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Abstract

Machine Learning Framework for Classification of Potential Hereditary Cancers

This thesis investigates a machine learning model that classifies potential pathological genetic
variants from targeted hereditary data. Due to the vast amounts of data generated in clinical
genetics, rapid and precise screening is essential for diagnostics, which can be facilitated by
machine learning. The study utilises a dataset from Tartu University Hospital containing genetic
variants of 7,498 individuals, including 2,449 investigated due to breast cancer. All genetic
variants were reannotated using the Variant Effect Predictor (VEP) database version 111 with
allele frequency and pathogenicity scores.

For training the XGBoost-based model, fields such as ’IMPACT’ (predicted impact of a
genetic variant), ’QUAL’ (quality score of the variant call), ’DP’ (read depth at the position),
’QD’ (quality score normalised by depth), and ’MAX AF’ (maximum allele frequency in
populations) were chosen, focusing on those critical for clinical evaluation practice. The study
highlights a significant bottleneck in researching rare diseases, characterised by a scarcity of
pathogenic genetic variants (signal) compared to common genetic variants (noise). Although
the model achieved a moderate overall accuracy of 0.999, it exhibited a high precision of 0.834
but a low sensitivity of 0.401 due to the low signal-to-noise ratio.

The practical output of the model is its utility in automatically filtering out negative cases and
highlighting potential positive variants for further analysis. The precision-recall curve provides
a more objective depiction of the model’s performance than the ROC due to the low signal.
While the model significantly reduced the number of rows required for clinical consultation by
99.96%, its ability to detect true positive cases was limited.

The anonymous genetic variant dataset created during this research is an independent study
object, enabling the improvement of diagnostics with machine learning models. Future
enhancements to this model may include integrating clinical data, additional pathogenicity
scores, or linking with other databases.

CERCS: B110 Bioinformatics, B790 Clinical Genetics

Keywords: machine learning, variant annotation, predictive modeling, imbalanced dataset, data
reannotation, genomic diagnostics
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Lühikokkuvõte

Potentsiaalsete pärilike kasvajate klassifitseerimine masinõppe mudeliga

Masinõppemudel klassifitseerib võimalikke patoloogilisi geenivariante sihtmärgistatult
sekveneeritud pärilikkusandmetest. Kliinilises geneetikas tekkivate suurte andmemahtude tõttu
on diagnostikaks vajalik suurte andmemahtude kiire ja täpne sõelumine, mida võib lahendada
masinõppega. Uurimusobjektiks on Tartu Ülikooli Kliinikumi geenivariantide andmebaas, mis
sisaldab 7,498 isiku, sh 2,449 rinnavähi tõttu uuritud isikute geenivariante. Kõik geenivariandid
on ajakohastatud alleelide esinemissageduse, patogeensusskooridega, kasutades Variant Effect
Predictor-it versioon 111 andmebaasi. XGBoostil põhineva masinõppemudeli treenimiseks
valiti väljad ’IMPACT’ (geenivariandi eeldatav mõju), ’QUAL’ (variandi kvaliteediskoor),
’DP’ (lugemissügavus positsioonil), ’QD’ (kvaliteediskoor normaliseeritud sügavuse järgi)
ja ’MAX AF’ (maksimaalne alleeli sagedus populatsioonis) vastavalt olulistele väljadele
kliinilises hindamispraktikas.

Uurimus tõi esile haruldaste haiguste uurimises olulise kitsaskoha, milleks on haruldaste
patogeensete geenivariantide (signaal) vähesus võrreldes tavaliste geenivariantidega
(müra). Kuigi mudel saavutas keskmise üldtäpsuse 0.999 ning kõrge spetsiifilisuse 0.834,
oli sensitiivsus kõigest 0.401, mis tulenes madalast signaali-müra suhtest. Võimalik
praktiline väljund mudelile on selle kasutatavus negatiivsete juhtude automaatseks
filtreerimiseks ning võimalike positiivsete variantide esiletõstmiseks edasiseks analüüsiks.
Ennustamise-tundlikkuse graafik (PR curve) annab mudeli jõudlusest objektiivsema pildi
kui Receiver Operating Characteristic-kõver madala signaali tõttu. Ehkki loodud mudel
vähendas oluliselt kliiniliseks konsultatsiooniks allesjäänud ridade arvu 99.96%, oli see
tegelike positiivsete juhtude tuvastamiseks piiratud võimekusega.

Uurimustöö käigus loodud anonüümsete geenivariantide andmemassiiv on iseseisev
uurimusobjekt, mis võimaldab parendada masinõppemudelitega diagnostikat. Käesoleva
mudeli täpsust võib tulevikus tõsta kliiniliste andmete kaasamine, rohkemate patogeensusskooride
või teiste andmebaasidega sidumine.

CERCS: B110 Bioinformaatika, B790 Kliiniline geneetika

Võtmesõnad: masinõpe, variantide teisendamine, ennustav modelleerimine, varieeruva
kvaliteediga andmekogu, andmete teisendamine, kliiniline genoomika
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1 Introduction

Cancer is characterised by the uncontrolled growth and spread of abnormal cells and is a
major global health challenge. It is the second leading cause of death worldwide, following
cardiovascular diseases, as reported by the World Health Organization (WHO) [1]. Early
cancer detection is critical and relies heavily on gene analysis, which elucidates the biochemical
activities within tissues and cells. Techniques such as genomic testing are crucial in measuring
the activity of genes, thus providing vital data for computational analysis [2].

Hereditary cancer results from genetic mutations passed down from one generation to another
within a family. Unlike sporadic cancers, which are caused by genetic changes occurring
by chance over a person’s lifetime, hereditary cancers are associated with inherited genetic
abnormalities that significantly increase an individual’s risk. These inherited mutations are
present in every cell of the body from birth and can lead to the development of cancer at an
earlier age than typically observed in sporadic cases. Genetic sequencing for mutations in
high-risk genes like Breast Cancer gene 1 (BRCA1) and Breast Cancer gene 2 (BRCA2),
which are linked to breast and ovarian cancers in women and prostate cancer in men, can
identify individuals carrying these inherited changes, enabling proactive management and
tailored surveillance strategies to prevent cancer or detect it at an early, more treatable stage [3].

Next-generation Sequencing (NGS) technology allows for the rapid sequencing of vast amounts
of Deoxyribonucleic Acid (DNA) by simultaneously processing millions of small fragments.
This method generates extensive data as each fragment is sequenced in parallel, producing
detailed information on the genetic composition of an organism. The extensive data output
from NGS requires sophisticated computational tools and techniques for effective analysis and
interpretation [4]. Sequencing is particularly useful for studying hereditary cancers as it enables
the analysis of both inherited and tumor DNA, identifying genetic mutations linked to cancer.
This knowledge is crucial for early cancer detection in families with hereditary risks and for
tailoring more effective treatment plans [5].

Personalised medicine involves customising treatment based on each patient’s unique needs.
This approach integrates comprehensive genomic data with phenotype information to tailor
prevention, diagnosis, and treatment strategies to individual characteristics. Personalised
medicine aims to transform healthcare into a preventive, predictive, and participatory system,
enhancing physicians’ decision-making processes and treating and preventing diseases [6].

Pathogenicity prediction tools are crucial for interpreting the clinical relevance of genetic
variants identified through sequencing. These tools vary widely in their accuracy in categorising
genetic variants as benign or likely to cause disease. Research, such as the evaluation performed
using data from the Exome Aggregation Consortium (ExAC), shows significant differences
in the accuracy of these tools, particularly in detecting benign variants [7]. Tools such as
Variant Effect Predictor (VEP) from Ensembl and the ClinGen Pathogenicity Calculator play
crucial roles in the genetic analysis process by providing comprehensive annotations of genetic
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variants and applying standardised guidelines to evaluate variant pathogenicity [8, 9].

Machine Learning (ML) application in genetics has significantly expanded, enhancing the
precision of diagnosing and treating genetic disorders. ML algorithms adeptly analyse
extensive genomic datasets, identifying patterns that reveal varying impacts of mutations.
By integrating deep learning techniques, these algorithms are increasingly effective at
assessing the pathogenicity of genetic variants and facilitating timely and personalised
treatment strategies [10]. This integrated approach shows that combining different types of
genomic information leads to better results in diagnosing and understanding complex genetic
disorders [11].

1.1 Problem Overview

Analysing genetic data manually is time-consuming, which creates significant challenges
in modern medicine. Recent advances in genetic technology and lower sequencing costs
have dramatically increased the amount of data available for medical research and clinical
applications [4]. Technologies like NGS have improved our ability to analyse genetic materials,
allowing for quicker and more thorough investigations of the genetic underpinnings of diseases.
However, this surge in data also introduces new challenges: while we can now gather vast
amounts of genetic information, interpreting this data clinically remains a difficult task for
clinicians. As the volume of data grows, there is a crucial need for systems that can effectively
sort and prioritise this information, making it easier to identify straightforward cases and those
requiring deeper analysis.

Genetic data interpretation, especially in clinical settings, is still developing despite
technological advances. ML offers a promising solution to these obstacles. ML algorithms
can analyse large, complex genomic datasets to identify patterns that might indicate disease
susceptibility or predict disease outcomes. The application of ML in genetics can improve
the accuracy of genetic diagnoses and aid in developing personalised treatment strategies,
particularly for hereditary cancers. Early detection of monogenic germline cancers is vital as
it enables targeted therapeutic strategies and better management of cancer predisposition in
individuals.

Currently, the clinical assessment of a patient’s genetic data is cumbersome and complicated
because of the volume and complexity of the data. Integrating machine learning offers a way
to automate and refine the analysis process, leading to more precise and timely diagnoses.
However, implementing such technologies comes with its own set of difficulties, including the
need for robust models that can accurately interpret the clinical significance of myriad genetic
variations. Thus, developing effective ML tools that can provide reliable, actionable insights
into genetic data is crucial for advancing personalised medicine and transforming it into a more
proactive and predictive healthcare system.

1.2 Objective and Overview of the Thesis

The primary goal of this thesis is to demonstrate the feasibility of using genomic data to develop
a ML model for predicting the likelihood of hereditary breast cancer. This proof-of-concept
aims to establish a practical approach for analysing genomic data, focusing on enhancing
clinical decision-making processes. Another key aspect of this study is to determine the optimal
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level of detail for the dataset, which is initially sparse, to improve the model’s predictive
accuracy and utility. While doing this, the study also aims to prepare the data for more extensive
machine learning algorithms and explore the limitations of common methods. This work seeks
to see how far conventional tools can go before more complex solutions are needed. It is crucial
to understand the capabilities and limits of common, cost-effective methods.

The model will assign a probability score to each data entry, indicating the potential presence
of hereditary breast cancer. A decision threshold will be set to accurately identify a high
percentage of true positive cases, balancing sensitivity and specificity.

Validating the model is a crucial part of the study, and the study intends to determine its accuracy
by assessing the rates of false positives and false negatives at the chosen threshold. This step is
important to ensure the model’s reliability and usability in clinical settings.

Given that the dataset includes genomes from thousands of patients, the model will specifically
focus on genetic markers prevalent in breast cancer cases. This targeted approach aims to
improve the model’s relevance in identifying hereditary breast cancer. If the current approach
proves useful, the developed methodology may benefit other hereditary diseases.

The text in this thesis was proofread using artificial intelligence to streamline the author’s
original writing.
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2 Literature Review

2.1 Machine Learning

ML is a branch of Artificial Intelligence (AI) and computer science that focuses on using data
and algorithms to enable AI to imitate how humans learn, gradually improving its accuracy [12].

ML refers broadly to fitting predictive models to data or identifying informative groupings
within data. It is particularly useful when datasets are too large or complex for traditional
analysis. ML attempts to imitate human pattern recognition using computational methods. In
genomics, where the data consists of large-scale genetic information, ML facilitates the analysis
of genomic sequences and variations, aiding in predicting disease susceptibility and discovering
genetic interactions. [13]

By automating data analysis, ML makes handling vast datasets feasible and ensures the analysis
is reproducible and efficient. The increasing importance of ML in biomedicine reflects its
capability to transform how biological data is analysed, making it a crucial tool for advancing
medical genetics and biotechnology. [13]

2.1.1 Models

ML models can be broadly categorised based on their dependence on human-directed learning
processes — this includes whether the learning is driven by rewards, directed by specific
feedback, or guided by labelled examples.

1. Supervised Learning: This model utilises labelled datasets to train algorithms. Each
element in the dataset is tagged with the correct answer, which allows the algorithm to
learn and make predictions by comparing its outputs with the actual answers. This method
is highly effective for classification and regression tasks with clear and well-defined
relationships between input and output.

2. Unsupervised Learning: In this approach, the algorithm is provided with data that has no
labels and is not organised in any predefined way. The model aims to explore the data
and find inherent patterns or structures. Unsupervised learning is ideal for discovering
hidden data patterns or grouping data into clusters. This method is particularly useful in
scenarios where specific outcomes are not known ahead of time.

3. Semi-Supervised Learning: This type combines elements of both supervised and
unsupervised learning. It uses a small amount of labelled data alongside a larger volume
of unlabeled data. This approach enhances learning accuracy, especially when acquiring
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labelled data is expensive or labour-intensive. It’s beneficial in situations like medical
imaging, where labelling large amounts of data may be impractical.

