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Resümee/Abstract

Physical A*: Graph-Based Search Algorithm for Robot Navigation On-the-Go

Robot navigation is commonly viewed as a trajectory planning problem, relying on a pre-
existing map. However, the availability of a prior map can be problematic, especially in military
or rescue scenarios. This thesis elaborates on the concept of a two-level planning and naviga-
tion algorithm called physical A* to address this problem, focusing typically in use cases where
a prior map is not known. Physical A* is an A* graph traversal where the robot physically
drives along the nodes of the graph. The graph is constructed on-the-go. A lower level planning
component proposes multiple waypoints stored as graph nodes. A higher level planner, with
a broader understanding of the geographical or spatial context computes the goal heuristic for
these nodes. Based on the goal heuristic, the waypoint with least cost is selected to explore
towards the goal. Physical A* mainly concentrates on exploring the waypoints that would lead
the robot towards the goal in the most optimal form.

CERCS: T125 Automation, robotics, control engineering, T120 Systems engineering, com-
puter technology

Keywords: robot navigation, trajectory planning, physical A*, graph traversal, goal heuristic

Füüsiline A*: graafil põhinev otsingualgoritm ilma kaardita navigeerimiseks

Robotnavigeerimist käsitletakse tavaliselt trajektoori planeerimise ülesandena, mis toetub varem
loodud kaardile. Varasem kaardistamine võib aga olla probleemne näiteks militaar ja pääste ka-
sutusjuhtude puhul. Antud töö pakub nende olukordade jaoks välja lahenduse, mis põhineb
kahetasemelisel planeerimis- ja navigeerimisalgoritmil nimega Füüsiline A*. Füüsiline A* on
sarnane klassikalisele A* graafi läbimise algoritmile, ainult et graafi laiendamiseks läbib robot
graafi tippe reaalselt, füüsilises maailmas. Madalama taseme planeerija pakub välja potentsi-
aalseid järgmiseid teekonnapunkte, milleni viib takistustevaba tee. Kõrgema taseme planeerija
hindab tõenäosust, millise teekonnapunkti kaudu jõuaks kõige kiiremini sihtkohani. Kombi-
neerides omavahel teekonnapunkti sõitmise teepikkust ja teekonnapunktist sihtkohta jõudmise
hinnangut valib Füüsiline A* välja kõige optimaalsema teekonnapunkti järgmiseks külastuseks.
Järk-järguline teekonnapunktide külastamine algoritmiliselt optimaalses järjekorras viib roboti
lõpuks sihtkohta.

CERCS: T125 Automatiseerimine, robootika, juhtimistehnika, T120 Süsteemitehnologia, arvu-
titehnoloogia

Märksõnad: robotnavigeerimine, trajektoori planeerimine, füüsiline A*, graafi läbimine, si-
htkoha heuristika
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1 Introduction

Robot navigation has been a topic of research for quite a while, and has been approached across
various disciplines. Traditionally, it has been tackled through mapping the world around the
robot, followed by path planning on top of this geometrically precise map. This integration of
mapping and path planning has been pivotal to numerous state-of-the-art navigation systems in
robot navigation [1].

Similar strategy is also used by Simultaneous Localization and Mapping (SLAM) which relies
on sensor data, such as cameras or Light Detection and Ranging(LiDAR), and interprets these
data to identify the landmarks or obstacles to compute the most optimal trajectory for precise
navigation. SLAM constructs a map continuously localizing the robot in the map and fuses the
map updates along with the position estimates to iteratively update and refine both the map and
the robot’s position in the map.

However, map-based solutions rely heavily on some restrictive assumptions, such as access to
structured sensor data like point clouds generated by LiDAR and precise localization which
limits the applicability in unstructured environments and requires precise and expensive sensor
suite. Also, relying on pre-existing maps can be detrimental in situations where the environment
around the robot undergoes substantial changes over time, as seen in off-road landscapes.

Deep learning based solutions provide an alternative approach. Taking inputs as images from
on-board cameras, the learned neural networks would compute the necessary driving actions and
yield out some driving commands necessary to navigate the robot [2]. The robot learns these vi-
sion based navigational intelligence by training neural network models on a large diverse range
of data. This approach can be beneficial in many instances as common environmental patterns
can be learned, for example recognizing that tall grass can be driven through while a wall should
be avoided.

However, completely ignoring the geometric layout of the environment might not be a smart
choice either, as the spatial arrangement of the world contains some basic regularities for robot
navigation, such as the need to steer clear of narrow passages, not to drive towards the wall or
dead-ends, etc. Instead of learning these details from scratch, this thesis utilizes existing infor-
mation of the robot environment using some sensors.

Recent research has focused on robot navigation in unfamiliar environments, exemplified by
Vision-Bsaed Kilometer-Scale Navigation with Geographic Hints(ViKiNG) [3] which dynami-
cally constructs a graph as the robot explores new terrain. ViKiNG emphasizes the concept of
creating a mental map by combining visual perception with geographical cues to form a nav-
igational graph. This approach draws inspiration from human navigation, where individuals
integrate visual inputs with a topological map like a rough roadmap to navigate between two
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points without relying on precise and highly detailed maps.

A very close approach to ViKiNG is the Rapid Exploration for Open-World Navigation with
Latent Goals(RECON) [4]. RECON performs a search rapidly exploring around the environ-
ment to reach a visual goal. Similar to RECON, ViKiNG also leverages over exploration of a
visual goal. But along with a goal image, ViKiNG also takes in a topological map to navigate
to the goal, making it more directed and efficient over a range of a few kilometers.

Prior methods to ViKiNG such as RECON or ViNG [5] rely solely on camera images which
restricts the navigation to be limited for a short range (tens of meters). ViKiNG is able to break
this deadlock by incorporating the geographic context into the picture. The foundational idea
that makes ViKiNG efficient in reaching far away goals is the iterative graph construction with
geographic hints. This geographic context is analogous to having a geometrically imprecise
topological roadmap providing a rough direction leading the robot towards the goal. It can hap-
pen that the nodes added previously have a better likelihood of reaching the goal. In such a
case, the robot will backtrack through the graph to reach the goal. The search process for the
best node in the graph is an A* graph search. The robot physically explores the space and ex-
pands the graph towards the goal. This showcases an innovative method of trajectory planning
and navigation without the need for geometrically detailed maps or sophisticated sensor suite.
With the aid of geographic supervision and graph expansion on the go, ViKiNG demonstrates a
robust solution for long range outdoor robot navigation.

The distinction between a conventional A* and physical A* is in the fact that conventional A*
already has the nodes and a goal heuristic set on a predefined map. The robot would drive along
the best path based on this heuristic. While with physical A*, expansion of the graph happens
iteratively. As the robot drives towards the best possible node along the graph, the bounds of
the drivable area is expanded. The discovery of the best path through the graph happens on the
go.

Building upon this concept of graph construction and traversal, this thesis touches upon building
a similar navigation algorithm as ViKiNG, retaining some elements from the VikiNG approach
while adapting others for the sake of practicality. The thesis serves as a feasibility study to
assess the effectiveness of the physical A* algorithm for robot navigation in unfamiliar terrains.
The work in the thesis includes testing the algorithm in two different simulation modalities.

The works in this thesis makes use of the laser scans produced by a 2D planar LiDAR in a sim-
ulation environment to propose collision free waypoints for the robot to traverse which forms
the graph. The results in simulations show that graph traversal and backtracking helps the
robot to get out of some navigationally difficult situations which the robot would be unable to
demonstrate without the graph. The primary characteristic of the physical A* algorithm is the
exploration of the traversable boundaries utilizing the goal-oriented heuristic.

