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Resiimee/Abstract

Multi-vehicle path planning using shared data

Vehicle navigation is a problem without a real solution. Every action taken can be
disturbed by an accident, making the suggested path not optimal. As a result, the only
moment it is possible to state that the selected road was optimal is after the vehicle has
completed it and all possible disturbing events have occurred. Due to the high impact of
the navigation system on traffic flow, this research suggests sharing information between
vehicles to make decisions as a team, giving way for those who benefit most. It also
allows them to renavigate vehicles if they face traffic jams or congestion on the road.
The newly developed algorithm proved to be useful, overperforming other common
path-finding strategies by 10-15% and providing results 5% close to the optimal path 11
possible disturbing events have occurred. Traffic flows after the developed algorithm
also provided a lower traffic jam rate compared to other algorithms. Algorithms were
tested using the simulation developed for this research.

CERCS: T120 Systems engineering, computer technology; T125 Automation, robotics,
control engineering; T280 Road transport technology

Keywords:

Path planning; Trafic flow; Simultaneous multi-vehicle nafigation; TomTom; Shared
data; Time-based network

Mitme soiduki tee planeerimine jagatud andmete abil

Lithikokkuvote: Sdidukite navigeerimine on probleem, millel puudub tegelik lahendus.
Iga ettevoetud tegevust voib Onnetus hdirida, mistottu soovitatud tee ei ole optimaalne.
Sellest tulenevalt saab ainuke hetk viita, et valitud tee oli optimaalne, kui sdiduk on selle
labinud ja kdik voimalikud héirivad siindmused aset leidnud. Kuna navigatsioonisiisteem
avaldab liiklusvoogudele suurt modju, soovitab see uurimus jagada teavet sdidukite vahel,
et teha otsuseid meeskonnana, andes teed neile, kes saavad sellest kdige rohkem kasu.
Samuti voimaldab see neil soidukeid timber navigeerida, kui teedel tekivad liiklusum-
mikud vdi ummikud. Asja viljatootatud algoritm osutus kasulikuks, toimides teiste
levinumate teeotsingu strateegiate puhul 10-15% vdrra ja andes 5% optimaalsele teele
ldahedasi tulemusi, kui voimalikud hiirivad siindmused on aset leidnud. Liiklusvood
pédrast viljatootatud algoritmi andsid ka viiksema liiklusummikuméira vorreldes teiste
algoritmidega. Algoritme testiti selle uuringu jaoks vélja tootatud simulatsiooni abil.

CERCS: T120 Siisteemitehnoloogia, arvutitehnoloogia; T125 Automatiseerimine, ro-
bootika, juhtimistehnika; T280 Maanteetransporditehnoloogia

Votmesonad:

Teede planeerimine; Liiklusvool; Samaaegne mitme sdiduki navigeerimine; TomTom;
jagatud andmed; Ajapohine vork
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1 Introduction

Vehicle navigation using navigation tools like GPS is very common nowadays. Even if
a person is an experienced driver, it is customary to check a suggested path from GPS
to analyze the road situation. Navigating an unfamiliar city is highly complicated, and
choosing a path depends entirely on the navigation device. New technologies even offer
autonomous vehicles, where the driver is needed only for road emergencies. This leads
to a situation where the path-choosing strategy no longer depends on the driver and is
mainly defined by the navigation device’s algorithm. As a benefit of such an action,
traffic flow control moves from human suggestions to automated algorithms, making it
more predictable and easily controlled.

The situation on the road is also well observed nowadays. It is possible to check the
road status in real-time to find out how crowded it is compared to the other roads or itself
at different times, clarify if some unfortunate event, like a car crash, has occurred, and
even find out that the road is closed due to a local event or repair works. Navigation
algorithms use this data to plan the paths and even have strategies to predict the car flow
based on the current situation on the roads and historical data they have. [ZML23]

However, navigation algorithms tend to use selfish strategies to achieve path des-
tinations. It leads to a situation where the same path nods are chosen too frequently,
leading to traffic jams on this road segment, increased risks of car crashes, and potentially
making the best path worse than the alternatives. This work suggests avoiding such a
situation, keeping track of paths cars choose, and planning the number of cars on roads
in the future. [KB10]

This work also suggests reacting to car crashes, which significantly reduces the
traffic flow. It is helpful to avoid using roads where car crashes have happened. The
renavigation algorithm, which changes the car path if a significant time-slowing event
occurs at the suggested road, may solve this problem.