4. Reinforcement Learning: Here, the learning process is guided by rewards. Algorithms
learn to achieve a goal in an uncertain, potentially complex environment. They make
decisions by trying out various actions and learning from mistakes based on the feedback
received in terms of rewards or penalties. This type is used in various applications such
as robotics, gaming, and navigation systems, where the algorithm must make a series of
decisions that lead to a specific goal. [14]

Figure 2.1 demonstrates the process of supervised learning where the algorithm iteratively
learns from the labeled data. The process begins with the collection of labeled observations
(step 1), where each data point is annotated with the correct answer. These labelled data are
then split into two sets: a training set and a test set (step 2). The machine learning algorithm
uses the training set to learn and adjust its parameters in order to make accurate predictions
(step 3). The resulting prediction model is then evaluated using the test set, allowing for the
calculation of various statistical measures to assess the model’s performance (step 4). This
evaluation helps determine how well the model generalises to new, unseen data.

Figure 2.1: With supervised ML, the algorithm learns from labeled data [14]

2.1.1.1 ML Algorithms Used in Supervised Learning

In supervised ML, algorithms are trained on a known dataset and labelled with the correct
outcomes to make inferences and predict future events. The learning process involves applying
knowledge from this data to new, unseen inputs, with the capability to continually adjust and
improve by comparing its outputs to the intended results. Such algorithms excel in analysing
large datasets, like those from sequencing technologies, identifying patterns that associate
genetic variants with phenotypic outcomes. This is crucial in rare genetic diseases, where
the ability to discern complex genomic patterns is instrumental in developing diagnostic and
prognostic models, thereby leveraging historical data to anticipate likely future scenarios. [15]

A comparative overview of different supervised ML algorithms and their specific advantages,
disadvantages, and applications in the context of genomic data analysis is provided in Table 2.1.
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Table 2.1: Comparison of Supervised ML Algorithms for
Genomic Data Analysis [16].

Algorithm Advantages Disadvantages Applications

Decision Trees Easy to interpret,
handles feature
interactions

Can overfit,
struggles with
high-dimensional
data

Variant classification

Random Forests Robust to noise, good
generalisation

Slow with many
trees, opaque results

Genetic association
studies

SVM High accuracy,
flexible kernel choice

Complex, slow
training speed

Disease prediction
models

Naı̈ve Bayes Simple, works with
high dimensions

Assumes feature
independence

Variant prioritisation

Logistic
Regression

Output as
probability, handles
nonlinearity

Requires large
sample size for
stability

Risk prediction

Neural Networks Can model
non-linear
relationships,
flexible

Black-box, requires
a lot of data and
computing

Deep
phenotype-genotype
studies

k-NN Simple, no need for
model training

Slow prediction,
sensitive to feature
scaling

Similarity searches
in genomics

As can be seen from Table 2.1, each supervised ML algorithm has its own unique strengths
and weaknesses. Decision Trees, for example, are particularly noted for their interpretability
and ability to handle feature interactions. However, they can suffer from overfitting, which is a
crucial aspect to manage in order to maintain the validity of models in the context of genomics.

After proper tuning, Decision Trees can accurately classify genetic mutations. As demonstrated
in Nascimento et al. (2020), the decision tree model achieved a 92% precision rate in accurately
classifying genetic mutations. This high accuracy level confirms Decision Trees’ utility in
analysing genetic variations relevant to cancer [17].

2.1.1.2 Decision Trees and Neural Networks

Decision trees structure decisions in a tree-like model, where each internal node represents a
decision point based on a specific data attribute, branches indicate the outcome of the decision,
and each leaf node assigns a classification label. The paths from the root to the leaves define
the classification rules. Especially useful in genomics and other data-intensive fields, decision
trees provide a clear, straightforward way to interpret complex datasets, breaking down the
decision-making process into more straightforward, sequential steps. [18]

Decision trees are valued for their high transparency, as they break down data decision-by-decision
at each node based on specific attributes, making the model’s decision-making process
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straightforward to interpret. While effective for datasets with a limited number of features,
decision trees can struggle with complex, high-dimensional data due to their dependence
on the quality of features and simple decision rules. In contrast, neural networks are better
suited for handling complex, high-dimensional datasets through multiple layers and numerous
parameters, allowing them to identify complex patterns in the data. However, this capability
comes at the cost of reduced transparency; the depth and interconnectedness of neural network
layers often make the underlying logic of their predictions less clear, rendering them a ’black
box’ when compared to the transparent, rule-based approach of decision trees. This highlights
the inherent trade-offs between the simplicity and interpretability of decision trees and the
advanced processing power and opacity of neural networks. [19]

Figure 2.2: Decision tree prediction [20]

Figure 2.2 illustrates a hypothetical example of how a decision tree might predict protein-protein
interactions.
(a) Each data item is a gene pair associated with a variety of features. Some features are
real-valued numbers (such as the chromosomal distance between the genes or the correlation
coefficient of their expression profiles under a set of conditions). Other features are categorical
(such as whether the proteins co-localise or are annotated with the same function). Only a few
training examples are shown.
(b) A hypothetical decision tree in which each node contains a yes/no question asking about a

16



single feature of the data items. An example arrives at a leaf according to the answers to the
questions.
Pie charts indicate the percentage of interactors (green) and noninteractors (red) from the
training examples that reach each leaf. New examples are predicted to interact if they reach a
predominately green leaf or to not interact if they reach a predominately red leaf [20].

2.1.2 Advanced ML Techniques

The development of advanced ML techniques has significantly enhanced the ability of models
to make accurate predictions across a wide range of complex tasks. These techniques improve
traditional methods and introduce novel approaches to model training and prediction. Among
these, gradient boosting stands out for its effectiveness in refining predictions through an
ensemble of simpler models. EXtreme Gradient Boosting (XGBoost), an optimised version of
gradient boosting, further advances this technique by enhancing speed and performance.

2.1.3 Gradient Boosting

Gradient boosting is a method that improves the accuracy of predictions by combining several
simple models, usually decision trees. It starts by creating a basic model on the dataset and
identifying its prediction mistakes. Then, it adds new models one by one, each designed to
correct the mistakes of the one before it. This process continues until adding more models
doesn’t make much of a difference or a set number of models have been added. In this
step-by-step way, each model builds on the previous ones, gradually reducing errors—which
is why it’s called ’boosting.’ By combining these simple models, gradient boosting forms a
strong predictor that works well on complex datasets, like those in genomic studies, where
usual methods might not be effective. [21]

In gradient boosting, choosing the right loss function is critical - the loss function measures how
inaccurate a model’s predictions are compared to the actual outcomes. It tells the model how
’wrong’ it is, which helps guide it during its training phase to make more accurate predictions.
Although the loss function can be chosen based on the specific needs of the task, it plays a
key role in how errors are managed and reduced. For example, regression tasks often use the
squared-error loss function to minimise the differences between predicted and observed values.
This approach helps the model pay more attention to larger errors, significantly enhancing
accuracy in predicting numerical outcomes. [22]

2.1.3.1 XGBoost

XGBoost is built upon the foundation of gradient boosting, representing an advanced, optimised
implementation known for its high efficiency and scalability across diverse machine-learning
tasks. The strength of XGBoost lies in its system design, which allows it to scale across big
datasets significantly faster than other implementations. [23]

XGBoost stands out because it effectively addresses overfitting, which happens when a model
learns too much detail from the training data, harming its ability to perform well on new data.
It does this by simplifying models, which includes limiting the number of decision points
(leaves) and reducing the influence of each decision point on the final outcome (leaf weight).
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XGBoost also enhances the basic boosting method by improving how the model works with the
computer’s memory and dealing with missing data or variables that do not have a regular pattern.
These improvements help XGBoost work faster and handle larger datasets more efficiently,
making it a popular choice in both academic studies and real-world applications. The technique
builds models one at a time, each one learning from the errors of the last, and uses a mix of
a loss function that points out prediction errors and a regularisation term that keeps the model
simple. [23]

Figure 2.3: The structure of XGBoost illustrating the sequential process where each tree model
corrects the residuals of the combined preceding trees, resulting in a refined and improved final
prediction [24]

Figure 2.3 illustrates the working mechanism of XGBoost, a powerful supervised learning
algorithm used for regression and classification tasks. XGBoost operates through a series of
decision trees that iteratively learn from one another. The process starts with Tree-1 making an
initial prediction based on the data. The errors from this first prediction, known as residuals, are
then passed on to Tree-2. Tree-2 aims to correct these residuals by making its own prediction,
thus improving upon the guess made by Tree-1.

This sequential correction continues with each subsequent tree, focusing on the residual errors
of the combined predictions of all previous trees. As more trees are added to the model, the
predictions become increasingly accurate because each tree incrementally reduces the errors of
the model. The final prediction is obtained by summing the predictions of all the trees, leading
to a robust model that captures complex patterns in the data. This iterative process of learning
and correcting is what makes XGBoost particularly effective in handling large-scale datasets
and achieving high predictive performance [24].

2.2 Enhancing Genomic Analyses with ML

ML has proven effective in genomic data analysis, particularly in identifying complex patterns
within genome sequences. Initially, the process involves developing specialised algorithms that
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utilise supervised learning to understand genomic patterns. These models train on extensive
datasets with known outcomes, refining their predictive accuracy over time [25].

After development and training, these ML algorithms are applied to new genomic sequences
to make predictions. The effectiveness of the models is evaluated by their accuracy in
these predictions. Performance evaluation can occur immediately if a specific test dataset
is available; otherwise, additional experimental methods might be needed to validate the
predictions, particularly in clinical or research settings [25].

2.2.1 Applications and Challenges

ML algorithms excel in interpreting vast genomic datasets, significantly improving the
predictive accuracy of genetic feature identification. Despite their broad application, challenges
remain, especially regarding the transparency of deep learning models. These models often act
as ”black boxes,” providing results without clear explanations. This can hinder their acceptance
by medical professionals who need to trust and understand the tools they use [26].

2.2.2 The Shift Toward Personalised Medicine

The increasing accessibility and affordability of genetic testing propel healthcare towards
more personalised treatment approaches based on individual genetic profiles. This evolution
highlights the need for ML tools that are accurate, interpretable, and designed to work with
diverse and heterogeneous data, such as that found in tabular Variant Call Format (VCF) files.
Such developments are crucial as they facilitate the move from traditional symptom-based
diagnostics to more predictive and personalised medicine, significantly altering patient
care. [6].

Given the transformative potential of ML in genomics, ongoing research must prioritise
enhancing the clarity and interpretability of these models. As the field of genetic medicine
continues to evolve, it is essential that ML tools not only provide accurate predictions but also
offer insights that are comprehensible to healthcare professionals. This approach ensures that
personalised treatments can be effectively integrated into clinical practice, improving patient
outcomes and improving overall care quality.

2.3 Ethical Considerations and Challenges

The lack of transparency in how ML methods work can make it difficult for clinicians, patients,
and policymakers to trust their outcomes. This challenge highlights the importance of clear
reporting, as emphasized by Vollmer et al. (2020), to enable independent verification of results
and the identification of biases [27]. Protecting data privacy is also paramount due to the use of
extensive datasets containing sensitive personal information, which is essential for maintaining
trust and adhering to legal requirements [28].

To guide the ethical application of Artificial Intelligence (AI) and ML in healthcare, Vollmer et
al. (2020) propose a framework comprising 20 critical questions. These questions cover various
stages of ML/AI application, from inception to implementation, stressing the importance of
clear documentation and reporting. This approach ensures that research is conducted with a
thorough understanding of its impact on patient care and that the results are valuable in practical
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clinical environments. Key considerations include evaluating the appropriateness of data for the
clinical question, ensuring reproducibility and transparency in the data flow and outcomes, and
assessing the potential for models to create or exacerbate disparities in healthcare [27].

ML models can unintentionally exhibit discrimination or bias due to inequalities in the dataset,
such as gender, race, or age. This can lead to inequitable healthcare outcomes and worsen
pre-existing disparities. To mitigate these biases, it is crucial to train models on diverse and
representative datasets. Additionally, the framework includes essential inquiries about data
accessibility, the transparency of the modelling approach, and the generalisability of findings
beyond the original study settings.

Implementing well-defined guidelines is essential for ensuring the ethical use of AI and ML
in healthcare. The 20 critical questions proposed by Vollmer et al. guide ethical practices
in AI and ML research, ensuring a clear understanding of their impact on patient care
and applicability in real clinical settings [27]. This framework addresses issues such as
data validation, methodological transparency, potential biases in outcomes, and the ethical
implications of deploying these technologies in real-world scenarios.

While ML and AI have significant potential to improve genomics and personalised medicine,
they also present ethical challenges that must be addressed through the implementation of clear
guidelines. By confronting these challenges, we can harness the full potential of these advanced
tools while upholding ethical principles. Enforcing these guidelines can result in a more ethical
use of these technologies, benefiting the public and maintaining high ethical standards.
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3 Materials and Methods

This thesis is part of the ”Oligogenic Inheritance in Genetic Diseases” project, funded by the
Estonian Research Council and conducted under protocol 362/T-6 of the University of Tartu
Research Ethics Committee. It focuses on the reanalysis of genome data initially sequenced for
hereditary cancer analysis, involving a review of 7,498 VCF files obtained from Tartu University
Hospital. The data analysis was performed in accordance with the data protection plan approved
by the Research Ethics Committee and contains no individually identifiable information. Due
to restrictions on clinical data handling, the data is not publicly available.

Under the supervision of Principal Investigator Dr. Sander Pajusalu at the University of Tartu,
Faculty of Medicine, Institute of Clinical Medicine, this research aims to demonstrate the
concept of creating ML models on clinical genomic data and to evaluate the predictive power
of these models in the development of genetic diseases.