Despite having the same sensing capabilities, navigation without the graph is less efficient in
reaching the desired goal. For straight forward traversal there is no significant difference be-
tween the two, but in situations like avoiding the dead ends, the naive approach without using
the graph gets stuck.
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1.1 Problem Statement
The main problem statement that this thesis attempts to address is the effective robot navigation
in unseen environments, creating a graph on-the-go and querying over the graph to reach the
end goal. The nodes in the graph can be represented in any form, for instance: images, GPS
coordinates, or some local coordinates. The only requirement would be that the robot should be
able to confirm that it has reached that specific node while driving along the graph.
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2 Background

2.1 Graph Representation
Graph theory is a branch of mathematics which specifically deals with the study of mathematical
structures which represent the relationships between different objects or entities.

A graph consists of a set of vertices known as nodes, and the relationship between those nodes
are defined by the lines joining those nodes called edges.

Figure 2.1: Graph representation with nodes as some abritrary cartesian coordinates and the
edges representing distances between the nodes

Graphs have been used and have been very successful in designing search-based algorithms in
computer science. For instance, while finding the shortest path between two cities, the problem
can be solved by using graph representation where the nodes in the graphs would be the cities,
and edges would be the distance between these coordinates. There might be multiple pathways
going from city A to city B, but mapping all this information in a graph form simplifies the
entire problem statement. As in Figure 2.1, while travelling from node 0 to node 7, there are
multiple trajectories, but the graph would give the shortest path through node 3.

In robotics as well, graphs have been used in many algorithms to model the relationship between
robot poses and sensor observations for mapping and localization purposes for robot navigation,
for example getting a global path to a goal point with an occupancy grid map. In this thesis,
a graph is used to represent all collision free drivable area. The nodes in the graph would be
some specific GPS coordinates, while edges between the nodes would be the distance between
the nodes that it is connecting.
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2.2 A* Search Algorithm
A* is a popular graph search method, one of the most efficient path finding algorithms. The
algorithm is initialized by setting the start and goal node, and it starts exploring the nodes
finding the shortest path to the goal node. In A* graph search, it traverses to the lowest cost
node from the current node. To calculate this cost, it employs a goal heuristic to select the
subsequent node that offers a greater likelihood of progressing towards the goal.

Goal heuristic is the main difference between Dijsktra and A* graph search. The Dijkstra
algorithm expands the search in all directions and aims to find the shortest path between a node
and all other nodes. This computation is done iteratively for all nodes and the distances are
updated. On the other hand, A* uses the goal heuristic to find the shortest distance between a
source node and a target node.

A* expands towards the nodes that are less expensive, as illustrated by this formula:

f(n) = g(n) + h(n)

f(n) : Total cost associated with going from start to goal node through node n
g(n) : cost to reach node n from start node
h(n) : goal heuristic which represents the cost to reach from node n to the goal

On each iteration, A* chooses the node with minimal cost which eventually leads to the goal
node traversing the shortest distance.

(a) (b)

Figure 2.2: Visualization of path exploration [6] performed by Dijkstra and A* to reach the
same goal starting from same node: Dijkstra (a) and A* (b).

2.3 LiDAR
LiDAR is one of the most common sensors used in robotics, especially in mapping and local-
ization applications. LiDARs provide distance information using laser emission and retrieval,
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calculating the time of flight. LiDARs come in both 2D and 3D variations, where 2D LiDARs
provide the spatial information about the world in the form of laser scans projecting laser beams
in a plane, while 3D LiDARs produce a point cloud which represent the 3D structure of the
world.

In this thesis, a 2D LiDAR is used to propose collision free waypoints. Raw laser scans are
downsampled and manipulated to propose waypoints avoiding any form of collision.

2.4 Global Navigation Satellite System (GNSS)
GNSS is a satellite-based navigation system that provides location and time relevant information
anywhere on the Earth’s surface (global position). GNSS comprises a network of satellites
orbiting the Earth which have their own ground stations and receivers.

GNSS is a general term referring to international Multi-Constellation Satellite System which
includes the satellite network of different regions. Global Positioning System (GPS) is one of
the most common satellite-based navigation system maintained by the Unites States. Others
include GLONASS (Russia), Galileo (European Union), Beidou (China), etc.

Based on the position and time information from multiple satellites, a precise location of the
GPS receiver can be estimated. To have the position estimate of the receiver device, it requires
at least 4 satellites for initial position fix to calculate the time difference between local time
clock and the GPS time. Once this time difference is established, 3 satellites are enough for
getting the global position information. GPS receivers determine the position by triangulation
of the signals from multiple satellites. The global position of the receiver refers to the latitude,
longitude and the altitude of the reveiver device.

In this thesis, GPS position of the robot is used to locate the robot in a specific position. This
GPS position of the robot is also used for initial GPS heading calibration and computation of
the GPS coordinates of the proposed waypoints.

Figure 2.3: Global position and time estimation for GPS receivers using satellites [9].
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2.5 Universal Transverse Mercator (UTM) Projection
UTM projection divides the Earth’s surface into several zones offering a more convenient coor-
dinate system, where each zone has its own coordinate system resembling cartesian coordinate
system making the computations easier, unlike GPS coordinates.

UTM fits a secant cylinder of the same width as the central meridian which intersects the ellip-
soid along 2 circles parallel to the central meridian. Unfolding this secant cylinder will provide
the flat coordinate system that UTM offers as shown in Figure 2.4b.

Individual UTM zone is a 6° segment of the Earth. Each UTM zone has its own coordinate
system which uses a simple Cartesian coordinate system with easting and northing values mea-
sured in meters.

Also, there is an easy conversion technique between GPS to UTM coordinate system and vice-
versa. In this thesis, UTM projections are used to set initial position of the robot with repsect to
the goal in some simulation mode. It is easier to perform the local positioning computations in
the UTM coordinate system.

(a) (b)

Figure 2.4: UTM projection: UTM zones (a) and the secant cylinder required for UTM projec-
tions (b) [10].

2.6 Control Barrier Function
For safety critical systems, it is essential to ensure that the current state is in a safe region.
Therefore, there needs to exist a safe set such that it is a collection of all state vectors (vectors
representing the position and/or orientation) that lie in a safe region. In relevance to robot
navigation, this safe set can be the region in the robot’s configuration space where it does not
collide with any obstacles.

In order to confirm that the robot’s current state is in the safe set, this safety is defined in terms
of a function h(x), where x represents the robot’s state vector. This function h(x) is called the
control barrier function.
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Figure 2.5: Safe region for robot navigation.

system =


safe if h(x) > 0,

boundary condition if h(x) = 0,

unsafe if h(x) < 0.

For the most simplistic case, the function h(x) can be defined as:

h(x) = (x− xo)
2 + (y − yo)

2 − (ro + rr)
2

(x, y) : Robot’s position
(xo, yo) : Obstacle’s position
ro : Obstacle’s radius
rr : Robot’s radius

However, the safety of the system does not depend on h(x) only but also on the higher order
derivatives of h(x). Synthesis of the appropriate velocities with the CBF approach along with a
Motion Predictive Control (MPC) has been previously used in robot navigation in safety critical
systems [7]

Moreover, CBF based controllers [8] have demonstrated some impressive obstacle avoidance
behavior ensuring safety and smoothness over other similar controllers.
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3 Literature Review

3.1 RECON
RECON attempts to tackle the problem of robot navigation in an unknown environment using
visual inputs. The novelty lies in the fact that RECON can navigate in environments which the
robot has never seen which is changing quite often just using camera images.

