, pp. 115–133, Dec 1943.

[26] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics (Y. W. Teh and M. Titterington, eds.), vol. 9 of Proceedings of
Machine Learning Research, (Chia Laguna Resort, Sardinia, Italy), pp. 249–256, PMLR,
13–15 May 2010.

[27] M. Müller and V. Koltun, “Openbot: Turning smartphones into robots,” 2021.

[28] Müller, Matthias and Koltun, Vladlen, “OpenBot.”
https://github.com/isl-org/OpenBot, 2020. last accessed: 2024-05-20.

[29] L. Gras and L. Glorieux, “Autonomous vehicles project: Openbot.”
https://medium.com/@lgopenbot/
autonomous-vehicles-project-openbot-aa806fd1829c, 2022. last
accessed: 2024-05-20.

[30] OpenCV, “OpenCV Releases.” https://opencv.org/releases/. last accessed:
2024-05-20.

68

https://github.com/isl-org/OpenBot
https://medium.com/@lgopenbot/autonomous-vehicles-project-openbot-aa806fd1829c
https://medium.com/@lgopenbot/autonomous-vehicles-project-openbot-aa806fd1829c
https://opencv.org/releases/

[31] L. Gras, “Github repository forked from official openbot repository.”
https://github.com/Lilousarg/OpenBot, 2024. GitHub, last accessed:
2024-05-20.

[32] L. Gras, “Demonstration of agents playing carpole and pong.”
https://youtu.be/eUyczcUNVhA, 2024. last accessed: 2024-05-20.

[33] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” 2016.

[34] P. Contributors, “Pytorch tutorials: Intermediate reinforcement q-learning.”
https://pytorch.org/tutorials/intermediate/reinforcement_q_
learning.html. last accessed: 2024-05-20.

[35] O. Vedpathak, “Playing pong using reinforcement learning.”
https://towardsdatascience.com/
intro-to-reinforcement-learning-pong-92a94aa0f84d, 2019.
Medium, last accessed: 2024-05-20.

[36] O. Vedpathak, “Pong from pixels.”
https://github.com/omkarv/pong-from-pixels, 2019. GitHub, last
accessed: 2024-05-6.

[37] A. Karpathy, “Deep reinforcement learning: Pong from pixels.”
https://karpathy.github.io/2016/05/31/rl/, 2016. Blog, last accessed:
2024-05-6.

[38] L. Gras, “Demonstration of reinforcement learning training on openbot at different
stages.” https://youtu.be/BXwLrwt9fgc?si=U3hk7zhIC9bWNYsm, 2024.
last accessed: 2024-05-20.

[39] NVIDIA, “CUDA v11.3.”
https://developer.nvidia.com/cuda-11.3.0-download-archive?
target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&
target_version=20.04&target_type=deb_network. Version 11.3, last
accessed: 2023-12-21.

[40] NVIDIA, “CUDA installation guide.” https://docs.nvidia.com/cuda/pdf/
CUDA_Installation_Guide_Windows.pdf. last accessed: 2023-12-21.

[41] Google for Developers, Android Developers, “Sensors overview.”
https://developer.android.com/develop/sensors-and-location/
sensors/sensors_overview. last accessed: 2023-12-21.

[42] OpenAI, “ChatGPT: An ai language model by openai.”
https://openai.com/chatgpt. last accessed: 2024-05-20.

69

https://github.com/Lilousarg/OpenBot
https://youtu.be/eUyczcUNVhA
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
https://towardsdatascience.com/intro-to-reinforcement-learning-pong-92a94aa0f84d
https://towardsdatascience.com/intro-to-reinforcement-learning-pong-92a94aa0f84d
https://github.com/omkarv/pong-from-pixels
https://karpathy.github.io/2016/05/31/rl/
https://youtu.be/BXwLrwt9fgc?si=U3hk7zhIC9bWNYsm
https://developer.nvidia.com/cuda-11.3.0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=20.04&target_type=deb_network
https://developer.nvidia.com/cuda-11.3.0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=20.04&target_type=deb_network
https://developer.nvidia.com/cuda-11.3.0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=20.04&target_type=deb_network
https://docs.nvidia.com/cuda/pdf/CUDA_Installation_Guide_Windows.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Installation_Guide_Windows.pdf
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview
https://openai.com/chatgpt

Appendices

10.1 External Tools Used in the Making of this Thesis
Following is a list of tools and websites that helped in the research and writing of this thesis:

• TensorFlow [5] library and websites: There are lots of documentation on how to
correctly use tensorflow and adapt it to a specific scenario. This was very important to
understand the pre-existing scripts and how to implement the reinforcement learning
part.