Our methodology employs Illumina’s TruSight Hereditary Cancer Panel, which sequences the
coding regions of approximately 100 genes related to hereditary cancers. This panel has been
used from 2015 to 2023 during clinical work, with different versions of Illumina TruSight
Cancer and TruSight Hereditary Cancer panels. The VCF files, produced over these years,
are collected at the Tartu University Hospital Genetics and Personalised Medicine Clinic to
facilitate comprehensive genomic analysis and enhance the understanding of hereditary cancer.

3.1 Data Annotation and Quality Control

3.1.1 Variant Annotation

Our genomic data is stored in the VCF, a standard format for storing DNA sequence variations
such as Single Nucleotide Polymorphisms (SNPs), insertions, deletions, and structural variants,
enriched with comprehensive annotations. VCF is crucial in genomic research, enabling the
sharing and analysis of genetic data. This format efficiently stores large amounts of variant
data and metadata, allowing quick retrieval of variant information from specific genome
positions. VCF can be used for any diploid genome and represents a wide range of genetic
differences compared to a reference sequence. The format is designed for scalability and user
customisation, making it suitable for managing genotype information and annotations from
thousands of samples. [29]

To enhance our VCF files, we use the Variant Effect Predictor (VEP) for variant annotation.
VEP analyses variants to assess their potential impact on gene function and disease
manifestation, which is crucial for translating genomic data into clinical insights. This includes
evaluating how variants affect different transcripts and protein functions, contributing to the
pathogenesis of diseases. By linking genetic variations to specific phenotypic outcomes,
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VEP facilitates the transition from general medical practice to personalised medicine, where
treatment can be tailored based on individual genetic profiles. [8]

Genome annotation is the process of attaching biological information to sequences. It consists
of identifying functional elements within a genome, such as genes, their locations, and their
associated regulatory elements. This process is essential because sequencing DNA provides
sequences without indicating their function. Over the past decades, genome annotation has
advanced significantly—now detailing every nucleotide variation across thousands of genomes,
translating raw genomic data into insights that help understand the genetic bases of diseases.
This detailed annotation process helps translate raw genomic data into meaningful biological
insights. [30]

In this project, we are using GRCh37 as the reference genome. A reference genome is a
standardised representation of the human genome sequence that researchers use to compare
against DNA sequences generated in their studies. This helps ensure that our analysis is
consistent and can be compared reliably with other genetic research. Using GRCh37 allows us
to accurately map and analyse the variations in DNA sequences from our study’s samples. [31]

3.1.2 Quality control

During the initial processing of the VCF files, we implemented a Quality Control (QC) process
to ensure the integrity and reliability of our data. The QC steps aimed to identify and exclude
low-quality data that could compromise the accuracy of our findings.

Firstly, we applied a ”PASS” filter to retain only those variants that met all the quality
criteria established during the variant calling process. This ensures that only high-confidence
variants are considered for further analysis. This filter helped us exclude ”OffTarget”
variants—sequences that do not align with the specific regions of interest in our gene panel.
This step is crucial as it focuses the analysis on relevant genetic data and reduces noise from
regions outside our scope of study [32].

Furthermore, we excluded ”star alleles” from our dataset. Star alleles are variants characterised
by complex recombination patterns, making them challenging to classify confidently without
detailed analysis. By removing these complex alleles, we ensure our dataset only includes
variants with clear and well-defined genetic impacts, enhancing the reliability of our genetic
analysis and its application in clinical settings. [33]

3.2 Data Processing

NGS variants are often filtered based on various criteria, including quality scores and read
depth [34]. Read depth, defined as the number of times a nucleotide is sequenced, significantly
impacts the accuracy of variant calling in sequencing data. Higher read depth enhances the
ability to distinguish true genetic variants from sequencing errors, which is crucial in genomic
research.

For our analysis, we use Hail, an open-source, Python-based data analysis tool. Hail effectively
handles large volumes of VCF files and variant data, streamlining the management of complex
datasets. It leverages high read depth to establish the confidence level of each variant reported
in the VCF files [35]. In conditions like cancer, where somatic mutations may occur at
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low frequencies, adequate read depth, supported by Hail’s data processing, ensures accurate
detection and reduces the risk of missing significant variants in the analysis [36].

While the VCF is essential in genomic research, it has certain limitations that can complicate the
accurate interpretation of data. A notable issue is how genetic variations, particularly structural
changes like deletions or duplications, are recorded differently across various databases or
tools. For example, the way a deletion is noted can vary between whole genome sequencing
data and genotyping arrays. This inconsistency makes it challenging to match and compare
genetic variants automatically, limiting effective data integration and analysis. Additionally,
VCF primarily records changes from a reference genome, which may exclude other genetic
variations present in an individual’s DNA. This exclusion might miss important variations that
are critical to the analysis. The effectiveness of VCF also relies significantly on the quality and
depth of the sequencing data. If the data quality is low or the sequencing depth is insufficient,
it could result in important variants being missed or misrepresented. Addressing these issues is
crucial for improving the accuracy and usefulness of VCF in both genomic research and clinical
applications. [6]

3.3 System Design and Implementation

The detailed system architecture and the specific steps involved in processing, analysing,
and modelling the genomic data, is provided in the addendum. This includes comprehensive
descriptions of data loading, processing VCF files, generating MatrixTables, data aggregation,
ML preparation, model training, and evaluation.

Please refer to the addendum for a thorough explanation of the system architecture and its
components.

3.4 System Testing and Validation

System testing and evaluation form crucial aspects of the research methodology applied to
ML models. In this thesis, this phase is dedicated to examining the model’s capability to
identify new and previously unlabelled genetic variants. Utilising a series of established
metrics, researchers have the ability to assess the model’s reliability and accuracy, confirming
its operational effectiveness in practical genomic settings. The metrics evaluated in this study
include precision, statistical power, sensitivity, model accuracy, and overall performance.
Figure 3.1 illustrates the process of using training, validation, and test data in machine learning
workflows.

Training Data

The training data set is used to fit the ML models. It includes a labelled subset of the available
data, allowing the model to learn by adjusting weights and biases to minimise prediction errors.
The robustness of the training process is crucial for developing a model that performs well not
just on the training data but also on new, unseen data. [37]

Test Data
The test dataset serves as the benchmark for evaluating the model. It is employed only after the
model has been fully trained (using the training set) and validated (using the validation set). The
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Figure 3.1: Training, validation, test data usage in ML [37]

test data facilitates the assessment of the model’s performance under conditions that replicate
real-world scenarios [37].

Validation Data
Validation data is used to provide an unbiased evaluation of a model fit on the training dataset
while tuning model hyperparameters. This data set helps in preventing models from overfitting
and can be used to select the best model architecture or configurations during the training
process. [37]

Threshold Adjustment for Classification
During the validation phase, a crucial step involves the adjustment of the decision threshold
used for classifying predictions. The decision threshold is a hyperparameter that determines the
probability above which a predicted probability is considered a positive result. In this study, the
threshold was set at 0.4, rather than the conventional 0.5, to better accommodate the specific
characteristics of the dataset and the model’s performance objectives. This adjustment allows
for a more sensitive detection of positive cases - by lowering the threshold, the model is able to
classify more instances as positive, potentially increasing the recall of the model.

3.5 ML Implementation

3.5.1 Feature Selection and Preparation

In preparing the dataset for the application of ML techniques, specific features were selected
based on their feasibility for input into the XGBoost model. These features include ’IMPACT’,
’QUAL’, ’DP’, ’QD’, and ’MAX AF’, chosen to facilitate the model’s ability to identify
disease-related mutations. By focusing on these key features, the analysis aimed to enhance the
predictive accuracy and interpretability of the results.
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The selected features were feasible to include as suitable inputs for the machine learning model:

• IMPACT: The impact modifier for the consequence type (can be HIGH, MODERATE,
LOW, MODIFIER). This parameter indicates the predicted severity of the mutation’s
effect on the protein function, with HIGH indicating a likely disruptive effect, and
MODIFIER indicating a less certain impact. High-impact variants are more likely to be
associated with disease.

• QUAL: The quality score from the VCF file (float value). This score indicates the
confidence in the variant call, with higher scores representing higher confidence. Reliable
variant calls are essential for accurate downstream analysis.

• DP: Read depth at this position for this sample (float value). This parameter measures
the number of reads that cover a particular genetic position. Higher read depths generally
increase confidence in the variant call.

• QD: Quality by depth (float value). This value is the variant call quality score normalised
by the depth of coverage. It helps to distinguish true variants from sequencing errors,
with higher values indicating more reliable calls.

• MAX AF: Maximum observed allele frequency in 1000 Genomes and gnomAD dataset
(float value). This provides context on how common the variant is in broader population
datasets, which can help assess its potential clinical significance.

3.6 Dataset Characteristics and Classification

3.6.1 Dataset Overview

The VCF files used in this study were collected from 2015 to 2023, each originally annotated
at the time of collection with the annotation tools available then (ANNOVAR). Over time, as
genomic databases have evolved, these earlier annotations have become outdated. In response,
we reannotated all VCF files using VEP, the current standard with a more comprehensive
reference genome, ensuring a higher quality of genomic data interpretation. However, this
update led to a challenge: some mutation descriptions in the patient phenotype files became
inconsistent with the new annotations because the positions of mutations can shift when
reference genomes are updated. To address this, we mapped all mutation positions listed in
the phenotypes file to both current and potentially older positions using the ClinVar database.
This mapping was crucial for accurately identifying mutations within the updated VCF
files, ensuring that our analysis remained precise and relevant to current genomic research
standards.Table 3.1 presents the distribution of the three most common disease conditions
in our dataset, illustrating the prevalence of each condition and highlighting the significant
representation of breast and stomach cancer in the collected data.
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Table 3.1: Distribution of most common disease conditions in the dataset

Disease Count Percentage
Healthy 3746 49.96
Breast Cancer 2449 32.66
Stomach Cancer 630 8.40
Other 673 8.98

3.6.2 Data Classification Process

Following the reannotation of the VCF files, we initiated a targeted search within the data to
identify rows that matched the criteria for the positive group. This search was specifically
designed to locate and match mutations and gene names as listed in the patient’s variants
file. This matching process involved searching across all mapped mutation positions to
accommodate annotation and genomic reference updates.

When a match was found, that particular row was deemed to contain a disease-causing mutation.
Subsequently, these identified rows were consolidated into an aggregated positive group table.
Conversely, all rows that did not match were placed into a negative group table.

3.6.2.1 Addressing Unmatched Cases

An additional challenge arose for cases initially classified based on the phenotype file as
patients with breast cancer, where the mutation was described, but no matching rows were
found in the reannotated VCF files. These patients, despite having a described mutation, had no
identifiable matching entries in the current dataset due to discrepancies in mutation positioning
or annotation differences. Therefore, the entire VCF dataset for these patients was moved to a
validation group. This categorisation was based on the premise that the mutation likely exists
but was not detectable with the existing data and annotation capabilities.

By categorising unmatched patients into a validation group and others into a negative
group table, our analysis remained comprehensive, addressing both confirmed negatives and
potential, yet unverifiable, positives. This approach allowed us to systematically account for
the limitations of the genomic data and maintain a thorough analysis despite the challenges.

The scale of data aggregation across the groups is depicted in Table 3.2. This distribution
highlights the quantitative disparity between the analysed categories:

Table 3.2: Data Aggregation Across Groups

Group Number of Rows
Positive Group 155
Negative Group 2,290,746
Validation Group 2,758,383

Among the 355 patients analysed, 155 were successfully matched and had their data aggregated
into the positive group table. This indicated a confirmed presence of the disease-related
mutation according to our search criteria and current genomic annotations. Conversely, the
remaining 200 patients, for whom no matching mutation could be found in the reannotated VCF
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files, were allocated to the validation group. Their entire VCF data was preserved for further
analysis, highlighting the limitations of current genomic data in identifying disease-specific
mutations under the updated reference standards.

The disparity in numbers between the groups presents challenges in genomic data analysis,
especially considering that a small fraction of the data indicates disease presence. The validation
group, being unlabelled, serves as an important resource for future studies. It allows for using
more advanced genomic analysis techniques or updated genomic information to clarify the
disease relevance of uncertain cases potentially.

3.6.3 Data Splitting for Model Training and Validation

The dataset was divided into training, testing, and validation sets to evaluate the model’s
performance accurately and to ensure that it generalises well to new data. The validation group
consisted entirely of the previously described validation dataset, which consists of the data that
could not be definitively categorised as either positive or negative.