Given a goal image and the current camera image, RECON samples a potential latent goal which
encodes relative information of the goal with reference to the observation image. RECON
achieves this latent goal using a deep neural network called latent goal model as shown in
3.1. The model encodes both the current image as well as goal image into latent space and
determines how cloes they are in this space. This model predicts two outputs: temporal distance
to the latent goal which is the number of robot time-steps required to reach the latent goal, and
the first action which is the waypoint or the trajectory that the robot needs to follow.

Figure 3.1: RECON latent goal model which takes in the goal image Og and the current camera
observation image Ot and samples a latent goal Zg

t . The final predictions of the model are the
temporal distance Dg

t to the latent goal and the first action Ag
t which is the trajectory to reach

Zg
t [4].

Based on current camera observation, the latent goal model samples a latent goal, and as per the
model predictions, the robot start to drive towards this sampled subgoal for a fixed number of
time steps. During this navigation, the robot collects data from the surrounding. After this fixed
number of timesteps, the graph is updated with the robot’s current observation. At this point,
RECON uses the newly collected data to fine-tune the robot’s model giving the robot a detailed
information about the environment.

Once the model is fine-tuned, RECON samples another latent goal and computes the cost for all
waypoints in the graph. The cost for the waypoints are computed taking into account the edges
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in the graph which represents the distance predictions from the latent goal model. The nearby
unexplored nodes will have relatively lower cost. Once the least cost node is selected, the robot
starts navigating to this waypoint along the graph.

If the robot can reach the goal directly, then it sets the final goal as subgoal and starts navigating
using the same latent goal model and expanding the graph. Else, it explores new areas and
expands the graph as it drives. Eventually, a graph is created all over the free space and the
robot navigates to the intermediate subgoals while driving towards the final goal.

Figure 3.2: RECON system overview: Given a goal image (a), RECON samples latent goals
and constructs a topological graph (b) helping it to explore the environment based on visual
observations. The first actions to follow (c) - the red line based on current camera observation
and the sampled latent goal [4].

3.2 ViKiNG
This thesis draws motivation from the ViKiNG paper which demonstrates efficient robot navi-
gation in an environment which the robot has never seen before. This approach is a two-level
robot navigation algorithm. The robot is provided with a goal image and goal GPS coordinates.
The task in hand is to find a collision free path on-the-go that will eventually lead to the desired
goal. The robot is equipped with cameras and a semi-precise GPS.

The first step is the local planner, which based upon the current camera image proposes mul-
tiple collision free traversable waypoints. This is similar to RECON in the sense that it uses
only visual observations, but the local planner samples multiple potential waypoints for a single
input image. ViKiNG maintains a graph with traversed waypoints and a priority queue with un-
explored waypoints which were proposed previously. All these predicted waypoints that have
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not been visited yet are added to the priority queue.

The main difference between RECON and ViKiNG is that ViKiNG uses a global planner to se-
lect the best waypoint from the priority queue. Global planner predicts the probabilities of these
unvisited waypoints. The global planner predictions is the likelihood of a waypoint leading to
the goal. Based on these probabilities, goal heuristic for all unvisited waypoints is computed.
Using these probabilities, the goal heuristic for all unvisited waypoints is calculated. Based on
this heuristic cost, the best waypoint is selected in A* fashion. Once selected, the path to this
waypoint is forwarded to the robot to follow along the graph.

Figure 3.3: ViKiNG system architecture [3].

3.2.1 Local Planner
The local planner is a Variational Information Bottleneck (VIB) model which samples the way-
points based on current camera observation. It samples multiple waypoints from potential sub-
goals from the learned latent space. For an input image, there will be multiple latent goals,
producing different temporal distances and first actions. Each of these temporal distances and
first actions would represent a proposed waypoint.

The local planner model is trained by sampling pairs of time steps in trajectories from the
dataset, where the image from the earlier time step is the current image and the later image
is the waypoint image. The number of time steps between the images supervise the temporal
distance, and the robot maneuver at the earlier time step provides the supervising signal for the
first action. The temporal distances and first actions should drive the robot from current image
to waypoint image.

During training, the waypoint image provides a prior distribution (mean and standard devia-
tion from latent space) to sample waypoints to feasible collision free locations based on current
camera observation. While integrating the local planner on-policy, the waypoints are sampled
from a normal distribution N(0, 1).

The graph will have the images from the visited waypoints as nodes, and the edges will contain
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the temporal distances between the node images. The cost for driving from one node to another
is given by this edge. All unexplored waypoints are added in the priority queue and are anno-
tated with the parent node from where these waypoints are proposed. Maintaining the graph
and priority queue simultaneously provides the cost of travelling from the current position to
all waypoints. The cost of driving to an unexplored waypoint is the cost of travelling from the
current node to the parent node of the waypoint along the graph in addition to the cost of driv-
ing from this parent node to respective waypoint (temporal distance for the waypoint from it’s
parent node).

3.2.2 Global Planner
The global planner model is a goal heuristic model trained to predict the score for favorability
of candidate waypoints to reach the goal, conditioned over an overhead topological map.

The model estimates the probability for a waypoint, based on whether the waypoint lies on a
valid path from the robot’s current GPS position to the goal in the overhead map. This creates a
bias towards the waypoints that lie in the direction of the goal.

As the probabilities for more likely waypoints will be high, the heuristic cost for these waypoints
should be less than others. This scaling of probability estimates to a heuristic cost is done by
following computation:

h = λ ∗ (1− p)

p : probability estimates coming from the global planner model
λ : scaling constant for the heuristic (a hyperparameter)
h : goal heurisitc for the waypoint with probability p

3.2.3 ViKiNG A* for Physical Search

(a) (b) (c)

Figure 3.4: ViKiNG A* for physical search: Local planner sampled waypoints in (a), global
planner selected waypoint from the waypoints proposed by local planner in (b) and the robot
trajectory in one of the test locations of ViKiNG where global planner is conditioned over a
road map in (c) [3].

The cost of travelling along the graph to all the waypoints in priority queue is added with the
goal heuristic cost and the node’s visitation count to get the total cost. The cost of travelling
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to the least cost waypoint along the graph is the sum of the cost of travelling to the waypoint’s
parent node plus the cost of travelling to the waypoint from that waypoint’s parent node. The
heuristic cost comes from the global planner estimates. And finally, the node’s visitation count
is basically the scaled version of the number of times that a node has been visited. This toal
cost is computed as:

f(w) = g(t, w) + dww
Pr[w] + h(w) + v(Pr[w])

v(Pr[w]) = C ∗ (NPr[w])

g(t, w) : cost of travelling to the parent node of waypoint w
dww

Pr[w] : cost of travelling to the waypoint w itself from it’s parent node

h(w) : global planner based goal heurisitc for the waypoint w
v(Pr[w]) : visitation count of waypoint w
NPr[w] : Number of visitations of the waypoint w
C : Scaling constant (hyperparameter)

Once the cost for all waypoints have been computed, the least cost waypoint from prioirity
queue is selected as the target waypoint. Since the priority queue has the parent node of this
waypoint, a path along the graph from the current node to this waypoint is retrieved and sent
to the robot. This will the desired path for the robot to follow to reach the least cost waypoint.
Once the robot traverses along the graph and reaches the desired waypoint, it adds this waypoint
in the graph. At this point, it will run the local planner model to propose the waypoints and the
same continues.

