
Tartu University

Faculty of Science and Technology

Institute of Technology

Artur Eksi

Development of a Prototype Flight Computer for KuupKulgur

Bachelor’s thesis (12 ECTS)
Computer Engineering

Supervisors:

MSc Ric Dengel
MSc Tarvi Tepandi

Tartu 2024

Abstract/Resümee

Development of a Prototype Flight Computer for KuupKulgur

With mankind’s recent resurgence in interest in the Moon, a number of lunar rovers are set to
be deployed, among these are a number of student rovers. In this light, Tartu Observatory is
developing a microrover of its own, KuupKulgur. In this body of work, a prototype on-board
flight computer is developed for the lunar rover KuupKulgur. This involved the selection of a
radiation-hardened microprocessor, the creation of a development board, and the development
of firmware and interface testing tools. Additionally, tests were performed on the interfaces.

CERCS: T120 Systems engineering, computer technology; T170 Electronics; T320 Space
technology; [1]

Keywords: KuupKulgur, lunar rover, on board computer, flight computer

Kulguri lennuarvuti väljatöötamine KuupKulgurile

Lähiajal on inimkonna huvi Kuu vastu taaselavnenud, sellega kaasnevalt on plaanitud Ku-
ule saata mitmeid kulgureid, nende hulgas ka tudengikulgureid. Hetkel arenduses olevate tu-
dengikulgurite seas on ka Tartu Observatooriumi oma mikrokulgur - KuupKulgur. Selles töö
raames arendati Kuupkulguri lennuarvuti prototüüp. See hõlmab kiirguskarastatud mikroprot-
sessori valimist, arendusplaadi loomist, manusvara ja liideste testimis-tööriista arendamist ning
liideste testimist.

CERCS: T120 Süsteemitehnoloogia, arvutitehnoloogia; T170 Elektroonika; T320 Kosmosetehnoloogia;
[1]

Märksõnad: KuupKulgur, kuukulgur, pardaarvuti, lennuarvuti

2

Contents

Resümee/Abstract 2

List of Figures 5

List of Tables 6

Abbreviations 8

1 Introduction 9
1.1 Problem Statement . 9
1.2 Objectives . 10

2 State of the Art 11
2.1 Modern Lunar Rovers . 11
2.2 Communication Protocols . 11
2.3 Rover Reliability in Space . 11
2.4 Microcontroller . 12

2.4.1 LEON . 12
2.4.2 ARM Cortex . 12

3 Methodology 14
3.1 Requirements and Constraints . 14

3.1.1 Interfaces . 14
3.1.2 Microcontroller . 14
3.1.3 Development Board . 14
3.1.4 Firmware . 15

3.2 Component Selection . 15
3.3 Development Board . 15
3.4 Firmware . 16

3.4.1 Development Environment . 16
3.4.2 Firmware Architecture . 18
3.4.3 Communication Protocol . 19
3.4.4 UART communicator tool . 20
3.4.5 Interface Tests . 20

4 The Results 21

3

5 Analysis and Discussion 22
5.1 Hardware . 22
5.2 Firmware . 22
5.3 Interfaces . 22

6 Conclusion and Future Works 23

Bibliography 25

Appendix A Communication Protocol 30

Appendix B Test Results 32

Non-exclusive license 34

4

List of Figures

1.1 Current version of the KuupKulgur Payload Demonstrator Model [13] 9

3.1 PCB constraints for the flight computer . 16
3.2 3-dimensional view of the flight computer in KiCad 17
3.3 Packet routing task architecture with a hypothetical task A 19

A.1 Communication protocol packet . 31

5

List of Tables

B.1 UART loopback test, 50 packets, 250 bytes of data per packet, 57600 Bd 32
B.2 UART loopback test, 50 packets, 1 to 32 bytes of data per packet, 57600 Bd . . 33
B.3 UART loopback test, 100 packets, 1 to 32 bytes of data per packet, 57600 Bd . 33
B.4 UART loopback test, 200 packets, 1 to 32 bytes of data per packet, 57600 Bd . 33