Continuous renavigation may annoy drivers. Thus, it is also essential to introduce a
separation between autonomous vehicles, which can handle any amount of navigation,
and human-driven vehicles, renavigated with lesser priority.

1.1 Problem statement

Considering the overwhelming usage of navigation tools and the occurrence of au-
tonomous devices in traffic, it may be wise to start sharing information about the selected
destination points and paths towards them. Shared information will allow to predict
traffic jams and possible congestion in advance. Conversely, sharing the destination and
the selected path is sharing personal information. Does advanced path planning provide
sufficient navigation benefits to make this trade valuable?



1.2 Objectives

Evaluation of possible benefits of advance planning is performed according to the
following criteria:

* How can sharing data about selected paths for drivers improve the fastest path
suggestions and influence traffic flow;

* Does renavigation of traffic due to congestion or potential traffic jams help deter-
mine the fastest path and how it changes traffic flow;

* Will continuous usage of such an algorithm improve traffic flow?

To analyse such algorithm behaviour, a time-based network is required, which can
handle the states of the road and store their future statements. As an input for this model,
the historical date of the road state can be used. This will allow the creation of a traffic
flow model close to real-life traffic.

The benefits of advanced planning must be compared to the optimal or suboptimal
algorithms for path choosing. Advance planning must outperform them to make it
worthwhile to share personal data.



2 Navigation algorithms nowadays

2.1 Path finding problem formulation

Let us consider that the road plan is described as graph G, where vertices V are crossroads,
edges E are roads between crossroads, and weight W is the time taken to move along the
edge E. Then the shortest path between vertices V1 and V2 will be the combination of
connected edges P=E1, E2, ..., En, with the smallest sum of related weights We in P.

2.2 Optimal solution

An optimal solution for the selected problem is the Dykstra algorithm and A* algorithm.
[Vas08] The Dykstra algorithm, known for its efficiency, calculates the cost from the
departure vertex A to all other vertices in the graph. Some modifications also store the
last edge used to reach the corresponding vertex. This allows for easy backtracking,
moving through the last edge array until vertex A is reached.

A* algorithm does not visit all the edges to provide the result. It introduces an extra
coefficient to order the edge it will pick next. It can be set to weigh W1 connected to edge
El. Then, the next edge, which is picking, will always have the shortest path towards it.
After vertice B is reached, it is possible to track the path the same way it is done in the
Dykstra algorithm. [FFK13] [Vas08]

The main benefit of the A* algorithm is a configurable coefficient and the possibility
to visit only part of the vertices. It allows us to set it to an abstract value like possible
distance till point B and navigate through the graph way quicker, reducing the visited
nodes count dramatically.[FFK13]

2.3 Factors

Modern navigation systems provide various strategies for picking paths. [PD14] They can
calculate the fastest path and the path with the least fuel consumption, emissions, risk of
car crashes, prioritize using highways, or any other requested factor. To describe further
strategies, let us look at some of these factors considered important in this research.

2.3.1 Traffic jams

Crowded roads lead to car jams, significantly reducing the time it takes to cross a road
segment. In recent research, Zhi Cai considered that the time it takes to cross a busy road
could be described with the JW (jam weight) equation 1 and figure 1. Where d specifies
the distance between the road and the vehicle, and represents a threshold within which
the traffic status is important for route planning. When d exceeds the threshold , it rapidly
declines until it is very close to 0. [ZCD23]
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Figure 1. JW function graph

In Zhi Cai research, there are only two road states, crowded or not. In this research,
after some adjustments, this function will describe the time taken to move through the
road and predict the risk of a car crash (section *3. Methods’). [ZCD23]

2.3.2 Risk of congestion situation

The other way to avoid crowding on the road is to keep track of the risk of facing
congestion situations. Jing Guo shows that minimal and maximal travel times can differ
significantly for multiple roads with the same average travel time deviation. As a main
factor for such distribution is shown, the travel time with congestion and without differs
significantly, as well as the possibility of such events. As a result, a faster’ algorithm
was suggested, which shows the possibility of the selected path being the ’fastest’.[JG17]
[ZML23]