This is the ViKiNG A* where the robot expands the boundaries of the drivable areas which
eventually leads the robot to navigate towards the goal. With the combination of local and
global planner, and iterative graph construction, the robot carries out the graph traversal and
backtracking to drive towards the goal.

The combination of local and global planner can be achieved without maintaining and updating
the graph and the priority queue. This approach is likely to fail, getting stuck in dead ends or
around the corners, because it has no memory of previously visited waypoints. It just processes
from the current batch of candidate waypoints.

The graph and priority queue provides the robot a memory of which waypoints have been al-
ready traversed, and offers a set of unexplored waypoints as probable options.
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4 Methodology

The core idea of this method is based on graph traversal, motivated from ViKiNG. The General
workflow architecture is illustrated in figure 4.1.

4.1 General Workflow

Figure 4.1: General workflow architecture.

4.2 Sensors Used

4.2.1 LiDAR
For gazebo simulation (section 4.5.1) with Jackal [21], a front facing 2D lidar is used for
proposing collision free waypoints to makr up the graph nodes. A SICK LMS1xx 2D lidar [22]
is used for this purpose while simulating Jackal.
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4.2.2 GPS Device
For GPS, Jackal employs UBlox-NEO-M8N [23] GPS module, where the GPS receiver is
placed at rear left corner of the Jackal’s chasis. This GPS module is well-supported in ROS
and comes built-in while installing Jackal software.

4.3 Softwares and Libraries Used
The physical A* algorithm as illustrated in Figure 4.1 is implemented using the following
versions of softwares and libraries:

• Python 3.9.16

• NumPy 1.26.2

• queue/PriorityQueue

• NetworkX 3.2.1 [11]

• shapely 2.0.3 [13]

• Rasterio 1.3.9 [12]

• OpenCV 4.2.0 [19]

• onnxruntime-gpu 1.16.0 [14]

• ROS Noetic [16]

• CVXPY 1.4.3 [17]

• Conda 4.12.0 [18]

4.4 Modules of General Workflow

4.4.1 Robot Initialization and Heading Calibration
First and foremost, when the robot starts the navigation towards the goal, it is essential for the
robot to know its heading angle with respect to the geographic North. So the first thing that
the robot needs to carry out is the initial position initialization and heading calibration. The
position information comes from the GNSS receiver attached to the robot which provides the
GPS coordinates of the receiver.

In order to calibrate the initial heading of the robot, the robot is driven 1m in a straight path
and the initial and final GPS coordinates are recorded. Based on these latitude and longitude
values, the heading of the robot is computed with respect to the geographic North in clockwise
direction when it reaches the 1m mark, using the following formulas [20]:

∆λ = λ2 − λ1

Θ = atan2 (sin(∆λ) · cos(Φ2), cos(Φ1) · sin(Φ2)− sin(Φ1) · cos(Φ2) · cos(∆λ))
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(Φ1, λ1) : (latitude, longitude) of the starting point
(Φ2, λ2) : (latitude, longitude) of the final point
∆λ : Difference between longitudes
Θ : Heading of the robot with respect to Geograpahic north in clockwise direction

Once this calibration is done, then the robot’s built-in IMU or motor encoders can be used to
compute the robot’s latest heading.

4.4.2 Waypoints Proposition
The waypoint proposition module in this workflow architecture is the substitution for the local
planner in the ViKiNG paper. In ViKiNG, based on the current camera observation, multiple
collision free waypoints are predicted by the local planner model.

For the sake of simplicity and getting it to work in simulations, the waypoint proposal using
camera images and the local planner model is replaced by appropriate waypoint proposition
methods. The way in which the waypoints are proposed differ based upon how the physical A*
algorithm is implemented, i.e., either laser scan based waypoints proposal in Gazebo simulation
as explained in section 4.4.2.1 or the random waypoints proposal in raster map simulation as
explained in section 4.4.2.2.

4.4.2.1 Laser Scan Based Waypoints Proposal

If the Physical A* method is being validated using Gazebo Simulation as explained in section
4.5.1 for Jackal simualation, then the waypoints are proposed using a front-facing SICK LM1xx
LiDAR.

(a) (b)

Figure 4.2: Waypoint proposal: Visualization of accepted waypoints using shapely buffers (a)
with accepted and discarded waypoints, and the integration of same technique to sample way-
points from current LiDAR observation in Jackal Simulation in RViz (b).

The raw laser scans are downsampled within a field of view (FOV) of 150 degrees facing front,
i.e., from -75 degrees to +75 degrees, with a resolution of 10 degrees. Among these laser scans,
only those scans are taken into account which have a range more than 3 meters. These laser
scans come in the form of range and angles with respect to the lidar. For all valid scans with
range more than 3 meters, a waypoint at a distance of 2m is set in the corresponding angle.
These waypoints are converted to cartesian coordinates (x,y coordinates from range and angle),
and transformed to the base link frame.
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As a final check to validate collision avoidance, the robot’s width is taken into consideration.
Using Shapely, a linestring from the robot’s base link frame to individual waypoints is drawn.
A buffer (from Shapely) of the same size as the robot’s width is placed on top of the linestring.
Only those waypoints are proposed for which this buffer does not contain any points from the
raw laser scans.

Similarly to figure 4.2a, in case there are any raw laser scan points within a buffer for a linestring
joining the base link frame and the waypoint, then that waypoint is discarded. In the worst
case scenario when all the buffers contain points from raw laser scans, then the robot rotates
continuously in clockwise direction until it finds a valid waypoint which is collision free and
proposes that waypoint.

4.4.2.2 Random Waypoints Proposal

An alternative to laser scan based waypoint proposition is sampling the waypoints randomly.
Here, random waypoints are proposed within a FOV of 120 degress and within a distance range
of 5-12 meters with respect to the robot’s base link. This method of proposing the waypoints is
used in raster map simulation as explained in section 4.5.2.

4.4.3 Computation of Waypoints GPS Coordinates
The waypoints proposed as illustrated in section 4.4.2 are with respect to the base link of the
robot. To get the GPS coordinates for these waypoints, the waypoints need to be converted
from the relative coordinates to GPS coordinates. This can be achieved using the following
formulas [20]:

δ =
d

R

Φ2 = asin (sin(Φ1) · cos(δ) + cos(Φ1) · sin(δ) · cos(Θ))

λ2 = λ1 + atan2 (sin(Θ) · sin(δ) · cos(Φ1), cos(δ)− sin(Φ1) · sin(Φ2))

(Φ1, λ1) : (latitude, longitude) of robot’s current position
d : Distance of the waypoint from the robot’s base link
R : Earth’s radius (6370 m)
Θ : Heading of the robot with respect to Geograpahic north in clockwise direction
(Φ2, λ2) : (latitude, longitude) of the waypoint

4.4.4 Graph Construction and Physical A*
The initial GPS coordinates of the robot is added to the graph. This is followed by the waypoint
proposal (section 4.4.2).

When the robot proposes waypoints, these waypoints are converted from base link coordinates
to the GPS coordinates as discussed in section 4.4.3 Once converted to GPS coordinates, the
waypoints are added as nodes in the graph. However, to exclude the case where two nodes are
very close to each other, a restriction is applied where a radius of one meter can have only one
node. In case there are more than one nodes within a radius of one meter, the node that already
exists in that radius is retained. All the latter nodes are discarded.
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The distances from the robot’s current position (current node in the graph) to these nodes are
computed and added as the cost of the edges joining the nodes. In addition, if there are any
other nodes in near proximity (roughly 2m), then edges between those nodes are also added by
computing the distance between those nodes. This will construct a densely connected graph.