6

Abbreviations

ASF4 Advanced Software Framework 4. 16, 17

ASIC Application-Specific Integrated Circuit. 12

CADRE Cooperative Autonomous Distributed Robotic Exploration. 11

CAN Controller Area Network. 11, 12, 14, 15, 20–23

COTS Commercial Off the Shelf. 12, 21

CSP Cubestat Space Protocol. 11, 19

ESA European Space Agency. 12

FD Flexible Data-Rate. 12, 14, 15

FOSS Free and Open-Source Software. 15, 18

FPGA Field-programmable Gate Array. 12

GPIO General-Purpose Input/Output. 15

IC Integrated Circuit. 20

ICP Internal Communication Protocol. 11, 19

IDE Integrated Development Environment. 17, 18

I²C Inter-Integrated Circuit. 14, 20–23

LFBGA Low Profile Fine-Pitch Ball Grid Array. 15

LQFP Low Profile Quad Flat Package. 15

MAPP Mobile Autonomous Prospecting Platform. 11

MCU Microcontroller Unit. 13, 15, 16, 18, 21–23

MIT Massachusetts Institute of Technology. 11

NASA National Aeronautics and Space Administration. 11

PCB Printed Circuit Board. 5, 15, 16

7

RAM Random-Access Memory. 12

RFID Radio-Frequency IDentification. 20

RTOS Real-Time Operating System. 18

SMD Surface-Mount Device. 15

SPARC-V8 Scalable Processor ARChitecture version 8. 12

SPI Serial Peripheral Interface. 14, 20–23

SWD Serial Wire Debug. 16, 18

TTL Transistor-Transistor Logic. 20

UART Universal Asynchronous Receiver-Transmitter. 6, 14, 18, 20–23, 32, 33

USB Universal Serial Bus. 20

VHDL Very High Speed Integrated Circuit (VHSIC) Hardware Description Language. 12

VHSIC Very High Speed Integrated Circuit. 8, 12

VIPER Volatiles Investigating Polar Exploration Rover. 11

8

1 Introduction

With mankind’s recent resurgence in interest in visiting the moon for the first time in over 50
years, and setting up a long-term presence [2], a large number of rovers are intended to be
deployed alongside for scientific research [3–8]. Among the rovers made by space agencies
and commercial providers, there is a rising amount of small student rovers intended to fulfil
different scientific studies [7, 8].

In that light, after the development of two CubeSats, Estcube 1 and 2 [9], Tartu Observatory
has decided to start the development of a microrover of their own named KuupKulgur. It aims
to offer a standardized rover for lunar mission payloads so that those wishing to send their
scientific instruments to the Moon do not need to design the whole rover but just the payload
[10,11]. The planned rover consists of a main chassis that contains all of the electronics required
for the operation of the rover and a 2 CubeSat unit [12], or 20x10x10 cm sized payload located
on top of the rover as seen in Figure 1.1.

Figure 1.1: Current version of the KuupKulgur Payload Demonstrator Model [13]

1.1 Problem Statement
To control the chassis’ electronics and allow for communication between it and the payload, a
flight computer and supporting firmware are required.

9

1.2 Objectives
The aim of this thesis was to create a prototype flight computer for KuupKulgur. This required
the completion of several steps:

1. picking an appropriate microcontroller,

2. designing the development board,

3. setting up and developing the baseline firmware.

10

2 State of the Art

2.1 Modern Lunar Rovers
While the two active NASA rovers on Mars: Curiosity and Perseverance, are the size of cars,
most of the planned and launched modern lunar rovers are comparatively small ranging from
the size of a large personal computer, to small enough to fit in a hand [14]. These include
commercial platforms offered by private companies such as Mobile Autonomous Prospect-
ing Platform (MAPP) by Lunar Outpost, and CuberRover by Astrobotic; National Aeronau-
tics and Space Administration (NASA) projects Cooperative Autonomous Distributed Robotic
Exploration (CADRE) and Volatiles Investigating Polar Exploration Rover (VIPER); and stu-
dent rovers like Iris by Carnegie Mellon University, and AstroAnt by Massachusetts Institute of
Technology (MIT) [3–8].

Of these, the Iris rover and CubeRover platform are most similar in size and function to
the KuupKulgur rover, but as these rovers are still in development, and with restricted available
information, only limited comparisons with KuupKulgur can be made.

2.2 Communication Protocols
To facilitate communication between different parts of a spacecraft, a communication protocol
is often used on top of a physical interface. Due to the specific requirements of a project, a
custom protocol may be needed, as was the case with Estcube 2 and its Internal Communication
Protocol 2 (ICP-2) [15,16]. There have also been attempts at standardisation in the field through
the creation of a protocol that can be used on many projects, such as the Cubestat Space Protocol
(CSP), which is not physical interface specific [17]. In contrast, there are also protocols directly
tied to a physical interface, such as Controller Area Network (CAN).

2.3 Rover Reliability in Space
As a single component or subsystem failure could cause rover failure, it is important to minimize
the chances of critical failures, as on-site human intervention is unfeasible.