2.3.3 Risk averse vehicle navigation

It is essential to point out that crossroads are hazardous places where road accidents may
occur. Many studies are explicitly focused on solving this problem, either to provide an
algorithm for autonomous vehicles or assistance for human-driven vehicles at crossing
crossroads or roundabouts.[AJK22] In any case, in human-driven vehicles for the person,
it is essential to be careful and pay attention at crossroads. Thus, for human-driven
vehicles, it is suggested that a "risk awareness’ factor be introduced, which describes the
extra time needed to make safe decisions at these dangerous road points. [Bel09]
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2.4 Modern algorithms

It is impossible to provide an optimal algorithm for road navigation. Some unlikely
events may occur on the road, and some people may use inefficient routing strategies. As
a result, a new path may occur, which is better than expected, and the only result that can
be provided is a suboptimal algorithm, which may provide a good choice for a path. Jing
Guo suggests the following categories for classifying algorithms for car navigation.

Least expected travel time. (LET) One-factor algorithms. Commonly, the A* or
Dykstra algorithm, where the searching criteria is to travel time here. Some variations
may provide multiple options. Is not risk-aware and expects the best possible result,
which may be deceptive. [ASSV93] [FFK13]

Mean-risk mode. Another algorithm is trying to minimize specific conditions. As
extra criteria appear to be a deviation from travel time, the mean from extra is required if
some kind of risk will occur. [PD14] [MNM22]

Travel time-based network performance model. Tries create a simulation of a
roadmap and create traffic flow in it. Then, find the optimal path after all events occur. It
can provide results remarkably close to optimal. However, it requires much computation.
The problem is handling such a simulation and recalculating all the traffic flows. Also,
supersampling may be needed to provide a more realistic final model. Another problem
is to predict vehicle movement in this model. Ant colony [SHOMI11] or bee colony
[DMS16] optimization models are used as an option to implement traffic assignment.

Stochastic routing over time-based networks. The algorithm simulates the stochastic
movement in the time-based network according to the selected strategy. The performed
path will be the suggested path of the algorithm.[LTL10]

Faster criterion. Along with the path, calculate the possibility of this path occurring.
Each risk possibility on the path will split the path into 2 with different probabilities. The
final suggestion is to select based on both the possibility of the path and the time it takes
to travel it. [JG17]

Only two states are tracked: risk occurred and risk not occurred. The possibility
of path P to be completed in time T is a function determined by possible risks. This
distribution is replaced by two points uniting the "no risk’ and ’risk’ conditions.



2.5 Shared data

Usually, shared data are not used for path navigation. They are used only for specific
problem solutions, like delivery, taxi, or car evacuation. Ethically, it is inappropriate
to share a person’s position on the road. On the other hand, it will be known that the
vehicle passed the selected road in a while based on statistics. Thus, providing sufficient
anonymization may be enough to avoid this ethical dilemma.



3 Methods

3.1 Developed solution

Develop a real-time traffic flow simulator based on historical data on traffic flow on
the roads. The simulator can create an instance of a road model based on historical
information or path state from the previous iterations. During each simulation, requests
with department and destination points on the traffic flow are created. Then, a developed
path-finding algorithm can be called to perform the vehicle navigation. Alternatively, a
risk-aware or fastest-path algorithm can be chosen for vehicle navigation. They represent
the control group of ’known sub-optimal’ algorithms. After simulation, the optimal path
can be determined for each request based on each instance of the traffic flow model that
occurred after all movements were performed and all congestion situations generated in
the simulation.

3.2 Limitations

The simulator does not track traffic light work. It is assumed that traffic lights do not
exist.

Data of the path selected for a vehicle is shared to simulated. The simulator in-
formation about the vehicle, which has a send path, can be anonymized to show only
the information that something will occur at a specific point at a specific time. On the
other side, if a vehicle is navigated, it can use the secret token to understand that the
renavigation request is for it.

3.3 Input data

Input data is provided by TomTom (figure 2 [Tom]), which provides traffic statistics
about the selected area in the world at the required time span. This data is parsed into a
graph model with additional information necessary for computations as shown in table 1.
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Data Example
Coordinates of vertices x=0.1y=0.2
Speed limit s 70 km/h
Road distance s 60 m

Data at time periods

Time from, time to

9:00 - 9:15

Amount of vehicle at time

7

Average and median speed

50 km/h

Amount of vehicle at time

7

Table 1. Additional data provided
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Figure 2. New York traffic visual representation in TomTom. a) amount of vehicles at
left; b) median speed at right;



3.4 Road costs

Algorithm 1 describes the possible time it will take to complete the selected path at a
given time. This value is determined by multiple factors, which may delay the travel
time on the road. This algorithm’s output value is required for path determination. It
does not indicate the time value for path completion.