Alongside the graph, a priority queue is also maintained as in ViKiNG. The PriorityQueue class
from standard queue library(Python) is used for this implementation. The nodes that are there
in the graph are added to priority queue as well. This addition of nodes in both graph and
the priority queue is a deviation from ViKiNG’s approach of A* for physical search. Once the
priority queue is appended with these nodes, the goal heuristic for all nodes in the priority queue
is computed. The computation of goal heuristic is explained in section 4.4.5.

The total cost associated with a waypoint in priority queue is computed as the sum of the cost
of travelling to the node along the graph plus the goal heuristic for that node. It is slightly
different than ViKiNG in regards that it takes into consideration the visitation cost for the node
as well which is not accounted in this thesis. The waypoint with minimum cost is selected as a
target waypoint, and the robot traverses to this waypoint using the robot controller as discussed
in section 4.4.6. The use of priority queue acts as a virtual memory which implicitly marks
these nodes as “unvisited nodes”. In later iterations, only these unvisited nodes are considered
to be potential waypoints leading to the goal, while the graph provides a global path to these
unvisited nodes.

4.4.5 Goal Heuristic
Depending on how the physical A* method is being validated and visualized, there exist mainly
two flavors of goal heuristics for the computation of cost from the goal for individual waypoints.

4.4.5.1 Distance Based Goal Heuristic

This goal heuristic is used when the Physical A* is being exhibited in the Jackal Simulation in
a Gazebo world and visualized using RViz. For all waypoints in the priority queue, the goal
heuristic is computed as the Euclidean distance between the GPS coordinates of the waypoint
and the goal point. The formula to calculate the distance beween two GPS points given that
the current heading with respect to geographic north (in clockwise direction) is known is as
follows:

a = sin2

(
∆ϕ

2

)
+ cos(ϕ1) · cos(ϕ2) · sin2

(
∆λ

2

)
∆ϕ = ϕ2 − ϕ1

∆λ = λ2 − λ1

c = 2 · atan2
(√

a,
√
1− a

)
d = R · c
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(Φ1, λ1) : (latitude, longitude) of inital GPS point
(Φ2, λ2) : (latitude, longitude) of final GPS point
R : Earth’s radius (6370 m)
d : Distance of the waypoint from the robot’s base link

4.4.5.2 Learned Goal Heuristic

The motivation for using a neural network based goal heuristic comes from ViKiNG’s global
planner. Similar idea was used in the vision based navigation Milrem AIRE project [27], where
the global planner model takes in an overhead map, the pixel coordinates of the robot’s position
and the goal position, and in turn predicts the probability map as shown in 4.3. The gps
coordinates are converted to their corresponding pixel coordinates using Rasterio Python library.

Figure 4.3: Probability map: Probability map showing the region with high probabilites in
darker shades. Global planner will predict high probabilites for the waypoints in this region,
taken from video1

This global planner model is trained with the georeferenced maps and recorded GPS trajecto-
ries, where all points in between the start and end points on a trajectory are marked as high
probability points. This creates a probability map in the direction of the goal. Based on this
probability map, the probabilities for individual waypoints is computed. Any waypoint falling
on the region will have higher probabilities, and implies having lower cost. The pixels in darker
shade in figure 4.3 are the high probability pixels. This model is an ONNX [15] model, and is
run using the onnxruntime-gpu python package.

This retrofitted global planner is not a part of this thesis, and is an open-source resource. This
global planner was plugged in while simulating the Physical A* implementation using the raster
map simulation explained in section 4.5.2. Training this model was not part of the thesis, but it
was integrated for the Physical A* implementation.

To scale these probabilities into metric cost, the Euclidean distance between the respective way-
point and the goal is divided by the probability associated with that waypoint. This would result
in the heuristic cost for all waypoints in the priority queue. For waypoints with higher proba-

1Simulation video for testing global planner.
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bilities, for instance 1.0, it will be equivalent to the Euclidean distance to the goal. Conversely,
for a waypoint with lower probability, like 0.1, it will be mathematically equal to ten times the
Euclidean distance to the goal.

4.4.6 Robot Controller
Robot navigation in this approach is attained in a two-level fashion. Firstly, when the target
waypoint is chosen from the queue, a path through the graph is obtained. This is a higher
level component of the navigation algorithm which passes the path for the robot to navigate
through. Taking in this path (like a global path) and the downsampled laser scans as obstacles,
the CBF controller generates the velocities and publishes them for the robot to reach the desired
waypoint avoiding all obstacles in the path.

CBF based controller is implemented using the cvxpy library [17] which takes in the robot’s
position, target waypoint’s position and the downsampled laser scans (point obstacles). The
velocities that the cvxpy generates are holonomic drive velocities, i.e., linear velocities in x and
y direction in the robot’s base link frame.

These velocities are then converted to differential drive velocities which will be linear velocity
in x direction and angular velocity about the z axis (yaw) using the following formulas:

v =
√

v2x + v2y

ω =
vy
b

vx, vy : velocities in x and y direction generated by cvxpy
v : linear velocity in x direction (differential drive)
ω : angular velocity in z direction (differential drive)
b : wheelbase: distance between wheels of the differential drive robot

4.5 Simulations
There are two different simulation modalities where the Physical A* algorithm is validated for
robustness and performance. The workflow architecture remains more or less consistent, but
some modules alter as per the requirements and implementation.

4.5.1 Gazebo Simulation
When simulating the Physical A* implementation over Gazebo, a world is designed such that
the pathway from the robot’s initial position to the goal might not be straight forward. This
depends on the obstacle configuration. Some configuration have the pathway pretty straight
forwards, and some comsists of different kind of obstacles in between.

Firstly, the robot is spawned at a specific location from where it would need to calibrate the
initial heading with respect to geographic north as mentioned in section 4.4.1. When the initial
robot heading is calibrated, it starts proposing waypoints and adding those to both the graph and
priority queue as discussed in section 4.4.4. In this simulation mode, a simple distance-based
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goal heuristic is used as discussed in section 4.4.5.1.

The waypoint with least cost is selected as the target waypoint, and the path along the graph to
this waypoint is sent to the robot’s controller to reach that waypoint. Using the CBF controller
(section 4.4.6), the robot drives to this waypoint, checking the proximity to the final goal in
all timesteps. If it finds itself within goal distance threshold, then it confirms that it reached
the final goal. If not, then it keeps navigating to the selected waypoint keeping in check if it is
within the waypoint distance threshold. If the robot is within this waypoint distance threshold,
then it confirms that the target waypoint has been reached. Else, it continues the waypoint
navigation.

When the robot reaches this waypoint but is not in near vicinity to the goal, it proposes another
set of waypoint and again the graph expands in that direction. All these waypoints are again
added to the graph and priority queue, and the same continues until it reaches the final goal.

This is the Physical A* implementation, where the graph expansion happens on the go, unlike
the conventional A* where the nodes are already existent, and the problem in hand is only to
find the shortest path from start to finish.

(a) (b)

Figure 4.4: Physical A* in gazebo simulation: Graph expansion in free space and graph traversal
(single red sphere) towards the target waypoint in (a), and graph backtracking (two red spheres)
to get to the best waypoint along the graph in (b).

Eventually, it creates a mesh like grid with numerous nodes and edges expanding towards the
end goal. This grid is a depiction of the drivable area in the robot’s configuration space. This
graph representation of the traversable regions is similar to occupancy grid map, but a lot sparser
and light-weight.