In firmware, this comes down to minimizing the chances of a critical error in the program
causing an irrecoverable situation. While not too difficult on small projects this becomes signif-
icantly harder as the scope and amount of contributors increases. To combat this, rules beyond
the recommended style and coding standards can be employed such as ”The Power of Ten –
Rules for Developing Safety Critical Code,” consisting of 10 generalised rules to improve the
verifiability, legibility, and reliability of safety-critical code [18]. Additionally, to prevent issues
created during runtime from transmissions over noisy interfaces, cyclic redundancy checks can
be used to verify the integrity of messages, and to repair corrupted messages [19].

11

In hardware, this comes down to combating the problems caused by the conditions of space,
such as difficulties dissipating heat, outgassing, and radiation-induced faults in semiconductors.
Of these, the reduction of radiation-induced faults such as lattice displacement, ionizing effects,
and single-event upsets is the most critical for a microcontroller as it requires bottom-up design
considerations [20].

A common approach to this has been to use more resilient manufacturing processes and
conduct thorough verification. Methods of improving fault tolerance through the use of multiple
reconfigurable cores with software verification have also been explored [21], but due to the
added software complexity, and less predictable nature, it is not considered for the KuupKulgur.

While the usage of Commercial Off the Shelf (COTS) components was sufficient in a pre-
vious Tartu Observatory project, Estcube 1 [9], it is unlikely to be sufficient for KuupKulgur.
Estcube 1 was deployed to low earth orbit where the conditions are more favourable than on
a lunar mission, as the Earth’s magnetosphere and atmosphere reduce the amount of radiation
present significantly [22].

2.4 Microcontroller
As only a small subsection of COTS microcontrollers and microprocessors have been charac-
terized or hardened against radiation-induced faults [23], it was decided to focus on radiation-
hardened space-grade products. This has led to a minimal selection of options for projects such
as KuupKulgur as many radiation-hardened processors are not publicly available [24]. The two
commonly available processor core families among radiation-hardened microprocessors and
-controllers are LEON and ARM Cortex.

2.4.1 LEON
The LEON family of soft processors based on the Scalable Processor ARChitecture version 8
(SPARC-V8) instruction set was initially developed by the European Space Agency (ESA) and
later by Frontgrade Gaisler [25]. It is defined in Very High Speed Integrated Circuit (VHSIC)
Hardware Description Language (VHDL) and can be implemented in an Application-Specific
Integrated Circuit (ASIC) or Field-programmable Gate Array (FPGA) [26,27]. While it is pos-
sible to implement a radiation-hardened LEON microprocessor on a radiation-hardened FPGA
for use in the project using the fault-tolerant variants, it’d be impractical as the architectures are
also available as ASICs.

In the author’s opinion, out of the fault-tolerant LEON processors available [28–34], the
most fitting model for the project would’ve been the GR716B microcontroller by Frontgrade
Gaisler. All of the considered models are highly radiation-resistant but the GR716B stood out
as it supports CAN Flexible Data-Rate (FD), which offers better support for large transfers over
the older 2.0 standard [35], has on-chip Random-Access Memory (RAM) and is a single core
processor, leading to less complexity than a multi-core processor. However, it still requires
external memory components, is in active development, and has not been released yet, lacks
development frameworks and would lead to a more complex development. As such it was ruled
out of becoming the flight computer’s processor.

2.4.2 ARM Cortex
The ARM Cortex family of microprocessor cores based on the ARM instruction set is developed
by Arm Limited and licensed to manufacturers, and its partners [36].

12

Out of the companies that offer radiation-hardened microcontrollers based on ARM Cortex
cores, Vorago [37] and Microchip [38] offer options designed around the more powerful Cortex-
M4 and Cortex-M7 cores [39].

Vorago’s product lineup includes four radiation-hardened microprocessors based around the
Cortex-M4 core, of which two support the required interfaces [40]. Out of the two functionally
similar Microcontroller Unit (MCU)s, the VA41630 has additional non-volatile memory at the
cost of lower resistance against radiation compared to VA41620 [41]. Microchip offers two
radiation-hardened microprocessors, of which the SAMRH71 is the newer model with several
improvements compared to the older SAMRH707 [42, 43].

Out of the two ARM Cortex options, the Microchip SAMRH71 and the Vorago VA41630,
the SAMRH71 was chosen as it has a wider community around its developer tools, preexisting
drivers, lower price, a better selection of interfaces and newer core design. However it does
have inferior radiation characteristics to both the GR716B and VA41630. [30, 41, 43–45].

13

3 Methodology

3.1 Requirements and Constraints
As this piece of work started in the early stages of KuupKulgur, the hardware needed to be easily
accessible and affordable for the prototype rover, and didn’t have to comply with space-grade
standards. However, development was carried out in a way that it would be possible to directly
apply as much work as possible from the prototype to the final space-grade rover to reduce time
and resource waste.