Algorithm 1: costCalculation
Input: time, path, driver
Result: cost

1 cost < path.CostFunctionFromT hreshold(count,, time);
2 if path.riskOccured() then

3 L cost+ = riskE f fect;

4 if driver. Autonomus = false then

5 | cost+ = humanDelay[path];

6 if driver. Avoid Risk then
7 L cost+ = path.risk Posibility x path.riskE f fect;

8 return cost;

Risk awareness All vehicles are either human driven or autonomous. If the vehicle is
human-driven, it has a delay at each crossroad varying from 0.5s to 1.5s. Autonomous
drivers do not have delays. During simulation, a risk awareness table is generated once
for each path request and shared among all simulated algorithms. (2)

Road, Roady ... Road,,
PathRequest; 1,4679 0,9363 1,4244 1,314
PathRequest, 0,7287 1,0013 0,6799 0,5795
.. 0,5566 0,6581 0,8714 0,7568
PathRequest,, 1,0082 0,9432 0,967 0,8263

Table 2. Example of generated delays

Traffic jams Input data contains information about how many vehicles were on the
road at a specific time period. It allows us to make a graph of the vehicle to median
speed relation and to fit with the JWthreshold function (section 2.2). In Figure 1, some
adjustments are observed. To make data more responsive compared to actual data, the
formula has been updated (2). Now, it considers minimal (k,y¢e-) and maximal(k;, e, )
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speed on the road and the number of vehicles needed to decrease speed to a minimum
Thiengtn. (Cnte,r) describes vehicles which are currently on the roads, while (7'h)
represents the amount of cars needed to create traffic jams.

1
[hbt']f(l') = kmﬂeT O — + kouter (2)

1 + e Th’length

Threshold function

0,9
0,8
0,7
0,6
0,5
0,4

0,3
0,2

Current spped / Speed limit

0,1

0 10 20 30 40 50 60 70
Vehicle count

® Input —e—Fit

Figure 3. Threshold function for a road. Threshold = 40, threshold length 3.8, innerCoeff
=0.525, minValue = 0.255

After creating the graph representation of the road, each edge’s fitting function is
called to determine the threshold function. Figure (3) shows an example of this action.
From input data, it is evident that vehicle speed is slowly decreasing between 30 and 50
vehicles. The best speed achieved on the road was 80% of the speed limit. This value
will determines (k;,.-). The lowest possible speed achieved is 25% of the speed limit,
which is set to (kyz.,-). Fitting showed that the most rapid decrease was at 40 vehicles
(T'h) and set T'hjepger, to match input data as well as possible.

Risk of congestion situation Two factors determine the possibility of risk on the road:
randomness and relative risk. Relative risk is determined by the existence of jams on the
road and the average speed excess over 50 km/h. (3)

[hbt']Pmsk - Pbase + Pspeed(vavg; Ulimit) + Pthreshold(ontcura Th?”€8h0ld) (3)
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3.5 Path choosing algorithm

Each iteration in the simulator follows the order shown in figure 4. During path section
sten, the path-choosing algorithm 2 is executed. It suggests a list of paths for navigation
between requested points, which is considered to be close to optimal. The first element
of the list is always the fastest path determined by the cost evaluation function 1. After
the path has been selected, renavigation of other vehicles on the road may occur if the
selected path is close to the threshold limit, which will lead to a traffic jam. Afterwards,
congestion situations on the road occur according to the risk of occurrence defined by the
formula 3. If a risk occurs on the paths of any controlled vehicle, another renavigation
may occur to select the new best pathway.

Parameters
Generate new i iti
____________ Starting position
vechicke End position
Autonomus
Time created
Path selected
Priority
______________ Close to hard
threshold
(Th+Th length)

Road capacity

Contains Yes
roads colseto >————
threshold?

Sortroads close to
threshold by priority

No Check if other
vechicles can avoid [€—— ’,eT:gf n:ox:i;'
top priority p
Any threshold
close edges left?, Renavigate
!
Create risks on
roads based on risk Priori
probobility ty

Autonomus vechicle
Vechile far from risky road.

Vechicke with alternative paths
without risky road

Sort vechicles on
risky road by priority

Vechicles on
road with risk?