4.5.2 Raster Map Simulation
In the raster map simulation, some modules slightly alter in terms of implementation. Firstly,
there is no initial heading calibration as a point at a specific global position is just spawned
representing the robot. And secondly, the goal heuristic used in this mode of simulation is a
learned neural network model as explained in section 4.4.5.2.

In order to implement the Physical A* algorithm with this global planner model, a simulation
using OpenCV is created where the robot is spawned over appropriate locations on top of a
top-down raster map image. The pixel coordinates of the respective GPS position are retrieved
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using rasterio APIs. The robot location, waypoint locations and the nodes in the graph that
the robot traverses are places and visualized on each iteration. Some modules from the general
system architecture deviate slightly in this simulation model.

Robot’s initial position is set with respect to the goal GPS. GPS coordinates of the goal are con-
verted to UTM coordinates, and the starting position of the robot is set at some offset distances
in East and North directions from that point. The initial heading is set randomly.

Once the initial position and heading is set, the initial robot position is added to the graph and
the robot proposes waypoints randomly as discussed in section 4.4.2.2. Just like in ViKiNG,
these waypoints are added to the priority queue but not the graph.

Once the cost for all waypoints are computed, the one with least cost will be taken out from
the priority queue as the target waypoint. The path along the graph to this waypoint is retrieved
and sent for the robot to traverse through the path. In this simulation model, the robot is just
spawned over these nodes for visualization purposes. Corresponding pixel coordinates from the
GPS coordinates are visualized over the map using the Rasterio APIs.

Once it reaches the target waypoint, a new set of waypoints are proposed and the same continues
until the robot reaches its final goal.

(a) (b) (c)

Figure 4.5: Physical A* in raster map simulation: Robot spawned at initial position at a random
heading with proposed waypoints and global planner selected waypoint in (a), second itera-
tion of robot navigation where robot is spawned over the best waypoint location and proposes
another batch of waypoints in (b), and the successive robot navigation executing Physical A*
leading towards the goal in (c).
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5 Results

For results and analytics, the performance and robustness of the physical A* algorithm was
examined and quantified comparing the result for the same scenario against a naive approach.

Naive approach refers to the the algorithm which does not make use of the graph and priority
queue. The robot would consider only the current batch proposed waypoints. Everytime when
there is a set of collision free waypoints sampled, the goal heuristic for these waypoints are only
computed. And the waypoint with least cost is selected as the target waypoint. The navigation
to reach the target waypoint is the same for both naive and physical A* approaches.

5.1 Results for Gazebo Simulation
The physical A* implementation in Gazebo simulation follows the exact software architecture
as illustrated in section 4.1 and the graph construction is carried out as explained in section
4.5.1.

5.1.1 Qualitative Results for Gazebo Simulation
The robot was initialized in the same position for the two approaches and let free to explore and
reach the goal. Goal here is a point farther away in space whose GPS coordinates are feeded to
the system while initializing the robot. The qualitative performance was assessed in two disticnt
obstacle configurations, namely easy (scenario 1) and difficult (scenario 2).

(a) (b)

Figure 5.1: Scenarios for qualitative analysis of gazebo simulation: scenario 1 - easy (a) and
scenario 2 - difficult (b).
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5.1.1.1 Scenario 1 (Easy)

Scenario 1 (easy) consists only few static obstacles in the path originating from robot’s initial
position to the goal position as shown in figure 5.1a.

5.1.1.2 Scenario 2 (Difficult)

Scenario 2 (dificult) is a relatively complicated obstacle configuration, which consists of a dead-
end corner in the path between the robot’s initial position and the goal position along with some
static obstacles as shown in figure 5.1b.

(a) (b) (c)

(d) (e) (f)

Figure 5.2: Qualitative results for easy scenario in gazebo simulation: Naive approach drives
to the lowest cost node from a batch of waypoints proposed each time (a), (b) and (c), and
Physical A* creates a graph considering all previously sampled waypoints as well and drives
to the unvisited waypoint with least cost (d), (e) and (f) taken from robot simulation videos:
video2 and video3

For the easy scenario, both naive and physical A* algorithm is able to drive the robot to the goal
as shown in figure 5.2.

Figure 5.3 shows that the naive approach fails when the obstacle configuration becomes more
complicated. since the naive approach does not have the memory of previously visited nodes
and the unexplored waypoints, taking into account the current batch for waypoints is not effi-
cient in all use cases.

In contrast, physical A* method which has this memory of visited and unvisited nodes in the
drivable space demonstrates that it can travel towards the goal even in such difficult circum-
stances. In order to achieve the successful navigation towards the goal, the robot performs

2Simulation video for Gazebo scenario 1 naive implementation video
3Simulation video for Gazebo scenario 1 physical A* implementation video
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backtracking through the graph back and forth to get to the most optimal node leading towards
the goal.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.3: Qualitative analysis: Naive approach- (a) to (f) gets stuck in the dead end, physical
A*- (g) to (l) expands the graph towards the goal eventually and gets out of the dead end taken
from simulation videos: video4 and video5

5.1.1.3 Remarks on the Qualitative Tests for Gazebo Simulation

For simpler tasks both the approaches work equally good. But, when the obstacle configurations
gets complicated, then the algorithms are tested to their limits and shows different behaviors.

As figure 5.3 illustrates, for a difficult obstacle configuration like a dead end in the path would
make it impossible for the robot to get out from there in naive implementation. As the goal is

4Simulation video for Gazebo scenario 2 naive implementation video
5Simulation video for Gazebo scenario 2 physical A* implementation video
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on the other side of the wall, the goal heuristic for waypoints near the dead ends will always be
lower. Therefore, the naive approach fails to reach the goal.

However, the physical A* algorithm making use of the graph and the information in the priority
queue about the undiscovered nodes in the graph can make its way out of the dead end and
eventually drive towards the goal.

5.1.2 Quantitative Results for Gazebo Simulation

(a) (b) (c) (d)

Figure 5.4: Obstacle configuration for quantitative analysis in gazebo simulation: Four dif-
ferent obstacle configuration where the robot is initialized in different positions in simulation:
simulation videos6

For quantifying the results, both the naive approach and physical A* algorithm were imple-
mented in four different scenarios. For each scenario, the initial position of the robot and the
goal point is the same. The results are quantified in terms of the number of robot time steps
taken by the naive approach against the physical A* algorithm. The number of time steps are
recorded only after the initial GPS heading is calibrated.

Figure 5.5: Quantitative results for gazebo simulation: the number of time steps robot needed
to reach the goal in four distinct scenarios for naive and physcial A* algorithm

6Simulation videos for quantitative results in gazebo videos.
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The final quantified results are presented as bar graphs, where the bars for naive and physical
A* method for the same scenario are adjoined together as shown in figure 5.5.

5.1.2.1 Remarks on the Quantitative Tests for Gazebo Simulation

From the results as shown in figure 5.5, the graph-based physical A* algorithm is apparently
more time-efficient as it recorded lower number of robot time steps in each scenario (also com-
pleted all scenarios) and can drive along difficult obstacle configuration as well.

5.1.3 Physical A* with Odometry Coordinates
As expalined in section 4.4.4, the physcial A* algorithm is implemented with GPS coordinates
of the nodes. Any positioning system should work, as long as there exists a metric to calculate
the cost for individual waypoints.

To test the performance of the physical A* with a noisy(unstable) positioning sytem, the im-
plemntation of physical A* was examined using odometry coordinates in place of GPS coorid-
inates.