3.1.1 Interfaces
The required interfaces are:

1. CAN, preferably CAN-FD,

2. Inter-Integrated Circuit (I²C),

3. Serial Peripheral Interface (SPI),

4. Universal Asynchronous Receiver-Transmitter (UART).

3.1.2 Microcontroller
The primary requirements of the microcontroller are:

1. the existence of a radiation-hardened counterpart,

2. driver support for interfaces mentioned above.

3.1.3 Development Board
The primary requirements of the development board are:

1. it has to fit into the existing prototype chassis,

2. all previously mentioned interfaces have to be exposed through connectors,

3. it has to be structured and documented sufficiently to allow for continued development
by others,

4. usage and testing should be made convenient with silkscreen labels and the ability of the
board to be connected with other subsystems as a tabletop test platform.

14

3.1.4 Firmware
The primary requirements of the firmware are:

1. it has to be structured and documented sufficiently to allow for continued development
by others,

2. it needs to function as a packet router to allow communication between various subsys-
tems,

3. the reliability and speed of transfer needs to be evaluable.

3.2 Component Selection
For the non-radiation-hardened alternative MCU for SAMRH71, it was decided to use the AT-
SAMV71Q21; although not pin-compatible due to the differences in interfaces, it was the clos-
est match offered by Microchip, and had all of the required interfaces [46]. As this microcon-
troller came in two packages, 144-lead Low Profile Quad Flat Package (LQFP), and 144-ball
Low Profile Fine-Pitch Ball Grid Array (LFBGA), the former was selected as room on the board
was plentiful, and the board was intended to be hand-soldered and -verified [47].

To allow for the use of the CAN bus, an external CAN transceiver was required, for this
TJA1462AT in the SO8 package was selected as it supported Controller Area Network Flexible
Data-Rate (FD), data rates up to 8 megabits/s, and 3.3V logic level [48].

Supporting passive components were all selected in the Surface-Mount Device (SMD) 0603
package (imperial) for its relative ease of soldering, and availability in both component retailers
and onsite at Tartu Observatory [49].

All General-Purpose Input/Output (GPIO) and interface connectors were chosen to be generic
2.54mm pitch pin headers as it is the de-facto standard for prototyping and development boards
[50]. This also allows for the flexibility of replacing it with locking connectors of the same
pitch to allow for reliable use inside the prototype chassis. The power connectors were chosen
to be generic screw terminals in stock at the Tartu Observatory electronics lab.

3.3 Development Board
The schematic and Printed Circuit Board (PCB) for the development board were developed
using KiCad [51], a cross-platform Free and Open-Source Software (FOSS) electronics design
automation suite, to make further modifications and developments of the board not reliant on
paid licenses or platforms. All of the project files were added to Tartu Observatory’s internal
GitLab repository.

The board’s dimensions were determined by the mechanical constraints of the chassis and
the existing electronics stack, which led to a generously sized 96mm by 96mm rounded square
shape with four fixed location mounting holes as seen in Figure 3.1. As space on the board was
plentiful, and this version was intended to be used in the prototype rover, the design process
followed general PCB design practices and no precautions were taken to make it suitable for
use in outer space.

This led to a simple 4-layered PCB with the outermost layers intended for signals, and the
middle two for ground plane and power traces respectively. The MCU was located in the centre,
with the interfaces being situated on the right side of the board, and the GPIO, power connectors

15

Figure 3.1: PCB constraints for the flight computer

and extra ground connectors being located on the left side. A 3-dimensional rendering of the
flight computer’s development board can be seen in Figure 3.2.

For extra convenience while prototyping and testing, four square test points connected to the
ground plane were added near interface headers to connect the oscilloscope or signal analyzer
grounding crocodile clips directly to the board’s edge. To further improve the user experience,
components and the pinouts of connectors were labelled. For the purposes of debugging and
programming, a manual reset button and Serial Wire Debug (SWD) header are provided along-
side a flash erase header that can be shorted to clear firmware that has disabled the ability to
program the MCU.

Out of the three voltages used on the board, 3.3 and 5 volts are supplied by the two screw
terminals, and the third voltage, 1.8V, for the MCU’s core, is created by the MCU’s internal
voltage regulator. As only the CAN transceiver requires 5V, the rest of the board can function
with only a 3.3V supply [48].

3.4 Firmware

3.4.1 Development Environment
The processor used was compatible with the current framework offered by Microchip - Har-
mony 3, and the older framework initially developed by Atmel - Advanced Software Framework

16

Figure 3.2: 3-dimensional view of the flight computer in KiCad

4 (ASF4) [52, 53]. It was decided that for a project of this scope, register-level programming
wouldn’t be viable, and that a framework would be used. Out of the two options ASF4 was used
as there had been constant issues with the initialisation of the base project on several different
attempts using Harmony 3. In addition, it was decided to use the C programming language for
the project as it is already widely used in the field and the framework is based around it.