Renavigate IS

Figure 4. Amount of crowded roads after simulation and 400 path searches
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Algorithm 2: pathFinding

Input: Graph model, start time, search method
Result: List of paths

1 afordableCost < MaxInt;
2 while good path may exist do

3

o e N & wnt A

11
12
13
14

15

16
17
18
19

20
21
22
23
24

25

26
27

cost|graphEdges| < MaxInt;
previosEdgelgraphEdges) < ();
foreach weight € startPosition do remainingW eights.add(weght);

while remainingWeights. Any() do

firstWeight < remainingW eights.First() ;

if firstWeight.Cost > afordableCost then
L return output;

if firstWeight.Cost > cost|destination| then
output Paths < backtrackNewPath();
if a fordableCost = MaxInt then
L afordableCost < cost|destination| x okCoef f,

| break;

oreach weight € graphWeights.BeginsAt(firstWeight) do
newCost < calculateCostToNewW eight();
if weight € output Paths then

L newCost.Increase();

[

if cost[connectedEdge] < newCost then
cost|connectedEdge] <— newCost,
previosEdge[connected Edge] < weight;
remainingWeights. Remove(weight. Final Point, oldCost);
remainingWeights. Add(weight. Final Point, newCost);

| remainingW eights. Remove( firstWeight);

if remainingWeights € () then
| return output;
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4 Results

The effectiveness of the developed algorithm is compared with two paradigms frequently
chosen for the shortest path finding. The first algorithm to compare will be the fastest
roat algorithm. It is affected only by historical data and suggests one of the quickest
paths it finds. The second algorithm also suggests the most rapid path based on historical
data, but now, for calculation, it also considers the probability of a congestion situation
occurrence.

To ensure some distribution for suggested algorithms, they may suggest not only the
first path decided to be effective but also any other option which shows similar results.
A similar result, a difference of 20%, has been chosen. This limitation can reduce the
average time path on the road but will provide some variation in path choosing, which
will avoid situations when one road is desired all over the time.

The developed algorithm is iterated in different compositions. As extra options for
algorithm control, it has the possibility to turn off the following features: avoiding risks
(A), renavigation if a busy road faced (T), and renavigation if a congestion situation occurs
on the road (R). Naming the corresponding graphs and tables will have a corresponding
abbreviation showing that the algorithm was executed with one of these features.

A final compartment is made to the optimal path. The optimal path is the fastest path
after all events on the road happened. This situation is called after the simulation with all
suggested paths is finished.

4.1 Single generation performance
4.1.1 Path selection efficiency

The simulation for algorithm effectiveness comparison included parallel execution of
four variations of the developed algorithm (A/ATR with all renavigation options and
risk avoidance enabled, A /T with only crowded road renavigation, A /R with navigation
due to the congestion situation on the road, and A without any extra options) and two
algorithms selected for each compartment. All algorithms receive the same requests for
path creation, including start position, end position and starting time, and the same input
data about the roads. Road information is parsed from the statistics provided by TomTom,
where 10% of all vehicles are removed. Algorithms add back removed vehicles and
create their own vehicle distribution on the road.

After simulation, the optimal paths for each navigation request are calculated in
the road network developed during simulation. Then, the best possible path among all
simulations is chosen to represent the best possible solution algorithms could achieve.
To make the data more consistent, all unfinished paths at the end of the simulation are
ignored. Statistics for remaining data can be observed in table 3. One representation also
removes the first 50 of 400 path suggestions, defined mainly by input data rather than

16



simulation.

Result diff. Good guess Diff. from the best Prob. of the best

All 50+ All 50+ All 50+ All 50+
A_ATR 1,82% 1,76% 50,98% 5195% 8,78%  8,77%  27,17% 26,95%
AT 387% 3.85% 52,38% 52,92% 13,92% 14,62% 19,33% 17,86%
A 6,13% 6,40% 50,42% 50,65% 12,62% 12,95% 20,73% 19,81%
A_R 1,79% 1,79% 52,94% 54,55% 10,28% 10,64% 24,37% 24,03%
Risk-aware 1,23% 1,22% 57,70% 56,82% 23,67% 2297% 0,56%  0,65%
Fastest 349% 391% 36,69% 36,04% 23,73% 23,08% 1,12% 1,30%

Table 3. Algorithm compartment after one generation and 400 path searches.