(a) (b) (c)

Figure 5.6: Physical A* with odometry coordinates: the same gazebo environment for scenario
2 (a), first set of proposed waypoints added to the graph with goal in top right corner (b), and the
final graph that the robot expands towards while searching for the goal (c) taken from Gazebo
simulation video7.

5.1.3.1 Remarks on Comparative Analysis between GPS vs Odometry based Physcial A*

Physical A* with odometry coordinates in general works good enough, but is comparatively
less reliable. This mainly comes from the odometry drift as a result the noise in IMU and/or
wheel encoders. When the graph is constructed using odometry coordinates, then the nodes in
the graph will have the odometry coordinates from the timestamp when these waypoints were
proposed. When new nodes are added, these newly added nodes will have the odometry coordi-
nates from a later timestamp which incorporates the odometry drift between these timestamps
that the robot has experienced. This drift will have some synchronization problems as depicted
in figure 5.7.

7Gazebo simulation video for physical A* with odom coordinates video.
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(a) (b)

Figure 5.7: Problems with physical A* using odometry coordinates: odometry drift causing the
target waypoint to be inaccessible around the obstacle (a), and the graph connecting through the
wall (b).

5.2 Results for Raster Map Simulation
The physical A* implementation in Raster Map simulation follows the procedure as discussed
in section 4.5.2.

5.2.1 Qualitative Results for Raster Map Simulation

(a) (b) (c)

(d) (e) (f)

Figure 5.8: Robot trajectories for raster map simulation scenario 1: Initializing the robot in the
same place, behavior shown by naive approach- (a), (b) and (c), trajectory followed by physical
A*- (d), (e) and (f), taken from simulation videos: video8, video9

The robot was spawned at a specific location initally over a top-down raster map image, and
then the physical A* method was implemented. For qualitative anlaysis, the naive and physical
A* methods were tested in two different scenarios, initializing the robot in a different location.
For Scenario one, the robot is initialized 120 meters east and 150 meters north from the goal.
While for scenario two, the starting point of the robot is 100 meters east and 300 meters north
from the goal.

8Raster map simulation video naive approach scenario 1 video.
9Raster map simulation video physical A* approach scenario 1 video.
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5.2.1.1 Remarks on Qualitative Tests for Raster Map Simulation

As seen in figures 5.8 and 5.9, the naive approach seems to explore the space more randomly.
Since it can only choose from a set of waypoints that it proposes in each iteration, when the
waypoints are facing some other direction than the goal, this makes the robot to navigate in
those directions. Hence, to find a waypoint optimal for leading towards the goal, the robot
demonstrates some exploration in random directions.

As briefly explained in section 6.2.2, one of the limitation of the learned goal heuristic model is
that the probability map extends in both directions (occasionally), and when the robot is facing
the opposite direction to the goal, then it will choose the waypoints away from the goal (for
naive approach). Once it moves farther away, the probability map will predict higher probabil-
ity regions towards the goal and the goal heuristic model directs the robot towards the goal (as
seen in video.)

But in case of physcial A* algorithm, it prevents this random exploration by backtracking
through the graph as there will be waypoints closer to the goal making the robot face towards
the goal (video).

(a) (b) (c)

(d) (e) (f)

Figure 5.9: Robot trajectories for raster map simulation scenario 2: Initializing the robot rel-
atively farther than in scenario 1 and recording the behavior shown by naive approach- (a),
(b) and (c), trajectory followed by physical A*- (d), (e) and (f) taken from simulation videos:
video10 and video11

While with the physical A* navigation, the graph search makes it more directed forcing the
robot to backtrack along the graph to drive in the direction of the goal as the probabilities for
pixels in probability map will be higher in that region implying lower costs. In some section
of the robot trajectory in figures 5.8e and 5.9e, the blue dots are densely populated. This is
because the robot backtracked around that section more often.

10Raster map simulation video naive approach scenario 2 video.
11Raster map simulation video physical A* approach scenario 2 video.
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5.2.2 Quantitative Results for Raster Map Simulation
For quantifying the results for the raster map simulation, the number of robot time steps were
chosen as the qauntifying figure. This figure provides the information about how quickly could
the robot navigate over the real world maps, given that the waypoints proposed are random.

(a) (b) (c)

(d) (e)

(f)

Figure 5.10: Quantitative analysis of raster map simulation: Starting location of robot in five
different scenarios for quantitative analysis (a) to (e) taken from raster map simulation videos
videos12, and the number of robot timesteps taken by the naive and physcial A* implementations
in corresponding scenarios (f)

To get to the quantitative analysis of results, the robot was deployed in five different scenarios
(figures 5.10a, 5.10b, 5.10c, 5.10d, 5.10e ). For each scenario, the robot is initialized in a
different start location. For both the approaches, the number of robot time steps were recorded
and the quantitative results are presented as bar-graphs showing the number of time steps the

12Raster map simulation videos for naive and physical A* approach in 5 different scenarios videos.
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robot needed to ge to the goal by naive exploration and physical A* exploration.

5.2.2.1 Remarks on Quantitative Tests for Raster Map Simulation

Taking a look at the number of robot time steps that the individual approaches need to reach
the goal point illustrated in figure 5.10f, it is difficult to explicitly announce which method is
superior in terms of number. At times, the naive algorithm reaches the goal in less number of
time steps than the physical A*.

This most probably comes down to the scaling of probabilities to cost. The probabilities for all
sampled waypoints in the high probability region in the probability map is expected to be some-
what similar. When the global planner computed probabilities are scaled to the corresponding
cost as explained in section 4.4.5.2, the waypoints which are closer in distance to the goal will
always be chosen. One thing to acknowledge here is that when the distance is larger, the heuris-
tic cost can be in an order of hundreds (for example, if the distance between the waypoint and
goal is 50 meters and the probability is 0.4, then the heuristic cost will be 125 meters), while
the cost of travelling through the graph will be in a few tens of meters. So, the heuristic cost
overrides this graph traversal cost. Therefore, as long as there are such waypoints in the priority
queue, the robot will keep backtracking again and again. This repetitive backtracking through
the graph accounts for more number of timesteps required for the robot to drive towards the
goal.

Once the robot faces towards the goal and the proposed waypoints are in the direction of the
goal, then it drives towards the waypoints closer to the as these waypoint would have a lower
heuristic cost. This justifies the behavior shown by the raster map simulation (can be visualized
in videos.) upto a certain extent on why the naive approach at times is able to drive to the goal
in less number of time steps.
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6 Discussion and Analysis

Looking at the qualitative and quantitative results of the tests conducted, physical A* in gen-
eral seems to perform better than the naive approach. Being more specific, in case of Gazebo
simulation, physical A* outperformed the naive implementation both in terms of success in nav-
igating through a difficult terrain including dead-ends and static obstacles, as well as in regards
to the number of robot time steps required to reach the goal.

However, the tests carried out in raster map simulation differed from the ones in Gazebo slightly.
For some scenarios, the naive approach was able to reach the goal quicker (lower number of
robot time steps). This does not necessarily imply that the naive approach is better. Since the
physical A* takes in account the entire history of waypoints proposed, as long as there is an
unvisited waypoint available which has a lower cost, the algorithm tries to navigate to the goal
through that waypoint. Therefore, the number of robot time steps for physical A* is likely to be
more than the naive approach in this regard, for some scenarios.