After division, the final distribution of the datasets is summarised in Table 3.3. Following table
provides an overview of how the data was allocated across different sets for training, testing,
and validation purposes:

Table 3.3: Distribution of Data Across Sets

Dataset Number of Rows Percentage of Combined Data
Combined Data 2,290,901 100%
Training Set 1,603,630 70%
Testing Set 687,271 30%
Validation Set 2,758,383 0%

3.6.4 Evaluation Parameters

Precision

Precision, also known as the positive predictive value, measures the accuracy of the model in
identifying true positives. It is calculated using the formula:

Precision =
TP

TP + FP
(3.1)

where TP represents true positives, and FP represents false positives. This metric is crucial
for determining how well the model can identify correct positive cases without mistakenly
labelling negative cases as positive. A high precision score indicates that the model accurately
recognises genuine positive variants, which is vital in genomic studies where the accuracy of
variant detection can significantly affect biological and clinical decisions. [38]

Statistical Power
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Statistical power in this context refers to the model’s ability to identify effects when they exist
correctly. The formula for statistical power is:

Power = 1− β (3.2)

where β is the probability of a Type II error (failing to detect an effect when one exists).
High statistical power means there is a greater likelihood that the model will detect true
genetic variants when they are present, reducing the chances of missing significant genetic
information. [39]

Model Accuracy

Model accuracy represents the overall ability of the model to classify both positive and negative
cases correctly. It is calculated with:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.3)

where TN represents true negatives. This metric provides a broad view of how well the model
performs across all predictions. Nevertheless, employing accuracy as a metric on imbalanced
datasets can yield deceptive results. In such instances, a model can attain high accuracy by
categorising all data as belonging to the predominant class. [39]

Recall (Sensitivity)

Recall, also known as the true positive rate or sensitivity, measures the model’s ability to
correctly identify all actual positives. It is calculated using the formula:

Recall =
TP

TP + FN
(3.4)

where TP represents true positives, and FN represents false negatives. This metric is particularly
crucial in scenarios where the cost of missing a positive (e.g., a disease, a faulty component, or
an important signal in data) is high. [39]

Ensuring a high recall rate is crucial in clinical diagnostic tests, as the failure to detect a
problem could significantly impact patient treatment. Increasing recall optimisation may lead
to a fall in precision since the model might anticipate more positive outcomes, increasing the
probability of false positives. Recall is frequently employed alongside precision and the F1
Score to assess the performance of a model thoroughly. Recall is a crucial metric in imbalanced
datasets as it specifically measures the detection rate of the minority class. Unlike accuracy,
which may be deceptive in imbalanced situations because of numerous true negatives, recall
offers a practical evaluation of a model’s ability to recognise the less common, often more
important, class.
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F1 Score

The F1 Score is a harmonic mean of precision and recall, offering a balance between the two by
considering both false positives and false negatives. It is particularly useful in situations with
imbalanced datasets as it does not overly inflate performance figures due to the majority class.
The formula for the F1 score is:

F1 Score = 2 · Precision · Recall
Precision + Recall

(3.5)

This metric is crucial when dealing with datasets where false negatives and false positives are
more critical to balance. [40]

ROC AUC Score

The Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) measures a
model’s ability to discriminate between classes across all thresholds, providing an aggregate
performance measure. The score ranges from 0 to 1, with 1 indicating a perfect model and
0.5 indicating a no-skill classifier. However, ROC AUC should not be used with heavily
imbalanced data. Saito and Rehmsmeier (2015) explain that in such cases, the false positive
rate is artificially lowered due to the large number of true negatives, which can give misleading
performance evaluations [41]. They recommend using the Precision-Recall Plot as a more
informative alternative in these scenarios.

PR AUC Score

The Precision-Recall Area Under the Curve (PR AUC) score evaluates the trade-off between
precision and recall across different threshold values. This score is particularly informative
in the context of imbalanced datasets, as it focuses on the performance of the minority class.
The PR AUC is more sensitive to changes in class distribution and provides a better measure
of the positive class’s predictive performance. PR AUC plot illustrates the relationship
between precision and sensitivity (recall). Unlike the fixed baseline in ROC plots, the PR
AUC baseline shifts with class distribution, defined by the ratio of positives (P) to negatives
(N) as y = P

P+N
. For instance, this baseline is 0.5 for balanced class distributions but drops

to 0.09 for imbalanced distributions with a P:N ratio of 1:10. Consequently, the AUC score
changes with the P:N ratio, providing a more accurate performance measure for imbalanced
datasets. Saito and Rehmsmeier (2015) emphasised that precision is an intuitive measure when
evaluating binary classifiers on imbalanced datasets, as other measures may fail to capture poor
performance in such scenarios. [41].

3.6.4.1 Confusion Matrix

A confusion matrix is a table used to evaluate the performance of a binary classification model.
It consists of four outcomes: true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). The confusion matrix helps to understand the model’s accuracy,
precision, recall, and overall effectiveness. True positives and true negatives indicate correct
classifications, while false positives and false negatives indicate errors. By analysing these
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outcomes, various performance metrics such as accuracy, precision, recall, and the F1 score can
be derived, providing a comprehensive evaluation of the model’s predictive capabilities. Figure
3.2 depicts these concepts through actual and predicted labels, illustrating the generation of the
four possible outcomes of the confusion matrix [41].

Figure 3.2: Actual and predicted labels generate four outcomes of the confusion matrix [41]

(A) The left oval shows two actual labels: positives (P; blue; top half) and negatives (N;
red; bottom half). The right oval shows two predicted labels: “predicted as positive” (light
green; top left half) and “predicted as negative” (orange; bottom right half). A black line
represents a classifier that separates the data into “predicted as positive” indicated by the
upward arrow “P” and “predicted as negative” indicated by the downward arrow “N”. (B)
Combining two actual and two predicted labels produces four outcomes: True positive
(TP; green), False negative (FN; purple), False positive (FP; yellow), and True negative
(TN; red). (C) Two ovals show examples of TPs, FPs, TNs, and FNs for balanced (left)
and imbalanced (right) data. Both examples use 20 data instances including 10 positives and
10 negatives for the balanced, and 5 positives and 15 negatives for the imbalanced example. [41]
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Considerations for Imbalanced Data

When dealing with highly imbalanced datasets, certain performance metrics provide more
reliable insights. Metrics such as Precision, Recall, F1 Score, and Precision-Recal (PR) AUC
are particularly valuable because they emphasise the performance of the minority class, which is
often more critical in practical scenarios. In contrast, metrics like Accuracy and ROC AUC can
be misleading. As discussed by Saito and Rehmsmeier (2015), ROC curves can present overly
optimistic views of a model’s performance on imbalanced datasets because they include the true
negative rate, which can dominate the metric when the negative class heavily outweighs the
positive class. The study concludes that PRC plots, unlike ROC plots, provide clear visual cues
and allow for an accurate and intuitive interpretation of practical classifier performance. [41].
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4 Results

4.1 Model Training and Evaluation

Using the XGBoost framework, the model was trained on the training set and evaluated using
the testing set. This section will further discuss the specifics of the model training, parameter
tuning, and the evaluation metrics employed to gauge the model’s performance. Detailed
analysis of the training process will highlight the decision-making in model configuration,
feature importance, and the impact of different hyperparameters on the model’s accuracy and
overall effectiveness.

4.1.1 Feature Importance

Feature importance was determined by the XGBoost model based on the gain, which measures
the contribution of each feature to the model. Figure 4.1 illustrates the most relevant features
identified.

Figure 4.1: Feature importance

The features shown in Figure 4.1 are:
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• QD: Quality by Depth, which normalises the variant quality score by the depth of
coverage.

• DP: Read Depth, indicating the number of reads that cover a particular genetic position.

• QUAL: Quality score, representing the confidence in the variant call.

• MAX AF: Maximum Allele Frequency observed in population databases such as 1000
Genomes and gnomAD.

• IMPACT: Impact modifier for the consequence type, indicating the predicted severity of
the mutation’s effect on protein function.

These features were selected based on their feasibility in being converted into machine
learning-appropriate data.

4.1.2 Confusion Matrix

To further understand the model’s performance, a confusion matrix was generated, as shown
in Figure 4.2. The confusion matrix provides a detailed breakdown of the true positive, true
negative, false positive, and false negative predictions made by the model.

Figure 4.2: Confusion Matrix. The x-axis represents the predicted labels, and the y-axis
represents the true labels. The numbers indicate the count of instances for each combination of
predicted and true labels.

From the confusion matrix, we observe the following:
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• True Negatives (TN): 687,217

• False Positives (FP): 4

• False Negatives (FN): 34

• True Positives (TP): 16

The confusion matrix reveals that while the model has a high number of true negatives, it
struggles with identifying true positives. This imbalance is evident from the relatively high
number of false negatives (34) compared to true positives (16). This indicates that the model
often fails to detect cases of the disease, which is critical in clinical applications where
identifying all positive cases is essential.

The high true negative rate suggests that the model is very effective at correctly identifying
negative cases. However, the low true positive rate (sensitivity) and high false negative rate
highlight a significant limitation in the model’s ability to detect positive instances. This is
further reflected in the low recall value observed in the evaluation metrics.

4.1.3 Precision-Recall Curve

The PR curve is a crucial evaluation tool for imbalanced datasets, as it provides insights into
the trade-offs between precision (the accuracy of the positive predictions) and recall (the ability
to find all positive instances). The PR curve for our model is shown in Figure 4.3.

Figure 4.3: Precision-Recall Curve

The PR curve in Figure 4.3 shows how precision and recall vary as the decision threshold is
adjusted. A key observation from the PR curve is the model’s performance across different
threshold values:
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• At the leftmost part of the curve, precision is high, but recall is low. This indicates that the
model is very conservative in predicting positive cases, leading to fewer false positives
but missing many true positives.

• As we move to the right along the curve, recall increases while precision decreases. This
suggests that the model is becoming more inclusive in its positive predictions, capturing
more true positives but also increasing the number of false positives.

• The sharp decline in precision around a recall value of 0.4 indicates a threshold beyond
which the model’s precision significantly drops. This highlights the challenge in
balancing precision and recall in the presence of imbalanced data.

The PR curve provides valuable insights that complement the confusion matrix analysis. While
the confusion matrix offers a snapshot of performance at a specific threshold, the PR curve
illustrates how performance varies with different thresholds.

4.1.4 Receiver Operating Characteristic Curve

The ROC curve is a graphical representation that illustrates the diagnostic ability of a binary
classifier system as its discrimination threshold is varied. The ROC curve for our model is
shown in Figure 4.4.

Figure 4.4: Receiver Operating Characteristic Curve (The x-axis represents the false positive
rate and the y-axis represents the true positive rate).

Given the imbalanced nature of our dataset, the PR curve is a more informative evaluation
metric compared to the ROC curve. It focuses on the performance with respect to the positive
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class, which is critical in clinical applications where the detection of disease-related mutations
is essential.

The ROC curve shows an area under the curve (AUC) of 1.00, indicating a perfect classifier
with no false positives or false negatives.

4.1.5 Model’s metrics

The model’s performance was assessed using several evaluation metrics as shown in table 4.1.

Table 4.1: Model Evaluation Metrics

Metric Value
Mean ROC AUC 0.9992
Mean Accuracy 0.9999
Mean Precision 0.8342
Mean Recall 0.40091
Mean F1 Score 0.5171
Mean Log Loss 0.0002

Due to the highly imbalanced data, Test Accuracy and ROC AUC are not relevant in our
research.

For the validation dataset, the model with a decision threshold of 0.4 was able to correctly
identify 7 patients out of 200, and with a precision of 0.38, it potentially identified 1,018 rows.
The validation set had 2,758,384 rows, meaning the model significantly reduced the number
of rows for clinicians to review. Specifically, the model reduced the number of rows from
2,758,384 to 1,018, which is a reduction of approximately 99.96%.

The decision threshold of 0.4 was chosen based on optimising the balance between precision
and recall in our imbalanced dataset. Lowering the threshold from the conventional 0.5 to 0.4
increases the model’s ability to capture true positives while maintaining a manageable number
of false positives for further clinical review.

Percentage Reduction =

(
1− 1018

2758384

)
× 100 ≈ 99.96% (4.1)

4.2 Summary

4.2.1 Analysis of Results

The ROC curve in Figure 4.4 plots the true positive rate (sensitivity) against the false positive
rate (1-specificity) at various threshold settings. Key observations from the ROC curve include:

• The ROC curve is very close to the top left corner, indicating that the model has a high
true positive rate and a low false positive rate.
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• The steep rise to a true positive rate of 1.0 with a very low false positive rate suggests that
the model performs well in distinguishing between the positive and negative classes.

While the ROC curve indicates that the model has good discriminative ability between the
positive and negative classes, the PR curve and confusion matrix provide more nuanced insights
into the model’s performance, particularly regarding the detection of positive cases. Given the
imbalanced nature of the dataset, the PR curve is more informative in assessing the model’s
ability to correctly identify positive cases. Future work will focus on balancing these metrics to
ensure robust model performance in clinical settings.

4.2.2 XGBoost Decision Tree

To gain a deeper understanding of the decision-making process of the XGBoost model, we
visualised one of the trees from the model. The detailed decision tree is provided in Appendix
A. By visualising the tree, we can see the hierarchical structure of decisions and how different
features contribute at various levels. This visualisation aids in interpreting the model’s
behaviour and identifying which features are most influential in predicting the outcomes.

4.2.2.1 Analysis of the Decision Tree

The XGBoost decision tree provides a visual representation of how different features and their
values contribute to the final prediction. Key observations from the decision tree include:

• Root Node: The root node splits on the feature ‘IMPACT‘ with a threshold of 1. This
indicates that ‘IMPACT‘ is the most significant feature at the top of the tree.

• Subsequent Nodes: The tree further splits on features such as ‘QD‘, ‘DP‘, ‘QUAL‘,
and ‘MAX AF‘. These features were identified as important in the feature importance
analysis and are used to make more refined decisions down the tree.

• Leaf Nodes: The leaf nodes contain the final prediction values. These values represent
the model’s output for the samples that reach that particular leaf.

• Thresholds and Decisions: Each node represents a decision point based on a specific
threshold value for a feature. For example, one of the decisions is based on whether ‘DP‘
is less than 182.
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5 Discussion

This study has identified several critical aspects of genomic data analysis for detecting
disease-related mutations, particularly the challenges associated with data reannotation
and model performance in an imbalanced dataset. The reannotation of VCF files and the
subsequent identification of mutation positions underscored the necessity of maintaining
up-to-date genomic annotations to ensure accurate and relevant data interpretation. These
efforts were crucial for refining our ML model and improving the detection of clinically
significant mutations.