With ASF4, it was possible to use Atmel START - a web-based project configuring tool,
which was used to set up and generate the basis of the project [54]. The project’s base included
interface drivers, FreeRTOS [55], and clock and pin configurations. Alongside necessary com-
ponents, it also included examples and documentation, which greatly aided in the interfaces’
initial setup.

The base project generated with Atmel START can be natively imported into two of Mi-
crochip’s Integrated Development Environments (IDE), Microchip Studio [56] and MPLAB®
X IDE [57], which include the necessary compiler and support for Microchip’s programmers
and debuggers. As the author was more experienced with Microchip Studio and the Tartu Ob-
servatory had an Atmel-ICE debugger available, which is supported by the IDE, the project
was developed using Microchip Studio and the microprocessor programmed using the Atmel-
ICE debugger [58]. The Microchip Studio also supports programmers not made by Microchip,
however they are restricted to programming and do not allow for debugging inside of the IDE.

As Microchip Studio isn’t open-source software, or available on Linux, and the Atmel-

17

ICE debugger could be discontinued, alternative options were considered for all parts of the
development process. For the code development, any IDE or text editor could be used and
manually compiled using the project makefile generated with Atmel START and Arm GNU
Toolchain [59,60]. For the debugging and programming of the microcontroller, OpenOCD [61],
a FOSS debugger software, could possibly be used in conjunction with one of the supported
SWD-compatible debuggers and programmers [62]. However, these options were not tested.

Because the number of tasks meant to run in parallel on the MCU was unknown, it was
decided that an operating system would be required for flexibility. The two primary types of
operating systems to pick from were general-purpose operating systems, which are intended
for human interfacing applications, and Real-Time Operating Systems (RTOS), which provide
a deterministic execution pattern. As this application requires predictability to ensure stable
and continued operation, it was decided that an RTOS optimised for microcontrollers was to be
used [63]. Multiple options were considered for the RTOS to be used; however, since FreeRTOS
10.0.0 is already supported and available on Atmel START, it was chosen [54].

To allow for the continued development of the firmware, all of the files associated with the
firmware and testing tool were stored on Tartu Observatory’s internal GitLab and documented,
and a short guide was added on how to set up the necessary software used in the project.

3.4.2 Firmware Architecture
The flight computer is intended to serve as the central control hub for the rover that connects
several modules and sensors together. To facilitate this firmware and a communication protocol
were developed.

The method implemented is a balance between memory efficiency and security against a
task stalling all other internal communications with a large transfer, such as an image. It is
built up of three tasks, of which the interface and UART receiving tasks are used for external
interfaces while the routing task routes packets internally, as seen in Figure 3.3. The single-core
processor’s time is split between the tasks using time slice scheduling, a scheduling algorithm
that switches the task being processed every system tick, in this case, every millisecond.

For a task or function to transfer data between external interfaces or other tasks it uses
an outgoing buffer to send out packets while receiving packets from other locations into its
incoming buffer. The buffers were separated to allow for a simultaneous two-sided internal
connection while enforcing a system of one reader and one writer per buffer, which inherently
helps avoid access conflicts. If a task only needs one-way communication, then it only needs
one of the buffers; for example, the UART task only has an outgoing buffer as it is strictly for
receiving data from an outside interface and relaying it to the wider system.

For the buffers, it was decided to use ring buffers as it’s designed with principles of asyn-
chronous ’first-in, first-out’ reading and writing with a seamless wraparound at the end of the
buffer [64]. Existing solutions, such as the FreeRTOS queue, were considered. However, these
lacked some necessary functionality, such as variable item size and peeking, which would al-
low to read data without removing it from the buffer [65]. For that reason, a custom variant was
implemented. While it is intended to be used as a part of a single-reader, single-writer system,
it supports multiple readers and writers through the use of locks, also known as mutexes, which
only allow one of the requesters to access the resource at a time.

The routing of packets between the buffers is handled by the routing task, which retrieves
packets from outgoing buffers and inserts them into the incoming buffer tied to the destination
address. In addition, the task was designed to allow, with further development, for the verifica-
tion of packet integrity and subsequent requests for a re-transmission of the faulty packet.

To aid in the monitoring and debugging of the flight computer, a custom logging system

18

was implemented to send to an external device. A log can be created from anywhere (besides
the logging system itself, which could cause an infinite loop), after which it gets placed into
a logging ring buffer and then routed to the specified logging interface. It features four log
importance levels so that less relevant logs can be disabled during regular operation.