The main characteristic of physical A* is to scan over the drivable collision free regions and
create a graph to provide the supervision signals on where to drive. As the raster map simulation
does not have the collision free waypoints and the entire map is a drivable area, drawing strong
conclusions from this test is not a fair assessment of the system.

Overall, the physical A* algorithm seems to overcome issues that the naive approach is unable
to handle (especially the dead ends case). This opens the door for the validation of the algorithm
in some real life use cases and gives the research a direction with some future works that can
be experimented. Along side the positive aspects, the tests conducted also hints towards some
limitations of the system (or parts of the system).

6.1 Potential Use Cases
This thesis leverages undirected graphs as a sparse map for extracting drivable areas in any
unseen environment. This lightweight map is constructed as the robot drives. With some ge-
ographical context around the robot, it is demonstrated that the robot can drive back and forth
along this graph to reach the desired goal.

This approach is best suited for application domains where a geometric map of the robot envi-
ronment is unavailable or difficult to map, for instance the off-road navigation for military and
rescue applications.

This thesis is mainly concerned with expanding the graph in all free areas, where the main at-
tribute for the graph nodes is the GPS coordinates. This is not a hard requirement. The graph
can be constructed over any data as long as the edges between the nodes can be expressed as
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cost (distance or any other metric) and the positioning system is robust against drifts.

6.2 Drawbacks
The main limitation of this approach is that the trajectory planning is non-optimal as compared
with map based navigation. When there is a prior map, then the robot already has the privilege
of planning the path on top of the map, computing all the costs beforehand. As the robot
expands the graph as the robot traverses while implementing the physical A*, the robot needs
to drive along the graph too much back and forth, for example avoiding dead ends (as shown in
Gazebo simulation) or when the robot is directed in some other directions (as shown in raster
map simulation while using the global planner model).

To be more specific of the the parts of the entire system which can act as a point of failure are
as follows:

6.2.1 Local Planner Limitations
In this thesis, the waypoint proposal is solely based on laser scans. Although it provides a good
spatial information of the environment, it misses out on some aspects of intellgence which is
expected to have if this algorithm is to be intergrated in an autonomous (or semi-autonomous)
unmanned ground vehicle.

A laser scan representation would treat both tall grass and trees in the same way. However,
a camera based system with some aid with deep learning techniques can distinguish between
these two objects. For an outdoor navigation robot, especially designed for off-road landscapes
tall grass should be drivable whereas a tree must be avoided.

6.2.2 Global Planner Limitations
For the learned global planner used in this thesis, the probability map that the model predicts is
of size 400 pixels X 400 pixels with a resolution of 0.42 X 0.42, corresponding to 954 meters
X 954 meters centered around the robot. For a waypoint outside the map range as shown in
figure 6.1a, the probability for that waypoint cannot be computed. Even if there is a revised
model which has higher range of proability map prediction, there will be a limitation of how far
should the goal be. This can of course be tackled using intermediate subgoals which are within
this range.

But a bigger limitation of the learned goal heuristic model is the probability map prediction
which elongates in either direction (occasionally) of the robot’s current position as shown in
Figure 6.1b. Since the high probability region is in both sides of the robot, when there are
waypoints only in the direction away from the goal, these waypoints would have lower heuristic
cost. This would eventually drive the robot far away from the goal. An expected behavior for
the global planner would be to have these high probability region only in the direction towards
goal so that these waypoints would have a relatively lower costs and the robot would choose
driving towards these nodes through the graph.
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(a)

(b)

Figure 6.1: Probability map limits: Probability map range shown as a square, and examples
when the probability of a waypoint can be computed and when it cannnot be computed.

6.3 Future Works

6.3.1 Image Based Local Planner
There are a couple of deep learning models as listed in the General Navigation Models [24],
such as NoMaD [25] which samples multiple waypoints for a single input (current image plus
some prior context images) and a goal image. NoMaD was attempted to be integrated, but did
not show very promising results.

A camera based waypoint prediction is much preferred as mentioned in section 6.2.1. A po-
tential future work for this thesis would be coming up with image-based waypoint proposals,
something very close to NoMaD, making sure the waypoints are collision free. This version
of local planner will consist of images at specific locations as nodes, and does not incorporate
GPS coordinates at all while creating the graph, just like in ViKiNG. GPS coordinates would be
used just for retrieving the pixel coordinates in top-down raster map and compute the distance
necessary for computation of goal heuristic.

But, for this image-based local planner to work efficiently, it would require an array of cameras
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(at least two: front and rear). The robot would see in forward direction while driving forward,
but the perspective would change completely while backtracking as it needs to drive in an op-
posite direction.

Figure 6.2: NoMaD failing to propose collision free waypoints: Waypoints proposed by No-
MaD (in red) in front of trees do not exhibit complete avoidance of collision. Few waypoints
seem to avoid the tree, but not all. Image taken from video13 [27].

6.3.2 Global Planner Remedy
As discussed in section 6.2.2, at times the global planner prediction for probability map elon-
gates in both directions. A potential extension for this thesis can also be training deep learning
models that would predict the proabability map where the high probability regions will be di-
rected only towards the goal from the robot’s current position. This would minimize the issue
of robot traversal in other directions rather than the goal.

13NoMaD waypoint proposal video.
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7 Conclusion

This thesis touches up on an approach for robot navigation, which gets rid of the usage of
geometric maps which can be an overhead while navigating outdoors, especially in situations
where the world around the robot is changing more often. Creating a sparse and light weight
map in drivable areas in terms of a densely connected graph with some geographic cues with a
goal heuristic makes this method a strong alternative to map-based navigation.

Based on the results obtained from Gazebo simulation, the physical A* outperforms the naive
approach. It demonstrates that the physical A* algorithm can navigate around in a difficult
obstacle configuration and does that in less number of time steps. Also, physical A* is able to
navigate in difficult terrains that a naive algorithm fails to complete.

While drawing conclusions from the raster map simulation, the physical A* algorithm makes
the robot follow a more directed trajectory towards the goal starting from the robot’s initial
location. The naive approach shows exploratoty behavior with limited number of waypoints,
driving towards the least cost waypoint from that pool. Depending on where the robot is facing
and where the latest batch of waypoints are directed, the number of time steps might vary for
the two approaches. Comparing the performace of the two approaches, physical A* apparently
prevents the random exploration and makes the robot point towards the goal.
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Appendices

I External Web Sources Used
Online graph visualization: Online tool for visualizing graphs [6]

Global Navigation Satellite Systems Positioning Concepts: Information and image source
for GNSS positioning techniques [9]

UTM projections: Information and image source for how UTM works [10]

II Tools
Github: Code source for some programs working out of the box some some applications

Gitlab: Project repository for contiuos integration continuous development

Python wiki: Information source for python programming language

Geeks for Geeks: Information source for general code implementations

W3Schools: Information source for general code implementations

Stack Overflow: Information forums for debugging commonly appearing code issues

Ask Ubuntu: Debugging tool and information source for ubuntu software packages, installation
and unmet dependedncy errors

Grammarly: Writing assitance tool

Arxiv: Information source for reasearch papers

IEEE: Information source for research papers

google scholar: Source for creating research citations

Wikipedia: General information source

ChatGPT3.5: Writing and debugging tool, used in various layers of thesis- writing, rephrasing,
creating boilerplate codes, etc. [26]
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III. Code Repository
The codebase to reproduce all works expalined in this thesis can be found at:
https://github.com/AnishShr/physical astar

The GitHub readme file will guide all readers on setting up the environment and running the
files necessary for reproducing the same(or similar) results.
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