5.1 Dataset Characteristics and Challenges

One of the primary challenges faced during this study was the reannotation of VCF files to
ensure higher quality genomic data interpretation. This reannotation introduced inconsistencies
between the mutation descriptions in the patient phenotype files and the new annotations.
Addressing this required mapping all mutation positions listed in the phenotype files to both
current and older positions using the ClinVar database, ensuring that our analysis remained
precise and relevant to current genomic research standards.

Another challenge was handling imbalanced data. The dataset contained significantly more
negative instances than positive ones, which affected the model’s ability to accurately detect
true positive cases. Strategies to mitigate this included categorising unmatched patients into
a validation group and others into a negative group, ensuring a comprehensive analysis that
addressed both confirmed negatives and potential, yet unverifiable, positives.

5.2 Feature Selection and Model Training

For the ML implementation, specific features were identified as most relevant for training the
XGBoost model, including IMPACT, QUAL, DP, QD, and MAX AF. The dataset was divided
into training, testing, and validation sets to evaluate the model’s performance accurately and
ensure generalisation to new data. The validation group consisted of data that could not be
definitively categorised.

5.2.1 Model Performance

Using the XGBoost framework, the model was trained on the training set and evaluated
using the testing set. Feature importance was determined based on the gain, measuring the
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contribution of each feature to the model. The confusion matrix and precision-recall curve
were generated to evaluate the model’s performance comprehensively.

The confusion matrix revealed a high number of true negatives (687,217) but a low number
of true positives (16), indicating a significant number of false negatives (34). This imbalance
suggests that the model often fails to detect cases of the disease, which is critical in clinical
applications. Improving the model’s ability to detect true positives while maintaining a low
false positive rate will be crucial. Strategies to address this include further tuning the model,
rebalancing the dataset, or exploring alternative algorithms better suited for imbalanced
datasets. These strategies go beyond the scope of the current thesis but are essential for future
research to enhance the model’s clinical utility.

The precision-recall curve provided insights into the trade-offs between precision and recall.
Initially, precision is high but recall is low, indicating conservative positive predictions. As
recall increases, precision decreases, highlighting the challenge of balancing these metrics in
imbalanced data. The sharp decline in precision around a recall value of 0.4 emphasises the
need for careful threshold selection to optimise the trade-off between precision and recall.

5.2.2 Model Limitations and Future Directions

The model’s performance, while demonstrating high overall accuracy, indicated significant
limitations in detecting positive cases, reflected in the low recall and F1 score. Future
experiments should focus on converting more genomic data columns to numeric forms to
improve model training. Additionally, considering the mutation’s effect and rarity, rather than
its specific position, may provide better insights into disease-related mutations.

Future studies should include more parameters such as CADD (Combined Annotation
Dependent Depletion) scores, which predict the deleteriousness of variants, and PolyPhen
(Polymorphism Phenotyping) scores, which assess the potential impact of amino acid
substitutions on protein function. Additionally, incorporating parallel annotations from more
databases, or even using natural language processing to match phenotype to disease, will
enhance the robustness and accuracy of the model. This comprehensive approach will improve
the model’s predictive power and clinical applicability.

A crucial aspect in model training was the conversion of group labels to numeric values,
facilitating model training and improving the model’s interpretability. The major strength of
this work lies in the data handling, unification, and the dataset itself, which pools hereditary
cancers.

5.2.3 Enrichment and Filtering

During this study, the phenotypes file was enriched with mappings to the ClinVar database,
enhancing the dataset’s quality. Additionally, a PASS filter was applied to filter out off-target
rows, which might filter out important data, especially considering mutations mapped to older
reference genomes. This highlights the need for careful consideration of filtering criteria to
avoid excluding relevant data.
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5.2.4 Challenges with Quality Depth (QD)

Quality depth (QD) is crucial because most likely pathogenic variants are only reported if they
have sufficient depth of coverage and other quality parameters agree. This causes an issue for the
classification of outliers of low quality, which is easy for humans but problematic for ML tuning.
Improving how models handle low-quality data points is essential for better performance.

5.2.5 Design Problems and Results

A design problem was identified as the model only detected 7 positive variants with a 0.4
threshold. This highlights the challenge of setting appropriate thresholds in the presence of
imbalanced data. Addressing this requires further refinement and possibly the inclusion of
more comprehensive data points and advanced analytical techniques. Additionally, a robust
model should be agnostic to gender, but our dataset is likely skewed, posing another challenge.

Another design problem is the focus on breast cancer, while the validation set also included
other cancer variants. This mixed validation set makes it difficult to trace back to the original
mutations, introducing potential inaccuracies. The evaluation was done on real-world model
performance based on a pooled untested validation dataset, which may contain more pathogenic
variants than initially expected. As a result, we might incorrectly classify some true positives
as false positives. At this moment, we cannot verify this due to the inability to trace back to the
original VCF files.

These issues underscore the need for a more comprehensive and accurately labelled validation
set to better assess model performance and refine our approach.

5.3 Summary of Findings

This study highlights the complexities and challenges of genomic data analysis in detecting
disease-related mutations. The results underscore the need for refined techniques to handle
imbalanced data and the importance of comprehensive evaluation metrics. Future work will
focus on enhancing model performance through better feature representation and exploring
advanced genomic analysis techniques.

5.4 Prospects for Advancements

Possible future developments that result from this thesis in the field of clinical genetics could
concentrate on enhancing the precision and accuracy of diagnostic algorithms for genetic
diseases. Future studies can enhance our understanding and identification of disease-related
mutations by improving current models and incorporating more detailed data. To strengthen
diagnostic capabilities, it is crucial to expand the datasets and improve the analytical methods
used in modern clinical diagnostics, as they currently rely on limited genetic information.

One possible approach for future research could involve creating sophisticated diagnostic
algorithms that utilise AI and ML to examine genetic variations. This would be especially
beneficial in situations where conventional approaches are unable to produce definitive
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diagnoses. By employing advanced computer models, scientists can improve their
understanding of the impact of genetic variants on the development of diseases.

In addition, future studies could prioritise the creation of a robust scoring system that assesses
the likelihood of genetic mutations contributing to disease. The proposed scoring system would
utilise ML algorithms to combine clinical data, genetic variants, and phenotypic information.
This would offer clinicians a robust tool to assist in genetic counselling and personalised therapy
planning.

Future developments could also focus on enhancing the integration of genomic data with other
types of clinical data, such as imaging and electronic health records, to provide a more holistic
view of patient health. Future research can enhance the accuracy and comprehensiveness
of diagnostic and prognostic models in clinical genetics by employing an interdisciplinary
approach.
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6 Conclusions

This study has underscored the complexities inherent in genomic data analysis for detecting
disease-related mutations, specifically within the context of hereditary breast cancer. The
dataset comprised 7,498 patient records, with 2,449 identified as having breast cancer. Among
these, 355 VCF files explicitly listed breast cancer as the diagnosed disease. The reannotation
of these VCF files using VEP, and the subsequent mapping of mutation positions with the
ClinVar database, ensured that our analysis was precise and aligned with current genomic
research standards.

6.1 Key Findings

The feature selection process identified ’IMPACT’, ’QUAL’, ’DP’, ’QD’, and ’MAX AF’
as critical for training the XGBoost model. These features were selected to enhance the
model’s predictive accuracy and interpretability. However, the model’s performance indicated
significant challenges, particularly due to the imbalanced nature of the dataset. The confusion
matrix revealed a high number of true negatives but a low number of true positives, highlighting
the model’s struggle to detect disease cases.

A key finding is the current limitation of the feature selection, which resulted in a circular logic
problem. The critical features identified were necessary because other fields were pruned. This
suggests that incorporating more fields and additional data points could improve the model’s
performance. Future work should focus on expanding the feature set to include more relevant
fields to address these challenges and improve the detection of disease-related mutations.

6.2 Model Performance and Limitations

The precision-recall curve provided a nuanced view of the model’s performance, showing the
trade-offs between precision and recall and highlighting the difficulty in setting appropriate
thresholds for imbalanced data. The model’s performance metrics were:

• Mean Precision: 0.83417

• Mean Recall: 0.40091

• Mean F1 Score: 0.51713

These metrics underscore the model’s limitations in detecting positive cases. Only 7 positive
variants were identified with a 0.4 threshold in the validation dataset, demonstrating the need
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for more refined techniques to handle imbalanced data. Future experiments should focus on
converting more genomic data columns to numeric forms and including additional parameters
such as CADD scores, PolyPhen scores, and parallel annotations from multiple databases.

6.3 Strengths and Future Directions

Despite these challenges, the major strength of this work lies in the data handling and unification
processes. The dataset itself, which pools hereditary cancers, represents a significant resource
for future research. Enriching the phenotypes file with mappings to the ClinVar database and
applying filters to improve data quality were crucial steps that enhanced the dataset’s robustness.

Future studies should also explore advanced techniques such as natural language processing to
match phenotypes to diseases. Additionally, considering the mutation’s effect and rarity rather
than its specific position may provide better insights into disease-related mutations.

Further developments could include adding more fields and pathogenicity scores, using neural
networks, and improving VCF handling instead of relying on TSV intermediaries required for
data protection. These advancements would streamline data processing and enhance the overall
robustness of genomic analyses.

6.4 Implications for Clinical Genetics

The findings from this study suggest several potential advancements in clinical genetics. Future
research could focus on developing dual-pathway diagnostic algorithms that concurrently
evaluate monogenic and oligogenic factors contributing to genetic diseases. Such algorithms
would be particularly useful when initial testing for a single gene does not yield a definitive
diagnosis. Additionally, creating a comprehensive scoring system to assess the probability
of oligogenic inheritance versus monogenic inheritance could significantly enhance genetic
counseling and tailored therapy planning.

6.5 Summary

In summary, this study highlights the complexities and challenges of genomic data analysis in
detecting disease-related mutations. The results underscore the need for refined techniques to
handle imbalanced data and the importance of comprehensive evaluation metrics. The work
done in data handling and unification sets a strong foundation for future research, and the
inclusion of more advanced genomic analysis techniques will likely improve the robustness
and accuracy of predictive models in clinical settings.
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8 Addendum

8.1 System Overview

1. Software Setup:

• Operating System: CentOS 9 Stream

• Programming Language: Python 3.7 or newer

• Python Packages:

– Pandas: Utilised for data manipulation and analysis. [42]

– Hail: Employed for its powerful handling of genomic data, relying on its scalability
for large data sets. [43]

– Machine Learning Libraries:

* scikit-learn: Used for machine learning model preparation, including data
preprocessing, training, and evaluation. [44]

* XGBoost: Applied for training gradient boosting models on structured or
tabular data. [45]

• Java Runtime Environment (JRE): Required for Hail operation (Java 8 or 11).

2. Hardware Configuration:

• Processor: 16 virtual CPUs (vCPU).

• RAM: 64 GB RAM

• Hard Drive: 500 GB SSD

3. Data Requirements:

• Phenotypes File Format: Tab-Separated Values (TSV) file.

• Content Specifications:

– Must include columns for Patient ID, Disease, and Position, organised in this
specific order.
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– The Patient ID in the phenotypes file must correspond to the pseudonymised code
part of the VCF file names, ensuring accurate linkage between the phenotype data
and genomic data.

• File Encoding: UTF-8 to ensure compatibility across different data processing scripts
and systems.

• Raw Data Requirements:

– The raw data must be in the form of annotated VCF files.

– These files should be organised within a single directory to streamline data
processing and analysis.

8.2 System architecture

8.2.1 Loading and Parsing Phenotypic Data

Objective: Load the phenotypes TSV file and accurately extract disease identification, genetic
symbols, and nucleotide expressions.

Implementation:

Data Loading The system reads the TSV file using pandas, with UTF-8 encoding to ensure
data integrity.

Data Parsing It iterates through each row, extracting the patient’s pseudonymised code
(e code), disease information, genetic symbol (#Symbol), and nucleotide expressions.

Regular Expression Parsing Uses regex to extract genetic identifiers from the nucleotide
expressions, such as “NM ####.##:c.*”, which are essential for correlating phenotypic and
genomic data.

Enhanced Data Structuring Extracted identifiers are sorted and deduplicated. Data
is compiled into a dictionary linking each patient code to relevant medical and genetic
information.

Including Additional Nucleotide Expressions The additional nucleotide parameter
incorporates extra nucleotide information into the output. This is important because the
additional nucleotide field is preprocessed before analysis to include mappings from the
ClinVar database, addressing variations and alternative transcripts from different annotation
versions over the years when patients’ findings were described.

8.2.2 Processing VCF Files and Generating MatrixTables

Objective:
Convert VCF files into Hail MatrixTables, annotate them with VEP information, and classify
them based on disease type and position, storing results in an organised directory structure.

Implementation:
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File Discovery and Validation
The system scans a specified source directory or a single file path to gather all VCF files. It
validates each file’s format and ensures they are either in uncompressed or compressed (gzip)
VCF format.

Initialising Hail
Hail is initialised with the GRCh37 reference genome. This step involves setting up appropriate
contig recoding to align with the VCF files, simplifying the management of chromosome
naming conventions across different genomic data sources.

VCF Processing and Classification:

Each VCF file is processed in sequence. The following steps are executed for each file:

• Extraction of Patient Information: The patient code is extracted from the filename,
which is used to retrieve corresponding phenotype data (disease and position).