Figure 3.3: Packet routing task architecture with a hypothetical task A

3.4.3 Communication Protocol
The communication protocol is used in the routing of packets between interfaces and tasks in the
flight computer and is largely inspired by the ICP-2 used in Estcube 2 and CSP as the intended
applications are similar [15, 16]. However, neither of them could be directly used as the ICP-2
requires two additional data lines as a part of it and the CSP uses fixed size buffer elements,
severely limiting the maximum size of a packet [15, 66]. The full description of the protocol is
available in addendum A.

The protocol is intended to be a balance between low memory requirements, as memory is
limited, and low packet overhead, as most packets are projected to be short while retaining the
ability to transmit large quantities of data efficiently, such as images from a camera. To achieve
this several design choices were implemented:

1. The maximum length of packets was set to 256 bytes; this led to the packet length field
being a single byte long and set the minimum buffer size of a receiver to a reasonable
amount.

2. Packet types were limited to 4 and the length of the ID to 6 bits to keep the protocol
simple and reduce protocol overhead.

3. Packet origin and destination addresses were limited to 1 byte each to reduce the protocol
overhead.

Additionally, methods for verifying packet integrity and message types for data re-transmission
requests were added to allow for better recovery from errors.

19

3.4.4 UART communicator tool
To facilitate the receiving of logs from the device and testing interface speed and reliability, a
UART communicator script was developed using Python 3 and Universal Serial Bus (USB)-
Transistor-Transistor Logic (TTL) converter module connecting the flight computer and a per-
sonal computer [67]. It features two methods of operation: a listen mode and a testing mode.
The listening mode allows for the display of logs and data transmitted from the flight computer
over UART. The testing mode allows for the functionality verification of I²C and SPI connected
devices and for the speed and reliability testing of the UART interface with varying packet sizes
and counts.

3.4.5 Interface Tests
To verify the functionality of the interfaces, several tests were conducted with devices available
at the time and do not reflect the peripherals that are to be used on those interfaces.

The CAN interface was tested earlier in the development using the CAN driver example
with an external CAN-SPI converter and an Arduino Nano.

The I²C, SPI and UART interfaces were tested using the tester mode of the UART commu-
nicator script run on a separate computer connected to the flight computer over UART using a
USB-TTL converter module [67].

The UART interface was tested using a series of loopback packets whose origin and desti-
nation are both the UART interface. The sent packets were recorded and then compared against
the received packets. Several batches of tests were conducted varying the amount of packets
sent and the size of the packets.

The SPI interface was tested using the RC522 Radio-Frequency IDentification (RFID) reader
module based on the MFRC522 IC connected to the SPI bus [68]. The test involved sending two
command packets over UART to the SPI test device to first write a value to one of the registers
and then read it. The intended result involves the flight computer returning a reply-type packet
with the value written to the register.

The I²C interface was tested using the 3-axis accelerometer and gyroscope MPU-6050 mod-
ule [70] connected to the I²C bus. The test involved sending a command packet over UART to
the I²C interface to read from one of the device’s registers with a set value [71]. The intended
result involves the flight computer returning a reply-type packet with the set value.

20

4 The Results

Several options were considered for the radiation-hardened MCU and SAMRH71 was selected
with ATSAMV71Q21 as its COTS counterpart. Additional supporting components were se-
lected and developed into a development board compliant with the dimensional requirements of
the mission (3.1).

For the development of the firmware, a development environment was established and doc-
umented. In addition, to support further development of the project, documentation was added
to both the hardware design files and firmware source files. Firmware was developed for the de-
velopment board, and an accompanying communication protocol was defined for packet routing
and to allow access to the required interfaces.

To verify the functionality of the required interfaces a testing tool was developed and used.
The tests on the UART interface showed expected results in some test batches as seen in tables
B.1 and B.2 in appendix B, which confirms the basic functionality of the interface and routing
system. The tests on the I²C, SPI and CAN interfaces showed the expected results, as described
in the methodology, on several separate iterations which confirmed the basic functionality of
the interfaces.

21

5 Analysis and Discussion

5.1 Hardware
The selected MCU fulfils the criteria as described in the requirements and constraints section
of the methodology (3.1). Given the availability, environmental and computational constraints,
the selected radiation-hardened MCU is the best we can realistically get and initial firmware
estimates show that it is sufficient.

The designed development board fulfils the criteria as described in the requirements and
serves as a good starting point for the development of additional firmware and the next flight
computer hardware revisions.

5.2 Firmware
The firmware fulfils the criteria as described in the requirements and has been documented
and structured to serve as a good starting point for additional development. The development
environment selected has supported the development of the firmware well; however, the choice
has been partially short-sighted as the Atmel START tool is officially depreciated and, due to its
online nature, can disappear without notice. Additionally, the SAMRH71 MCU isn’t supported
by it or the Microchip Studio, meaning that to use the radiation-hardened MCU, the project
would need to be ported over to the Harmony 3 framework.