• CUDA websites and online guides [39] [40] Installing the correct version of CUDA
can be challenging with all the possible resulting conflicts from installing a version
incompatible with the different owned libraries. Online guides and the CUDA website
helped tremendously and allowed to accelerate the training to up to 10 times faster.

• Python’s and programming on Android Studio [41]: Luckily there are lots of
documentation online to help programming in Python and JavaScript. They were crucial
to the understanding of the current scripts as well as a great help to implement the new
libraries, such as OpenCV on Android Studio.

• ChatGPT [42]: Chat GPT greatly helped with the debugging process in programming
either in Python or Java by reading the long error logs and giving back the specific place
in the code the error occured at. It can also specify what kind of error it was and what to
look at. While not always reliable, it is a great tool to help with debugging scripts.

10.2 Implementing OpenCV on Android Studio
Here are the details for this installation:

1. The installation of the correct version of OpenCV: In this case, version 4.8.0 [30] was
installed, followed by the extraction of the folder to the preferred path.

2. The addition of the library to Android Studio: Go to File > New > Import Module...,
select the OpenCV folder and SDK, resulting in the creation of a source directory similar
to ".../OpenCV-android-sdk/sdk". Rename the module as ”opencv”.

3. Creating the namespace: Find the gradle file from the OpenCV recently added module,
in Android Studio it may appear in red and named build.gradle (:opencv).
Add the namespace as follows:

70

1 android {
2 namespace 'org.opencv'

Normally, sync the gradle should work properly now.

4. Adding the dependency: Go to File > Project Structure. Select Dependencies then
app followed by the + symbol under declared dependencies. Select Module
Dependency then opencv. The dependency is now added to the app.

5. Debugging the last errors: in your build.gradle (:opencv), add the following:

1 android {
2 namespace 'org.opencv'
3 ...
4

5 buildFeatures{
6 aidl true
7 buildConfig true
8 }
9 }

6. Versioning: The following versions were utilized in this experiment to ensure the
smooth operation of the app without conflicts:

• OpenCV : 4.8.0

• in build.gradle (:opencv):

1 compileSdk 34
2

3

4 defaultConfig {
5 minSdkVersion 21
6 targetSdkVersion 32
7 ...
8 }
9 compileOptions {

10 sourceCompatibility JavaVersion.VERSION_11
11 targetCompatibility JavaVersion.VERSION_11
12 }

• in build.gradle (:app):

1 compileSdk 34
2

3 defaultConfig {
4 applicationId "org.openbot"
5 minSdkVersion 21
6 targetSdkVersion 32
7 ...

71

8 }
9 compileOptions {

10 coreLibraryDesugaringEnabled true
11

12 sourceCompatibility = '11'
13 targetCompatibility = '11'
14 }

10.3 Forward and Backward Policy
Following are the functions implemented in MyModel to compute the forward and backward
pass:

1 public Object[] policyForward(RealMatrix x) {
2

3 RealMatrix w1Matrix =
MatrixUtils.createRealMatrix(model.get("W1"));↪→

4 RealMatrix xTranspose = x.transpose();
5 RealMatrix hMatrix = xTranspose.multiply(w1Matrix);
6

7 double[][] h = hMatrix.getData(); // Calculate the dot
product↪→

8

9 h = relu(h); // Apply ReLU activation function
10

11 hMatrix = MatrixUtils.createRealMatrix(h);
12 RealMatrix w2Matrix =

MatrixUtils.createRealMatrix(model.get("W2"));↪→

13 RealMatrix logProbMatrix = hMatrix.multiply(w2Matrix);
14 double[][] logProb = logProbMatrix.getData(); // Calculate

log probability↪→

15

16

17 double[] p = softmax(logProb[0]); // Calculate probability
18

19 // Return probability and hidden state
20 return new Object[]{p, h};
21 }
22

1 public Map<String, double[][]> policyBackward(RealMatrix eph,
RealMatrix epx, RealMatrix epdLogProb) {↪→

2

3 RealMatrix ephTranspose = eph.transpose();
4 // Calculate gradients for W2
5 RealMatrix dW2Matrix = ephTranspose.multiply(epdLogProb);
6

7 double[][] dW2 = dW2Matrix.getData();

72

8

9 // Calculate gradients for dh
10 RealMatrix dhMatrix =

epdLogProb.multiply(MatrixUtils.createRealMatrix(model.get("W2")).transpose());↪→