• Disease Classification: The disease and position information is used to classify each
VCF file into either a positive or negative group for further analysis.

• File Deduplication: The system checks for existing output files to avoid reprocessing.

Data Annotation and Filtering
The VCF files are loaded into Hail and the following transformations are applied:

• Allele Filtering: Filters out rows with star alleles.

• Annotation using VEP: Annotates rows with VEP-derived information such as gene
impact, symbol, and allele frequency.

• Structural Transformations: Transforms the data by flattening the VEP information
and structuring it for efficient querying.

Output Generation
For each processed VCF, the following outputs are generated:

• MatrixTable Storage: The annotated MatrixTable is optionally saved in a structured
directory based on the disease classification.

• Tabular Output: A TSV file containing processed and filtered data is created, which
includes critical genomic annotations and patient information.

8.2.3 Data Aggregation for Positive and Negative Groups

Objective:
Aggregate processed data into separate TSV files for positive and negative groups, applying
stringent mutation format validation and matching based on phenotypic details.

Implementation:

Regex and Mutation Validation
The system uses regular expressions to verify and match mutation formats within TSV files:
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• Mutation Format Check: Validates if the mutation string in each file adheres to a
predefined format (e.g., “NM ####.##:c.*”).

• Gene and Mutation Extraction: Extracts gene names and specific mutation details from
mutation strings for further processing.

Data Aggregation Logic
Data from individual processed files is aggregated based on their classification into positive or
negative groups:

• File Reading and Processing:

– Reads individual TSV files from specified directories for both positive and negative
groups.

– Extracts patient codes from filenames to retrieve corresponding phenotype data.
– Adds patient codes to DataFrame for tracking and aggregation.

• Mutation Matching and Aggregation:

– Applies regex to match mutations listed in the phenotype data with those in the TSV
files.

– Aggregates files where mutations match the phenotype descriptions, ensuring that
gene symbols (if provided) and mutations correspond accurately.

– Handles cases where mutations need to be partially matched or considered for
validation due to high impact.

Output Generation
Creates aggregated TSV files for both positive and negative groups:

• Negative Group Aggregation: Combines all data for the negative group into a single
TSV file, saving it to the specified directory.

• Positive Group Aggregation: Aggregates matched entries for the positive group and
saves the compiled data in a designated TSV file.

• Validation Group Consideration: Handles entries that do not match expected mutations
but are significant enough to warrant further validation.

8.2.4 Preparing Datasets for Machine Learning

Objective:
Prepare and preprocess TSV files for machine learning by selecting relevant columns, encoding
features, handling missing values, and scaling numerical data.

Implementation:

Data Loading
Data is loaded from TSV files using pandas, with specific settings to handle NA values and
optimize memory usage.

Preprocessing Steps
The preprocessing function includes the following steps to ensure data quality and readiness for
machine learning models:
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• Feature Selection: Filters the dataset to include only relevant columns such as genomic
features and quality metrics.

• Impact Encoding: Converts categorical descriptions of gene impact into numerical codes
to facilitate model interpretation.

• Chromosome Encoding: Applies label encoding to chromosome identifiers to convert
them into a machine-readable format.

• Handling Missing Data:

– Detects and reports missing values in key features like read depth (DP).

– Applies median imputation to handle missing values robustly.

• Feature Scaling: Standardises features to have zero mean and unit variance, particularly
important for algorithms sensitive to feature magnitude.

• Log Transformation: Applies a log transformation to allele frequency metrics to
normalise the distribution.

Dynamic File Processing
Automates the processing of TSV files within a specified directory:

• Directory Scanning: Identifies files intended for machine learning preparation.

• Data Transformation and Saving: Processes each file according to the defined
preprocessing steps and saves the output to designated subdirectories.

8.2.5 Dividing Data into Training, Testing, and Validation Sets

Objective:
Divide the processed data into balanced training, testing, and validation sets to ensure robust
model training and evaluation.

Implementation:

Data Loading
The system dynamically loads processed data from designated sub-directories for positive,
negative, and validation groups:

• Loading Mechanism: Identifies and aggregates TSV files from each group’s scaled
directory, appending group labels for easy identification.

Dataset Preparation
Prepares the datasets by ensuring balanced class distribution and splitting data according to
predefined proportions:

• Data Splitting:

– Splits the positive group data into training and testing sets with a smaller proportion
for testing to maximise training data.
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– Samples an equivalent number of cases from the negative group to maintain balance,
ensuring equal representation in training and testing datasets.

• Validation Set Usage: Incorporates a separate validation set collected from the validation
group for model tuning and unbiased performance estimation.

Balancing and Combining Data
Combines the sampled datasets to form the final training and testing sets:

• Training Data Assembly: Concatenates balanced samples from positive and negative
training subsets to form a comprehensive training dataset.

• Testing Data Assembly: Similarly, combines balanced samples from positive and
negative testing subsets.

Output Generation
Saves the prepared datasets to the filesystem for use in machine learning training and evaluation:

• File Storage:

– Saves the training dataset to a file named ‘training set.csv‘.

– Saves the validation dataset to ‘validation set.csv‘.

– Saves the testing dataset to ‘testing set.csv‘.

8.2.6 Implementing XGBoost for Model Training and Evaluation

Objective:
Utilise XGBoost to train a machine learning model on the balanced datasets and evaluate its
performance using accuracy and feature importance metrics.

Implementation:

Data Preparation
Prepares data for XGBoost training by loading datasets and converting categorical labels into
numeric values:

• Data Loading: Loads training, validation, and testing datasets from pre-specified file
paths.

• Label Conversion: Maps group labels to numeric values, facilitating model training.

Model Configuration and Training
Configures and trains an XGBoost model using defined parameters:

• DMatrix Creation: Converts data into DMatrix format, which is optimized for XGBoost
to improve performance and efficiency.

• Parameter Setting: Defines parameters for the XGBoost model (maximum depth,
objective function, learning rate, evaluation metrics and random state)
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• Model Training: Trains the model using the training and validation datasets, tracking
performance through each iteration.

Evaluation and Visualisation
Evaluate the model’s performance on the testing dataset and visualise important metrics:

• Accuracy Calculation: Computes the accuracy of the model predictions against the
actual labels in the testing dataset.

• Feature Importance: Visualises the importance of different features used in the model
to understand their impact on predictions.

• Decision Tree Visualisation: Displays the structure of the first ten trees in the model,
providing insights into the decision-making process.

Output Generation
Generates and displays output related to the model’s performance and key insights:

• Accuracy Reporting: Prints the accuracy of the model on the test data.

• Importance Plotting: Plots the importance of features using matplotlib, helping identify
the most significant predictors.

• Tree Plotting: Plots decision trees to visualise how different features and thresholds are
used to make predictions.

8.2.7 Model Evaluation and Cross-Validation with XGBoost

Objective:
Evaluate the performance of the XGBoost model using a comprehensive set of metrics,
including accuracy, precision, recall, F1 score, and ROC AUC . Further, assess the model’s
robustness through cross-validation.

Implementation:

Data Loading and Preparation
Loads the prepared datasets and assigns appropriate numeric labels to different groups for model
training and testing:

• Data Loading: Reads the training, validation, and testing datasets from predefined file
paths.

• Label Assignment: Maps categorical group labels to numeric codes to facilitate the use
in the model.

Model Training and Prediction
Trains an XGBoost classifier on the training data and predicts labels for the test dataset:

• Feature and Label Separation: Identifies features and labels within the datasets for use
in training and testing.
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• XGBoost Training: Configures and trains the XGBoost model using defined parameters
like max depth and random state.

• Predictions: Generates predictions for the test dataset to evaluate model performance.

Performance Metrics
Calculates and prints various performance metrics to assess the effectiveness of the model:

• Accuracy, Precision, Recall, F1 Score: Measures the overall accuracy, weighted
precision, recall, and F1 score.

• ROC AUC Score: Computes the area under the receiver operating characteristic curve
to evaluate the trade-offs between true positive rate and false positive rate.

• Confusion Matrix: Analyses the true positives, false positives, true negatives, and false
negatives to derive sensitivity and statistical power.

Cross-Validation
Performs cross-validation to ensure the model’s consistency and reliability across different
subsets of the dataset:

• Scoring Metrics: Uses multiple scoring metrics such as accuracy, weighted precision,
recall, F1, and ROC AUC .

• Results Analysis: Provides a summary of cross-validation results, including mean scores
and standard deviations for each metric.
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A XGBoost Decision Tree

Figure A.1: XGBoost Decision Tree
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B Source Code

B.1 Source Code

This section provides the source code used for parsing the phenotypes file and extracting
relevant data.

B.1.1 Parsing Phenotypes File

The following Python code parses the phenotypes file to extract e-code, disease, and findings:

import pandas as pd
import re

def extract_nm_identifiers(expression):
if pd.isna(expression):

return []
else:

# Extract NM and other identifiers using regex
return re.findall(r'(?:LRG_\d+t\d+|NM_\d+\.\d+)(?::c\.[ˆ\s,]+)?',
expression)

def parse_phenotype_file_HGSV(filepath, additional_nucleotide=True):
# Load data
data = pd.read_csv(filepath, sep='\t', encoding='utf-8')

# Create a dictionary to store extracted data
extracted_data = {}

# Iterate over rows
for index, row in data.iterrows():

e_code = row['E_code']
disease = row['Disease']
symbol = row['#Symbol']
nucleotide_expression = row['NucleotideExpression']
additional_nucleotide_expressions = row['Additional_
NucleotideExpressions']

# Extract NM identifiers
nm_identifiers = extract_nm_identifiers(additional_nucleotide_
expressions)

# Ensure unique and ordered identifiers to avoid duplication
unique_identifiers = sorted(set(nm_identifiers), key=lambda x:
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x.split(':c.')[1] if ':c.' in x else x)

# Store the extracted data, changing from list to tuple
if unique_identifiers and additional_nucleotide:

extracted_data[e_code] = (disease, symbol, nucleotide_
expression, *unique_identifiers)

else:
extracted_data[e_code] = (disease, symbol, nucleotide_
expression)

return extracted_data

file_path = '/mnt/sdb/markus-bsc-thesis-data/cleaned-HGSV-phenotype-
globals-tshc-7500.tsv'
phenotype_data = parse_phenotype_file_HGSV(file_path, True)

# Print only the first 20 entries from the extracted data
for i, (e_code, info) in enumerate(phenotype_data.items()):

if i >= 20:
break

print(f"{e_code}: {info}")

Listing B.1: Parse phenotypes file

B.1.2 Classify Disease and Data Parsing Functions

The following Python code defines functions for classifying disease and parsing data values:

def classify_disease(disease, position):
if disease == 'RV' and (position != 'NA' and position != 'NEG'):

return 'positive-group-RV'
else:

return 'negative-group'

def parse_empty(text):
"""Converts an empty string to a missing value, otherwise converts to
integer."""
return hl.if_else((text == "") | hl.is_missing(text) |
˜text.matches(r\"\d+"), hl.missing(hl.tint32), hl.int32(text))

def safe_float_parse(s):
"""Parse a float safely, return None if parsing fails due to non-
numeric string."""
return hl.if_else(hl.is_defined(s) & s.matches(r'ˆ-?\d*(\.\d+)?$'),
hl.float64(s), hl.missing(hl.tfloat64))

def parse_to_int32(text):
return hl.if_else((text == "") | (text == "null"),
hl.missing(hl.tint32), hl.int32(text))

def parse_to_float64(text):
# This regex will match numbers including integers, floats, and also
consider negative values
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return hl.if_else(hl.is_defined(text) & text.matches(r'ˆ-?\d*\.?\d+
(?:[Ee][-+]?\d+)?$'), hl.float64(text), hl.missing(hl.tfloat64))

def safe_index(split_list, index, default=None):
try:

return split_list[index]
except IndexError:

return default

Listing B.2: Classify disease and data parsing functions

B.1.3 Parsing and Extracting Data from CSQ Strings

The following Python code demonstrates parsing of CSQ strings to extract relevant genomic
data such as impact, gene symbol, HGNC ID, maximum allele frequency, NM accession
numbers, mutation notations, and alleles.

def parse_csq_final(csq_list, alleles_list):
parsed_data = []
for csq, alleles in zip(csq_list, alleles_list):

# Handle the case where csq is a list and not a string
csq_str = '|'.join(csq) if isinstance(csq, list) else csq
# Join list into a single string if it's a list
csq_str = csq_str.strip('["]') if csq_str else csq_str
# Ensure csq_str is not None before calling strip
parts = csq_str.split("|") if csq_str else []

impact = parts[0] if len(parts) > 0 else "Unknown"
symbol = parts[1] if len(parts) > 1 else "Unknown"
hgnc_id = parts[2] if len(parts) > 2 and parts[2].isdigit()
else None
max_af = float(parts[3]) if len(parts) > 3 and re.match
(r'ˆ-?\d*\.?\d+(?:[Ee][-+]?\d+)?$', parts[3]) else 0

nm_matches = ", ".join(re.findall(r'NM_\d+\.\d+', csq_str))
c_notations = ", ".join(

[notation.split(':')[-1] for notation in re.findall
(r'NM_\d+\.\d+:c\.[\d+-]+[ACTG]>[ACTG]', csq_str)])

# Handle the case where alleles might also be a list
alleles_str = '|'.join(alleles) if isinstance(alleles, list)
else alleles
alleles_str = alleles_str.strip('[]').replace('"', '').
replace(' ', '') if alleles_str else alleles_str

parsed_data.append({
"IMPACT": impact,
"SYMBOL": symbol,
"HGNC_ID": hgnc_id,
"MAX_AF": max_af,
"NM_STRING": nm_matches,
"MUTATIONS": c_notations,
"alleles": alleles_str