All the algorithms provided results that were close to the optimal path suggested
after the simulation. Ignorance of the congestion situation on the road for the developed
algorithm slightly increased the gap between the suggested and the optimal path. Still, it
provided results that were close to optimal.

While the possibility of providing the most optimal result for all developed algorithms
is about 50%, there is room for improvement. The risk-aware algorithm, for instance,
demonstrated a slightly better picking rate of 57%, indicating its potential for further
enhancement. On the other hand, the fastest-path algorithm, at 36%, showed a poor
possibility of picking the best way, highlighting areas for future development.

To compare road situations across all algorithms, the fastest optimal path was picked
and compared to the suggested paths of other algorithms. It can be observed that even
though both risk-aware and fastest-path algorithms provide the best picks in their road
situation, globally, the paths they suggest are worse by 23 % compared to the best path.
This underscores the need for further development, as the road situations created after
the proposed algorithms are worse compared to the developed algorithm.

The developed algorithm showed results that were much closer to the most optimal
path. Even without any renavigation technologies, the difference between the suggested
path and the most optimal path drops to 14%. Enabling renavigation options helps
decrease this value even more, to an 8

The contribution of the best possible path across simulations is split evenly between
developed algorithm variations. This means that the road situation after the iteration of
the developed algorithm is approximately the same and independent of the renavigation
strategy. The risk-aware and fastest-path algorithms showed complete incompetence,
guessing only 2 and 4 routes of the fastest across all simulations.

4.1.2 Global situation on roads

Figure 5 shows the traffic flow status after simulation. Using the threshold function to
determine the cost of the road produced a better traffic flow in the simulation, leading to

17



fewer traffic jams on the road. It correlates with the possibility of the road suggestion of
the developed algorithm being the best option across all simulations with different path-
searching strategies. renavigation due to the congestion situation also proved helpful,
reducing traffic jams even more. It allows us to suggest that one congestion situation
leads to traffic jams near it.

The fastest-path and risk-aware algorithms have more significant traffic jams. Com-
pared with the input data, the number of significant traffic jams increased dramatically
while the overall number of traffic jams dropped. This behaviour is mainly impacted by
path departure and destination point selection. Requested paths in this work are primarily
determined by the most crowded roads rather than actual requests humans create. Thus,
movement in the simulation is unnatural and leads to disproportional traffic congestion.

Congestion situations

6000
5000

4000
3000
2000
1000

0

FastestRis

Input A_ATR YAVoid Fastest
m Hard 161 611 652 659 615 751 770
mlight 4769 3374 3405 3412 3402 3365 3347
M Light mHard

Figure 5. Amount of crowded roads after simulation and 400 path searches

4.2 Performance over continuous iterations
4.2.1 Path selection efficiency

Due to unnatural requests for departure and destination points selection, which are
corrupted even more during continuous simulations, the final results in table ?? do not
show the overwhelming benefit of using a developed algorithm. All the algorithms
provide results that are close to the optimal solution. The fastest path algorithm reaches
the point when all suggestions are optimal for its simulation. Comparing the best path
across all simulations, the developed algorithm provides only slightly better results
compared to risk-aware and fastest-path algorithm suggestions. It still has a slight

18



advantage of suggesting the best possible path across all simulations, but overwhelming
the correctness of the pick faded out.

Result diff. Good guess Diff. from the best Prob. of the best

All 50+ All 50+ All 50+ All 50+
A_ATR 2,19% 1,76% 46,34% 4397% 9,75%  10,66% 27,17% 26,95%
Risk-awere 191% 3,85% 61,59% 61,21% 14,48% 13,19% 19,33% 17,86%
Fastest 0,00% 6,40% 97,56% 96,55% 13,48% 12,06% 20,73% 19,81%

Table 4. Algorithm compartment after 10 generation and 200 path searches

4.2.2 Global situation on roads

The situation on the roads during the simulation is dynamic. The choice of pathing
algorithm significantly impacts the occurrence of traffic jams and risky situations. The
developed algorithm offers a distinct advantage in this regard, primarily due to its ability
to control car jams using a threshold function. The cost of the road is determined by
the likelihood of risk occurrence and its congestion level. This approach results in the
avoidance of busy roads , leading to a more even distribution of vehicles across all roads.

However, it’s important to note that both the risk-aware and fastest-path algorithms
have their limitations. They do not incorporate a mechanism to control crowdedness,
which means they cannot accurately predict the occurrence of road jams.