11 double[][] dh = dhMatrix.getData();
12

13 // Apply backpropagation for ReLU activation
14 for (int i = 0; i < eph.getRowDimension(); i++) {
15 for (int j = 0; j < eph.getColumnDimension(); j++) {
16 if (eph.getEntry(i,j) <= 0) {
17 dh[i][j] = 0; // Apply ReLU function
18 }
19 }
20 }
21

22 RealMatrix dhOriginal= MatrixUtils.createRealMatrix(dh);
23 RealMatrix dhTranspose = dhOriginal.transpose();
24 RealMatrix dW1Matrix = dhTranspose.multiply(epx);
25 double[][] dW1 = dW1Matrix.transpose().getData();
26

27 Map<String, double[][]> gradients = new HashMap<>();
28 gradients.put("W1", dW1);
29 gradients.put("W2", dW2);
30

31 return gradients;
32 }

73

Non-exclusive licence to reproduce the the-
sis and make the thesis public

I, Lilou Gras

1. I grant the University of Tartu a free permit (non-exclusive licence) to reproduce, for the
purpose of preservation, including for adding to the DSpace digital archives until the
expiry of the term of copyright, my thesis

Exploring Smartphone-Based Reinforcement Learning Control for Educational
Robotics: Implementation on OpenBot

supervised by Naveed Muhammad

2. I grant the University of Tartu a permit to make the thesis specified in point 1 available
to the public via the web environment of the University of Tartu, including via the
DSpace digital archives, under the Creative Commons licence CC BY NC ND 4.0,
which allows, by giving appropriate credit to the author, to reproduce, distribute the
work and communicate it to the public, and prohibits the creation of derivative works
and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in points 1 and 2.

4. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection legislation.

Lilou Gras
22.05.2024

	Resümee/Abstract
	List of Figures
	Abbreviations. Constants. Generic Terms
	Introduction
	Context
	Problem Statement and Objectives
	Structure of the Manuscript

	Introduction to Reinforcement Learning
	Origin and Application
	First Steps into Reinforcement Learning
	Introduction to terms used in Reinforcement Learning
	Markov Decision Processes
	Bellman equations
	Exploration vs Exploitation in Reinforcement Learning

	Challenges with Reinforcement Learning
	Challenges of Implementing Reinforcement Learning on Hardware-Constrained Platforms
	Challenges of Implementing Reinforcement Learning on a Smartphone

	Reinforcement Learning Methods and Algorithms Studied in this Thesis
	Q-Learning
	Artificial Neural Networks
	Deep Q-Learning
	Policy Gradient

	Presentation of OpenBot
	Description of OpenBot
	Hardware Components
	Mechanical Assembly & Electrical Configuration

	Presentation of the App
	Introduction to the Server and Python Scripts
	Python Server
	Python Scripts

	Foundational Experiments
	Preliminary Attempt at Implementing Reinforcement Learning on OpenBot
	Experiment Description and Objectives
	Adding the OpenCV library to Android Studio and OpenBot's Base Code
	Creating the new Feature
	Implementation of the Reward:
	Experiment Protocol
	Results
	Conclusion and Discussion

	Implementing Reinforcement Learning Algorithms In Different Scenarios
	Cartpole
	Pong
	How These Examples Help Prepare for the Implementation of Reinforcement Learning on OpenBot

	Methodology to Implement Reinforcement Learning on OpenBot
	Updated Experiment and Objectives
	Implementing Reinforcement Learning Features
	State
	Reward
	Actions and Termination
	Epsilon-greedy

	Creating the Model and Implementing Policy Gradient
	Model initialization
	Model Forward and Backward pass
	Gradient Ascent
	Training Process

	Difficulties Arising with Implementation
	Using ArrayLists
	Errors with the Random Action
	Crashing if Restarting too Fast
	Time and Battery Consumption
	Exploding Gradient

	Protocol

	Ensuring Safety of the Robot and its Surrounding
	Manual Emergency Stop Using Controller
	Automatic Stop When Exiting the Open Circuit
	Pre-existing feature on OpenBot

	Results
	Training Duration and Variability
	Learning Progress and Performance Milestones
	Crashing and Losing Models

	Discussion
	Interpretation of the Results
	Limitations of the Study
	Recommendations for Future Research or Work
	Additional Notes

	Conclusion
	Bibliography
	Appendices
	External Tools Used in the Making of this Thesis
	Implementing OpenCV on Android Studio
	Forward and Backward Policy

	Non-exclusive license