})
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return parsed_data

Listing B.3: Classify disease and data parsing functions

B.1.4 Processing VCF Files and Annotating Genomic Data

The following Python code demonstrates how to process VCF (Variant Call Format) files,
convert them to Hail MatrixTable format, and annotate them with relevant genomic data such as
impact, gene symbol, HGNC ID, maximum allele frequency, and more. The code also includes
filtering and exporting the processed data to TSV files.

def vcfs_to_matrixtable(source, phenotype_data, base_destination,
write=True,

log_file='/home/markus/gen-toolbox/output/processed_vcfs_
log.tsv'):

files = []

if os.path.isdir(source):
files = [os.path.join(source, f) for f in os.listdir(source)

if f.endswith('.vcf') or f.endswith('.vcf.gz')]
elif os.path.isfile(source) and (source.endswith('.vcf')
or source.endswith('.vcf.gz')):

files.append(source)
else:

raise ValueError("Invalid path or file type.
Must be a directory or a VCF file.")

hl.init(default_reference='GRCh37') # Initialize Hail
contig_recoding = {f"chr{i}": str(i) for i in range(1, 23)}
contig_recoding.update({"chrX": "X", "chrY": "Y"})

log_entries = []
processed_vcfs = []

# Import and annotate files in a loop
try:

for vcf in tqdm(files, desc="Processing VCFs"):

patient_code = os.path.basename(vcf).split('_')[0]
phenotype_info = phenotype_data.get(patient_code, ("NA", "NA"))

disease, position = phenotype_info
group = classify_disease(disease, position)

destination = os.path.join(base_destination, group)
destination_path = os.path.join(destination,
os.path.basename(vcf).replace('.vcf', '.mt'))
tsv_output_path = os.path.join(destination,
f"{patient_code}_mtoutput.tsv")

if os.path.exists(destination_path) or os.path.exists
(tsv_output_path):

print(f"Skipping {vcf}, as the output file already exists
in {destination_path}.")
log_entries.append({
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"Timestamp": datetime.now().strftime
("%Y-%m-%d %H:%M:%S"),
"VCF": vcf,
"Status": "Skipped",
"Reason": "Output file already exists",
"Path": destination_path

})
continue

if not os.path.exists(destination):
os.makedirs(destination)

mt = hl.import_vcf(vcf, force_bgz=True,
reference_genome='GRCh37', contig_recoding=contig_recoding,

skip_invalid_loci=True)
mt = mt.filter_rows(mt.alleles[1] != "*")
# Filter out star alleles
print(f"Rows before filtering: {mt.count_rows()}")
mt = mt.filter_rows((hl.len(mt.filters) == 0) |
mt.filters.contains(hl.literal("PASS")))

print(f"Rows after filtering PASS: {mt.count_rows()}")
# Parse CSQ string and annotate rows
# First, make sure `vep` contains at least one element
# Annotate rows with the `vep` field
mt = mt.annotate_rows(

vep=mt.info.CSQ.map(lambda csq: hl.struct(
IMPACT=safe_index(csq.split("|"), 0, "Unknown"),
SYMBOL=safe_index(csq.split("|"), 1, "Unknown"),
HGNC_ID=hl.if_else(safe_index(csq.split("|"), 2, "").
matches(r'ˆ-?\d+$'),

parse_to_int32(safe_index(csq.split("|"),
2)), hl.missing(hl.tint32)),

MAX_AF=parse_to_float64(safe_index(csq.split("|"),
3, "0")),

)),
CHROM=mt.locus.contig,
REF=mt.alleles[0],
ALT=mt.alleles[1]

)

# Only keep rows where `vep` is not empty
mt = mt.filter_rows(hl.len(mt.vep) > 0)
# Flatten the first struct in the `vep` array directly into
the row fields
mt = mt.transmute_rows(

IMPACT=mt.vep[0].IMPACT,
SYMBOL=mt.vep[0].SYMBOL,
HGNC_ID=mt.vep[0].HGNC_ID,
MAX_AF=mt.vep[0].MAX_AF

)
#mt.info.CSQ.show()
# Define the TSV output path using the patient code and group
df = mt.rows().flatten().to_pandas()
# Process and filter necessary fields with `parse_csq_final`
processed_data = parse_csq_final(df['info.CSQ'].tolist(),
df['alleles'].tolist())
filtered_df = pd.DataFrame(processed_data)
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# Add the columns to the DataFrame
filtered_df['CHROM'] = df['CHROM']
filtered_df['REF'] = df['alleles'].apply(lambda x: x[0])
filtered_df['ALT'] = df['alleles'].apply(lambda x: x[1]
if len(x) > 1 else None)
filtered_df['QUAL'] = df['qual']
for col in df.columns:

if col.startswith('info.') and not col.endswith('CSQ'):
filtered_df[col.split('.')[1]] = df[col].apply(

lambda x: x[0] if isinstance(x, list) and
len(x) > 0 else x)

if write:
# Define the TSV output path and export
tsv_output_path = os.path.join(destination,
f"{patient_code}_mtoutput.tsv")
filtered_df.to_csv(tsv_output_path, sep='\t',
index=False)
processed_vcfs.append({'vcf': vcf, 'mt_path':
destination_path})
log_entries.append({

"Timestamp": datetime.now().strftime
("%Y-%m-%d %H:%M:%S"),
"VCF": vcf,
"Status": "Processed",
"Reason": "Successfully processed and saved",
"Path": tsv_output_path

})

finally:
hl.stop() # Stop Hail context when done
log_df = pd.DataFrame(log_entries)
log_df.to_csv(log_file, sep='\t', index=False)

return processed_vcfs, log_entries

# Example usage:
VEP_CONFIG_PATH = '/home/markus/gen-toolbox/src/config/vep_settings.json'
SOURCE_DIR = '/mnt/sdb/TSHC_data_5k'
base_destination_directory = '/mnt/sdb/markus-bsc-thesis-data'
phenotype_data = parse_phenotype_file('/mnt/sdb/phenotype-globals-tshc-
7500.tsv') # file for one result per e-code
log_entries = vcfs_to_matrixtable(SOURCE_DIR, phenotype_data,
base_destination_directory, write=True)
print(log_entries)

Listing B.4: Classify disease and data parsing functions

B.1.5 Aggregating Data to Create Positive and Negative Groups

The following Python code demonstrates how to aggregate data from multiple TSV files to
create comprehensive positive and negative group tables. It includes regex search functionalities
to identify valid mutations, extract gene and mutation information, and handle data accordingly.
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def valid_mutation_format(mutation):
""" Check if the mutation string format is valid.
Only proceed if mutation is a string. """
if not isinstance(mutation, str):

return False
pattern = re.compile(r'NM_\d+\.\d+:c.*', re.IGNORECASE)
return bool(pattern.match(mutation))

def extract_gene_and_mutation(mutation_info):
try:

gene_name, mutation_detail = mutation_info.split(':')mutation_
pattern = re.compile(r'c\.\d+[+-]?\d*(?:[GATC]>[GATC]|del[ACTG]+
|ins[ACTG]+|\d+_\d+del|\d+_\d+ins[ACTG]+)', re.IGNORECASE)
matches = mutation_pattern.search(mutation_detail.strip())
# strip to remove any leading/trailing spaces
if matches:

return gene_name, matches.group()
return gene_name, None

except ValueError:
return None, None

def aggregate_tsv_files(base_path, phenotype_dict,
process_negative_group=True, process_positive_group=True, symbol=True,
mutation=True):

negative_group_path = os.path.join(base_path, 'negative-group')
positive_group_path = os.path.join(base_path, 'positive-group-RV')
neg_dfs = []
pos_dfs = []
val_dfs = []

if process_negative_group:
neg_files = os.listdir(negative_group_path)
for file in tqdm(neg_files, desc="Processing Negative Group"):

file_path = os.path.join(negative_group_path, file)
df = pd.read_csv(file_path, sep='\t')
e_code = file.split('_')[0]
df['E_code'] = e_code
neg_dfs.append(df)

if process_positive_group:
pos_files = os.listdir(positive_group_path)
for file in tqdm(pos_files, desc="Processing Positive Group"):

file_path = os.path.join(positive_group_path, file)
df = pd.read_csv(file_path, sep='\t', low_memory=False)
e_code = file.split('_')[0]
df['E_code'] = e_code

if e_code in phenotype_dict:
_, _symbol, *mutations = phenotype_dict[e_code]
mutations = [m for m in mutations if
valid_mutation_format(m)]
if mutations: # Only proceed if there are valid mutations

subtracted_regex = None
if not mutation: # exclude mutations

mutation_regex = '|'.join(re.escape(m.split(":")[0])
for m in mutations)

else:
mutation_regex = '|'.join(re.escape(m)
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for m in mutations)
subtracted_mutation_regex = '|'.join(re.escape
(m[:-2]) for m in mutations)
# Pattern after removing last string from mutation
subtracted_regex = re.compile(subtracted_mutation_
regex, re.IGNORECASE)

regex = re.compile(mutation_regex, re.IGNORECASE)

mask = df['MUTATIONS'].astype(str).apply(lambda
x: subtracted_regex.search(x) is not None
if regex.search(x) is None and mutation else regex.
search(x) is not None)
df["nucleotide_expression"] = df["NM_STRING"] +
":" + df["MUTATIONS"] # Combine expression and mutation
df["secondary_matched"] = False

# Field to track if mutation matcches the subtracted regex pattern

if symbol and _symbol:
# If symbol is true and e_code symbol is not null

df["matched"] = (df["nucleotide_expression"].
str.contains(regex.pattern, na=False) &
(df["SYMBOL"] == _symbol))
if subtracted_regex:

df["secondary_matched"] = (df["nucleotide_
expression"].str.contains(subtracted_regex.pattern,

na=False) & (df["SYMBOL"] == _symbol))
else:

df["matched"] = df["nucleotide_expression"].
astype(str).apply(lambda x: regex.search(x)
is not None)
if subtracted_regex:

df["secondary_matched"] = df["nucleotide_
expression"].astype(str).apply(lambda
x: regex.search(x) is not None)

target_rows = df[(df["matched"] |
((df["matched"] == False) & (df["secondary_matched"]) &
(df["IMPACT"] == "HIGH")))]
# rows that match the expression
if not target_rows.empty:

df.loc[mask, 'E_code'] = e_code
pos_dfs.append(target_rows)

else:
# If no matching mutation is found, consider
it for validation group
val_dfs.append(df)

# Aggregate and save DataFrames as done previously
# Combine all DataFrames for the negative group and save
if neg_dfs:

negative_agg_df = pd.concat(neg_dfs, ignore_index=True)
#negative_agg_df.drop(["nucleotide_expression", "matched"],
inplace=True, axis=1)
negative_agg_df.to_csv(os.path.join(base_path,
'negative_group_aggregated.tsv'), sep='\t', index=False)
print("Negative group data saved successfully.")
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# Combine all DataFrames for the positive group and save if there
are any
if pos_dfs:

positive_agg_df = pd.concat(pos_dfs, ignore_index=True)
positive_agg_df.drop(["nucleotide_expression", "matched",
"secondary_matched"], inplace=True, axis=1)
positive_agg_df.to_csv(os.path.join(base_path, 'positive_group_
aggregated.tsv'), sep='\t', index=False)
print("Positive group data saved successfully.")

if val_dfs:
print("Aga siia")
validation_agg_df = pd.concat(val_dfs, ignore_index=True)
validation_agg_df.drop(["nucleotide_expression", "matched",
"secondary_matched"], inplace=True, axis=1)
validation_agg_df.to_csv(os.path.join(base_path,
'validation_group_aggregated.tsv'), sep='\t', index=False)
print("Validation group data saved successfully.")

else:
print("No data for positive group or all data were non-matching.")

def regex_search(symbol=True, mutation=True, additional_nucleotide_
expressions=True):

# Assuming phenotype_data is loaded properly
phenotype_data = parse_phenotype_file_HGSV('/mnt/sdb/markus-bsc-thesis-
data/cleaned-HGSV-phenotype-globals-tshc-7500.tsv',
additional_nucleotide_expressions)
aggregate_tsv_files('/mnt/sdb/markus-bsc-thesis-data/', phenotype_data,
process_negative_group=True, process_positive_group=True,
symbol=symbol, mutation=mutation)

regex_search(symbol=True, mutation=True, additional_nucleotide_
expressions=True)

Listing B.5: Aggregating data to create positive and negative group tables

B.1.6 Preprocessing Datasets for Machine Learning

The following Python code demonstrates how to preprocess datasets by selecting the most
relevant features and performing necessary imputation for missing values. This preprocessing
step ensures the data is ready for machine learning without scaling.