Results for all three algorithms are shown in figure 6. Continuous usage of any tested
algorithm significantly reduces the overall number of road jams. The difference between
the usage of the fastest-path and risk-aware algorithms proved insignificant. The usage
of the developed algorithm provides a slightly better chance of avoiding a significant car
jam, which will dramatically increase path cost. The overall amount of busy roads is
about the same, which suggests that the developed algorithm optimizes the distribution
of crowded roads to lower average travel time.

The congestion situation during the simulation shows a small increment over a
generation. The randomization algorithm that creates them is mostly affected by the
fact that the roads are the most crowded. As results show, the number of significantly
crowded roads increases over generations. Thus, the congestion situation has increased
over the generations as well. The developed algorithm provides fewer chances of risky
situations occurring on the road due to what is affected by a smaller amount of bustling
roads for this algorithm.
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Threshold

A_ATR

4000
3500
3000
2500
2000
1500
1000
i
0 1 2 3 4 5 6 7 8 9 10
mHard 345 442 524 577 612 667 725 775 793 829
mLight 3205 2479 1821 1378 1036 747 582 447 412 380
Generation
mLight mHard

(a) developed algorithm with renavigation and congested path avoidance

Threshold

Threshold

Fastest risk aware

4000
3500
3000
2500
2000
1500
1000
500
0 1 2 3 4 5 6 7 8 9 10
mHard 436 580 626 710 739 806 845 872 900 951
mLight 3215 2432 1798 1338 1000 656 529 417 371 318
Generation
mLight mHard
(b) risk-aware algorithm
Fastest
4000
3500
3000
2500
2000
1500
1000
500 I I
0 1 2 3 4 5 6 7 8 9 10
mHard 424 558 631 689 732 774 830 871 905 926
mLight 3200 2419 1763 1335 995 670 501 393 328 314
Generation
mLight mHard

(c) fastest-path algorithm

Figure 6. Threshold limit passing
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4.3 Renavigation impact

Table 5 shows an example of the amount of navigation needed during simulation. It
is observable that the congestion situation on the road is mostly a reason for changing
the selected path. Usually, the congestion situation leads to a significant increase in the
required time to cross the road. Thus, renavigation has a good chance of providing a
better solution.

Renavigation due to threshold reaching occurs incredibly rarely. The algorithm
already considers all the possible traffic jams using the threshold function for cost
evaluation and tries to avoid them if necessary. As a result, there is no need to perform
renavigation at all.

A_ATR AR AT

Risk Threshold Risk Threshold
Sitations forcing renavigations 1168 773 1167 812
Renavigation calls 229 703 198 655
Usefull renavigations 158 21 146 3

Table 5. Example of renavigation calls for one generation and 400 path searched
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5 Discussion

5.1 Single generation performance

Pathfinding using shared data to control and renavigate vehicles proved to be helpful.
Results show that all observed algorithms provide results close to the optimal solution
in their simulation. The difference between the fastest path in the simulation and the
path suggested by the algorithm does not exceed 10%, which makes them close to
optimal independently from the chosen algorithm. However, the development of the
road condition differs depending on the algorithm. After the simulation, paths in the
traffic situation created by developed algorithms are 10-15% faster than those suggested
by the least expected time and mean risk models. Also, amount of busy roads after the
simulation is a bit smaller for developed algorithms, showing a better global situation on
the road.

The renavigation algorithm did not meet expectations. The benefit of renavigation
cars to avoid traffic jams must be more significant than constantly forcing vehicles to
change their path. Results show that it is useful to avoid only huge time-loss events on
the roads, like car crashes. Algorithms ignoring this renavigation condition suggested
paths with a bigger difference to the optimal solution.

5.2 Performance over continuous iterations

Pathfinding using shared data to control and renavigate vehicles over multiple generations
did not show significant improvement over risk-aware and path-finding algorithms. All
the observed algorithms provide results close to the optimal solution in their simulation.
The fastest-route algorithm provided the best possible solution in its simulation with
a surprising accuracy of 97%. Comparisons beyond all algorithms for the best route
selection and the traffic flow after the final generation show that the algorithm progressed
to approximately the same state and that the gap between all algorithm’s best paths has
shortened. Now, routes suggested by developed algorithms are only 5% faster than the
alternatives. It also has slightly better traffic flow conditions.

Overall, the amount of crowded roads decreased significantly, but more extremely
crowded roads occurred. This situation occurred due to a specific path request algorithm
in the simulator algorithm, which does not have any connection with the algorithm
selected for path determination.