The communication protocol has been sufficient as proof of concept. However, as not all
intended functionality has been implemented and tested, it requires additional development.

5.3 Interfaces
The test results from the communicator tool’s UART test mode show that packet size does
not seem to have a significant influence on the reliability of transmission, but larger packets
do improve the overall data transmission rates, as seen in tables B.1 and B.2. Additionally, a
significant drop in reliability was detected with an increased amount of packets, resulting in
an irrecoverable failure as seen in appendix B, tables B.3 and B.4. Whether this is connected
inherently to the communication protocol, architectural or hardware issues is currently unknown
and requires further testing.

While the I²C, SPI and CAN interfaces were proven to work to some degree, the tests con-
ducted were very shallow and didn’t test all available functionality. Therefore the full function-
ality can’t be confirmed.

22

6 Conclusion and Future Works

In this thesis, the prototype flight computer for KuupKulgur was developed. This entailed the
selection of a MCU, the design of a development board and the development of firmware.

The selected hardware and designed development board fulfils the requirements and will
serve as the basis for future revisions. The established development environment for the firmware
will be sufficient for further development in the near future but will need to be changed to ac-
count for the radiation-hardened MCU. The developed firmware has been proven to work as a
packet router and will serve as the basis for additional functionality in the future. The required
interfaces were proven to function; however, the reliability of the UART interfaces was shown
to vary.

A number of possible future improvements were identified during the thesis:

• the optimisation of the routing system through the addition of a direct copy functionality
between ring buffers to reduce the amount of unnecessary copying,

• the further development of the communication standard and its implementation including
adding the verification of packet integrity and a method of requesting re-transmissions,

• additional tests for the CAN, I²C and SPI interfaces to verify full functionality and the
improvement of the reliability of the UART interface,

• the addition of an internal communication bus connector, established shortly after the
design of the development board, for direct connections with other subsystems.

23

Acknowledgements

I would like to thank my thesis supervisors, Tarvi Tepandi and Ric Dengel, for offering support
and advice throughout the project.

Additionally, I would like to thank my British friends who helped with grammar.

/ signed digitally /

24

Bibliography

[1] Common European Research Classification Scheme (CERCS)
https://wiki.ut.ee/download/attachments/16581162/Common%20European
%20Research%20Classification%20Scheme.pdf 19.05.2024, 14:06 (UTC)

[2] NASA, Artemis https://www.nasa.gov/humans-in-space/artemis/ 18.05.2024, 13:25
(UTC)

[3] NASA, ”VIPER Volatiles Investigating Polar Exploration Rover”
https://science.nasa.gov/mission/viper/ 05.05.2024, 12:41 (UTC).

[4] NASA Jet Propulsion Laboratory, ”CADRE” https://www.jpl.nasa.gov/missions/cadre
05.05.2024, 12:42 (UTC).

[5] K. Cowing, ”Lunar Outpost Delivers First Flight Model Rover in Record
Time” https://spaceref.com/newspace-and-tech/lunar-outpost-delivers-first-flight-model-
rover-in-record-time/ 05.05.2024, 12:47 (UTC).

[6] Astrobotic, ”16 Years, 11 Contracts, 1 Customizable CubeRover®”
https://www.astrobotic.com/lunar-delivery/rovers/our-history/ 05.05.2024, 12:27 (UTC).

[7] Carnegie Mellon University, https://irislunarrover.space/, 05.05.2024, 12:27 (UTC).

[8] Massachusetts Institute of Technology, ”AstroAnt Payload”
https://www.tothemoon.mit.edu/astroant 05.05.2024, 13:02 (UTC).

[9] eoPortal, ”ESTCube-1 & -2 (Estonian Student Satellite-1 & -2)”
https://www.eoportal.org/satellite-missions/estcube-1 13.05.2024, 14:42 (UTC)

[10] KuupKulgur homepage https://kuupkulgur.space/ 18.05.2024, 12:32 (UTC)

[11] M. L. Plats, ”Teadlased ja tudengid hakkavad arendama esimest Eesti kuukulgurit”
https://ut.ee/et/sisu/teadlased-ja-tudengid-hakkavad-arendama-esimest-eesti-kuukulgurit,
2023, 18.05.2024, 13:32 (UTC)

[12] NASA, ”What are SmallSats and CubeSats?” https://www.nasa.gov/what-are-smallsats-
and-cubesats/, 18.05.2024, 19:02 (UTC)

[13] S. Quazi, ”KuupKulgur, The Estonian Lunar Rover”
https://tospexgroup.space/projects/kuupkulgur/, 19.05.2024, 14:18 (UTC)

[14] N. T. Tillmann, M. Wall, ”Perseverance rover: Everything you need to know”
https://www.space.com/perseverance-rover-mars-2020-mission, 05.05.2024, 12:27
(UTC).