# Load data
def load_data(file_path):

df = pd.read_csv(file_path, sep='\t', na_values=['NA', 'null', ''],
low_memory=False)
return df

# Preprocessing function
def preprocess_data(df):

# Creating a copy to avoid SettingWithCopyWarning
df = df.copy()

67



# Selecting the relevant columns
relevant_columns = ['IMPACT', 'QUAL', 'DP', 'QD', 'MAX_AF']
df = df[relevant_columns]

# Impact mapping using .loc to avoid SettingWithCopyWarning
impact_mapping = {'HIGH': 0, 'MODERATE': 1, 'LOW': 2, 'MODIFIER': 3}
df.loc[:, 'IMPACT'] = df['IMPACT'].map(impact_mapping)

# Handle missing values for 'DP' (Depth of coverage)
if df['DP'].isnull().any():

print("NaN values found in DP. Imputing with median.")
dp_imputer = SimpleImputer(strategy='median')
df['DP'] = dp_imputer.fit_transform(df['DP'].values.reshape(-1, 1))

# Handle missing values for 'MAX_AF' (Maximum Allele Frequency)
if df['MAX_AF'].isnull().any():

max_af_imputer = SimpleImputer(strategy='median')
df['MAX_AF'] = max_af_imputer.fit_transform(df[['MAX_AF']])

# Handling numeric columns 'QUAL' and 'QD'
numeric_cols = ['QUAL', 'QD']
for col in numeric_cols:

if df[col].isnull().any():
print(f"NaN values found in {col}. Imputing with median.")
imputer = SimpleImputer(strategy='median')
df[col] = imputer.fit_transform(df[[col]])

return df

def process_files_dynamically(base_directory):
for file_name in os.listdir(base_directory):

if file_name.endswith('_aggregated.tsv'):
group_subfolder = None
if 'positive' in file_name:

group_subfolder = 'positive_group'
elif 'negative' in file_name:

group_subfolder = 'negative_group'
elif 'validation' in file_name:

group_subfolder = 'validation_group'

if group_subfolder:
# Create the group directory if it doesn't exist
group_directory = os.path.join(base_directory,
group_subfolder)
os.makedirs(group_directory, exist_ok=True)

# Create the scaled subdirectory within the group directory
scaled_directory = os.path.join(group_directory, 'scaled')
os.makedirs(scaled_directory, exist_ok=True)

# Define input and output file paths
input_file_path = os.path.join(base_directory, file_name)
output_file_name = 'ML_prepped_' + file_name
output_file_path = os.path.join(scaled_directory,
output_file_name)
process_and_save_file(input_file_path, output_file_path)

def process_and_save_file(input_file_path, output_file_path):
df = load_data(input_file_path)
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df_processed = preprocess_data(df)
df_processed.to_csv(output_file_path, index=False, sep='\t')
print(f"Data processed and saved to {output_file_path}")

# Example call to the function
base_directory = '/mnt/sdb/markus-bsc-thesis-data/machine-learning'
process_files_dynamically(base_directory)

Listing B.6: Preprocessing datasets for machine learning

B.1.7 Dividing Data into Training, Testing, and Validation Sets

The following Python code demonstrates how to divide the data into training, testing, and
validation sets using positive, negative, and validation groups. It also includes shuffling and
saving the datasets to ensure random distribution.

def load_data(base_dir, group_name):
tsv_dir = os.path.join(base_dir, group_name, 'scaled')
print(f"Loading data from {tsv_dir}")
files = glob(os.path.join(tsv_dir, "*.tsv"))
data_list = [pd.read_csv(file, sep='\t') for file in files]
if data_list:

data = pd.concat(data_list)
data['group'] = group_name

else:
data = pd.DataFrame()

return data

def load_all_groups(base_directory):
groups = ["positive_group", "negative_group", "validation_group"]
data_frames = {}
for group in groups:

data_frames[group] = load_data(base_directory, group)
return data_frames

def prepare_datasets(data_frames):
data_positive = data_frames["positive_group"]
data_negative = data_frames["negative_group"]
validation_data = data_frames["validation_group"]
# Using provided validation data directly
validation_data.to_csv(f"{base_directory}/validation_set.csv",
index=False)

# Combine positive and negative data, excluding validation data
combined_data = pd.concat([data_positive, data_negative])
total_positives = combined_data[combined_data['group'] ==
'positive_group'].shape[0]
total_negatives = combined_data[combined_data['group'] ==
'negative_group'].shape[0]
print(f"Combined data count: {combined_data.shape[0]} rows
(Positive: {total_positives}, Negative: {total_negatives})")

# Splitting combined data into training and testing sets (70/30 split)
train_data, test_data = train_test_split(combined_data, test_size=0.3,
random_state=42)
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# Checking if total rows in train and test match the combined data rows
total_train_test_rows = train_data.shape[0] + test_data.shape[0]
print(f"Total rows in train + test: {total_train_test_rows} rows.
Matches combined data: {total_train_test_rows == combined_data.
shape[0]}")

# Separating positive and negative data within training and testing
sets
train_pos = train_data[train_data['group'] == 'positive_group']
train_neg = train_data[train_data['group'] == 'negative_group']
test_pos = test_data[test_data['group'] == 'positive_group']
test_neg = test_data[test_data['group'] == 'negative_group']

# Calculating distributions
train_pos_pct = (train_pos.shape[0] / train_data.shape[0]) * 100
train_neg_pct = (train_neg.shape[0] / train_data.shape[0]) * 100
test_pos_pct = (test_pos.shape[0] / test_data.shape[0]) * 100
test_neg_pct = (test_neg.shape[0] / test_data.shape[0]) * 100

print(f"Distribution in training set Positive: {train_pos_pct:.2f}%,
Negative: {train_neg_pct:.2f}%")
print(f"Distribution in testing set Positive: {test_pos_pct:.2f}%,
Negative: {test_neg_pct:.2f}%")

# Ensuring both sets contain positive and negative data (following the
natural distribution)
train_data = pd.concat([train_pos, train_neg])
test_data = pd.concat([test_pos, test_neg])

print(f"Final Training set: {train_data.shape[0]} rows (Positive:
{train_pos.shape[0]}, Negative: {train_neg.shape[0]})")
print(f"Final Testing set: {test_data.shape[0]} rows (Positive:
{test_pos.shape[0]}, Negative: {test_neg.shape[0]})")
print(f"Validation set: {validation_data.shape[0]} rows")

return train_data, test_data

def shuffle_and_save(data, file_path):
# Shuffle data
column_headers = data.columns
shuffled_data = data.sample(frac=1, random_state=42)
# Save to TSV
shuffled_data.to_csv(file_path, index=False, header=column_headers)

base_directory = '/mnt/sdb/markus-bsc-thesis-data/machine-learning'
data_frames = load_all_groups(base_directory)
training_data, testing_data = prepare_datasets(data_frames)

shuffle_and_save(training_data, f"{base_directory}/training_set.csv")
shuffle_and_save(testing_data, f"{base_directory}/testing_set.csv")

Listing B.7: Dividing data into training, testing, and validation sets
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B.1.8 Training the XGBoost Model

The following Python code demonstrates how to train an XGBoost model using the
preprocessed training dataset. It includes loading the data, preparing the DMatrix objects for
XGBoost, defining the model parameters, training the model, and evaluating its performance.
Additionally, it plots feature importance and a decision tree from the trained model.

# Define the base directory and paths
base_directory = '/mnt/sdb/markus-bsc-thesis-data/machine-learning'
training_file = f"{base_directory}/training_set.csv"
validation_file = f"{base_directory}/validation_set.csv"
testing_file = f"{base_directory}/testing_set.csv"

# Function to load and prepare the data
def load_data(file_path):

data = pd.read_csv(file_path)
# Convert group to numeric labels: assuming 'positive_group' as 1,
'negative_group' as 0
label_mapping = {'positive_group': 1, 'negative_group': 0,
'validation_group': 2} # Update as per actual data
data['label'] = data['group'].map(label_mapping)
data.drop(['group'], axis=1, inplace=True)
# Remove 'group' column from features
return data

# Load datasets
training_data = load_data(training_file)
validation_data = load_data(validation_file)
testing_data = load_data(testing_file)

# Prepare XGBoost DMatrices
dtrain = xgb.DMatrix(training_data.drop('label', axis=1),
label=training_data['label'])
dval = xgb.DMatrix(validation_data.drop('label', axis=1),
label=validation_data['label'])
dtest = xgb.DMatrix(testing_data.drop('label', axis=1),
label=testing_data['label'])

# Define XGBoost model parameters
params = {

'max_depth': 7,
'objective': 'binary:logistic',
'eta': 0.1,
'eval_metric': 'logloss',
'random_state': 42

}
num_rounds = 100

# Initialize an empty dictionary to store evaluation results
evals_result = {}

# Initialize lists to store classification error for each dataset
train_error = []
val_error = []
test_error = []

# Train the model
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model = xgb.train(params, dtrain, num_rounds, evals=[(dtrain, 'train'),
(dtest, 'test')], evals_result=evals_result)

# Predictions and evaluation
predictions_proba = model.predict(dtest)
predictions = [1 if p >= 0.4 else 0 for p in predictions_proba]
accuracy = accuracy_score(testing_data['label'], predictions)
precision = precision_score(testing_data['label'], predictions)
recall = recall_score(testing_data['label'], predictions)
f1 = f1_score(testing_data['label'], predictions)
logloss = log_loss(testing_data['label'], predictions_proba)
roc_auc = roc_auc_score(testing_data['label'], predictions_proba)
# Calculate ROC AUC
pr_auc = average_precision_score(testing_data['label'], predictions_proba)
# Calculate PR AUC

print(f"Test Accuracy: {accuracy}")
print(f"Precision: {precision}")
print(f"Recall: {recall}")
print(f"F1 Score: {f1}")
print(f"Log Loss: {logloss}")
print(f"ROC AUC: {roc_auc}")
print(f"PR AUC: {pr_auc}")

# Plotting feature importance and decision tree
xgb.plot_importance(model)
fig, ax = plt.subplots(figsize=(20, 10), dpi=300)
xgb.plot_tree(model, num_trees=10, ax=ax)
plt.title('XGBoost Tree')
plt.savefig('xgb_tree_high_res.png', dpi=300)
plt.show()

Listing B.8: Training the XGBoost model

B.1.9 Enriching phenotypes file with ClinVar database

The following Python code demonstrates how to enrich a phenotypes file with additional data
from the ClinVar database. It includes loading and modifying the TSV file, extracting relevant
information, and matching it with the ClinVar variation data to retrieve the AlleleID for further
analysis.

import pandas as pd

def create_modified_tsv(input_filepath, output_filepath):
# Step 1: Load the existing TSV file
df = pd.read_csv(input_filepath, delimiter='\t', encoding='ISO-8859-1',
header=None, names=['E_code', 'Disease', 'Result'])
df['Result'] = df['Result'].fillna('NA') # Replace any NaNs in
'Result' with 'NA'
print("Original DataFrame loaded with shape:", df.shape)

# Step 2: Extract and format the NM string with position
def format_nm_string(result):

try:
# Extracting up to the comma
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result_up_to_comma = result.split(',')[0]
# Extracting the NM identifier part before the parenthesis and
mutation info after the colon
nm_part = result_up_to_comma.split(':')[0]
# This splits the NM_000051.4(ATM)
mutation_part = result_up_to_comma.split(':')[1]
# This splits the mutation part
nm_identifier = nm_part.split('(')[0]
# Removes any gene name and parenthesis
formatted_result = nm_identifier + ':' + mutation_part
# Combining them
return formatted_result

except Exception as e:
return "Parse Error\"

df['Formatted_Result'] = df['Result'].apply(format_nm_string)
print("Formatted Result extraction completed.")

# Step 3: Save the new TSV file
df.to_csv(output_filepath, sep='\t', index=False, encoding='UTF-8')
print("Modified DataFrame saved to:", output_filepath)
return df

def enrich_tsv_with_allele_id(main_tsv_path, variation_txt_path,
output_tsv_path):

# Load the main TSV file
df = pd.read_csv(main_tsv_path, delimiter='\t', low_memory=False)
print("Main DataFrame loaded with shape:", df.shape)

# Load the variation TXT file
variation_df = pd.read_csv(variation_txt_path, delimiter='\t',
low_memory=False)
print("Variation DataFrame loaded with shape:", variation_df.shape)

# Filter main DataFrame for relevant rows based on Disease and
Formatted_Result
# Using the non-null index ensures compatibility
df['Filtered'] = df.apply(lambda row: row['Disease'] == 'RV' and
row['Formatted_Result'] not in ['NA', 'NEG'], axis=1)

# Normalize NucleotideExpression in the variations DataFrame for
accurate matching
variation_df['Key_Expression'] = variation_df['NucleotideExpression'].
apply(lambda x: re.sub(r'[ˆ\w:>.]', '', x) if pd.notnull(x) else '')

# Filter variations DataFrame to include only "coding" type entries
coding_variations = variation_df[variation_df['Type'] == 'coding'].
set_index('Key_Expression')['AlleleID']

# Define a function to fetch AlleleID based on the cleaned-up
Formatted_Result
def get_allele_id(formatted_result):

key = re.sub(r'[ˆ\w:>.]', '', formatted_result)
# Clean the formatted_result for matching
return coding_variations.get(key, '')

# Apply function to get AlleleID only for filtered rows
df['AlleleID'] = df[df['Filtered']]['Formatted_Result'].
apply(get_allele_id)
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# Save the enriched DataFrame to a new TSV file
df.to_csv(output_tsv_path, sep='\t', index=False, encoding='UTF-8')
print("Enriched DataFrame saved to:", output_tsv_path)
return df

output_df = enrich_tsv_with_allele_id(
'/mnt/sdb/markus-bsc-thesis-data/HGSV-phenotype-globals-tshc-7500.tsv',
'/mnt/sdb/markus-bsc-thesis-data/hgvs4variation.txt',
'/mnt/sdb/markus-bsc-thesis-data/enriched-HGSV-phenotype-globals-tshc-
7500.tsv'

)

Listing B.9: Enriching phenotypes file with ClinVar database
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