5.3 Threshold function

The threshold function is an excellent way to represent the time it will take for a vehicle
to ride a road. It intuitively correctly guesses the behaviour of the car on the road. It is a
limit when adding extra vehicles will not cause time loss on the road, which is what the
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threshold describes. Passing this limit leads to a rapid speed decrease on the road. This
process is not immediate, and a threshold length precisely describes this period.

It is complicated to determine the minimal speed on the road from the historical data.
Even though they provide sufficient data for functioning fitting, it is not expected when
the road is filled to its limits in real life. Historic data fitting shows only 10% of roads
in a situation where the threshold limit has been broken. It may make the guess of the
minimal possible time on the road not precise.

Results show that algorithm iteration using threshold function for road cost deter-
mination overperformed algorithms ignoring it. That shows that the threshold function
expresses behaviour on the roads well enough to be a tool for road cost representation.

5.4 Simulator

The simulator plays a crucial role in this research, aiding in the determination of the
fastest path and providing a dynamic environment for algorithm testing. The developed
algorithm represents a variation of the stochastic algorithm over a time-based network
performance network. Thus, it would be impossible not only to prove the efficiency but
also to present the result of the algorithm without it.

Even though the developed simulator generally provides all the necessary tools for a
fair algorithm compartment, the generation departure and destination points can still be
improved. The current solution suggests removing 10% of vehicles from all the roads
before iterations and asking for random departure and destination points until it returns
removed 10%. The starting and destination are chosen based on the possibility of the
point to be visited. This leads to the situation where paths that are usually used are used
even more. As a result, the busiest roads become even more crowded, while paths rarely
used become even more emptier. It would be wise to use a more advanced randomisation
algorithm with a more intuitive distribution of the points. In this role, ant [SHOMI11]
or bee colony [DMS16] movement may show better distribution, providing a "natural’
traffic flow on the roads.

Considering this imperfection, all the developed simulators still provide fair options
for algorithm comparison. Even though the option to compare new versions of vehicle
distribution to the starting distribution is no longer reliable, all the algorithms remain
in the same conditions during progression. This allows us to draw conclusions about
the progression of algorithms in the same generations and their progression between
multiple simulator iterations to compare their effectiveness with one another. The only
downside is the impossibility of seeing whether the traffic road system can be optimised
to make navigation faster in general.
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6 Conclusion

Sharing data between all drivers proved useful. It allows for control of the traffic flow on
the roads and fewer traffic jams. The renavigation feature presented in this work, which
also relies on sharing data, positively affected the time required to complete the selected
route. However, the continuous iteration of the developed algorithm also performed
better than the continuous usage of algorithms without careful path planning for the
future. The final result was less impressive than expected.

Overall, the developed solution has the potential to be implemented for industrial
needs. Considering the importance of navigation technologies and the introduction of
autonomous vehicles, sharing data and using global control for vehicle navigation may
be an optimal navigation tool. It is debatable whether sharing vehicle locations with
other road members is ethically correct. However, implementing a similar algorithm for
public transport, taxi, or parcel delivery, where sharing vehicle locations is acceptable,
may provide better navigation options for them.

Further investigation Even though the provided algorithm shows excellent results
after a single generation, its progression over generations does not show any reasonable
benefits. One possible reason for such behaviour is the unnatural randomisation of
requested paths. It is useful to try out the suggested algorithm with another path-
requesting algorithm, either using historical data of travel paths or a reliable travel
time-based network performance model as a path-picking source.

Another useful investigation direction is using this algorithm for large-scale road
systems. The current solution processes a graph representing all the road networks as one
object. However, it can be optimised to work on large-scale road systems, like countries,
by splitting the graph representing the road network into subgraphs, performing path-
finding in subgraphs, and combining them backwards into one complete path. In this
case, the algorithm can be parallelised, and its performance will be increased. [PGLC23]

Extending the algorithm’s renavigation part is also a crucial area for development.
The current solution has demonstrated its reliability in managing significant traffic jams.
However, its handling of minor road delays could have been more effective, which does
not align with the expected behaviour. It may be beneficial to investigate further how to
prevent traffic jams from occurring to enhance the algorithm’s ability to handle traffic
situations and prevent congestion.
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Appendix

Code Repository
code: https://github.com/Silaris/MasterThesis
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