25

https://wiki.ut.ee/download/attachments/16581162/Common%20European%20Research%20Classification%20Scheme.pdf
https://wiki.ut.ee/download/attachments/16581162/Common%20European%20Research%20Classification%20Scheme.pdf
https://www.nasa.gov/humans-in-space/artemis/
https://science.nasa.gov/mission/viper/
https://www.jpl.nasa.gov/missions/cadre
https://spaceref.com/newspace-and-tech/lunar-outpost-delivers-first-flight-model-rover-in-record-time/
https://spaceref.com/newspace-and-tech/lunar-outpost-delivers-first-flight-model-rover-in-record-time/
https://www.astrobotic.com/lunar-delivery/rovers/our-history/
https://irislunarrover.space/
https://www.tothemoon.mit.edu/astroant
https://www.eoportal.org/satellite-missions/estcube-1
https://kuupkulgur.space/
https://ut.ee/et/sisu/teadlased-ja-tudengid-hakkavad-arendama-esimest-eesti-kuukulgurit
https://www.nasa.gov/what-are-smallsats-and-cubesats/
https://www.nasa.gov/what-are-smallsats-and-cubesats/
https://tospexgroup.space/projects/kuupkulgur/
https://www.space.com/perseverance-rover-mars-2020-mission

[15] S. Tammesoo ”Suhtlusprotokoll ESTCube-2 alamsüsteemide vaheliseks suhtluseks”,
2015, 16–21, HDL:10062/50465

[16] L. E. Lindmaa, ”Interface development for ESTCube-2 cameras and plasma brake”, 2023,
10, HDL:10062/93428

[17] The Cubesat Space Protocol homepage https://libcsp.github.io/libcsp/index.html
17.05.2024, 20:36 (UTC)

[18] M. Hinchey, ”The Power of Ten—Rules for Developing Safety Critical Code”,
Software Technology: 10 Years of Innovation in IEEE Computer, 2018, 192-200,
DOI:10.1002/9781119174240.ch10

[19] P. Koopman, T. Chakravarty, ”Cyclic redundancy code (CRC) polynomial selection for
embedded networks” International Conference on Dependable Systems and Networks,
2004, Florence, Italy, 145-154, DOI:10.1109/DSN.2004.1311885

[20] H. Bokil, ”COTS Semiconductor Components for the New Space Industry”, 2020 4th
IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Penang,
Malaysia, 2020, 1-4, DOI:10.1109/EDTM47692.2020.9117834.

[21] C. M. Fuchs, N. M. Murillo, A. Plaat, E. van der Kouwe, D. Harsono, T. P. Stefanov,
”Fault-Tolerant Nanosatellite Computing on a Budget” 2018 18th European Conference
on Radiation and Its Effects on Components and Systems (RADECS), Goteborg, Sweden,
2018, 1-8, DOI:10.1109/RADECS45761.2018.9328685

[22] G. Reitz, ”Characteristic of the radiation field in low earth orbit and in deep
space” Zeitschrift für Medizinische Physik Volume 18, Issue 4, 2008, 233-243,
DOI:10.1016/j.zemedi.2008.06.015

[23] D. Sinclair, J. Dyer, ”Radiation Effects and COTS Parts in SmallSats” 27th Annual
AIAA/USU Conference on Small Satellites, Logan, Utah, United States of America, 2013,
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2934&context=smallsat

[24] Bae Systems, ”Radiation-hardened electronics product guide”
file:///C:/Users/eksia/Downloads/Rad+Hardened+Short+Form product+guide WEB-
2.pdf 17.05.2024, 19:37 (UTC)

[25] Frontgrade Gaisler, https://www.gaisler.com/ 14.05.2024, 16:36 (UTC)

[26] P. Clarke, ”European Space Agency launches free Sparc-like core”
https://www.eetimes.com/european-space-agency-launches-free-sparc-like-core/
26.04.2024, 14:19 (UTC).

[27] Frontgrade Gaisler, ”Processors” https://www.gaisler.com/index.php/products/processors
26.04.2024, 14:32 (UTC).

[28] Microchip, ”Rad-Hard 32 bit SPARC V8 Processor AT697F”
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/Product Docu-
ments/DataSheets/doc7703.pdf 27.04.2024, 16:26 (UTC).

[29] Frontgrade Gaisler, ”GR716A - LEON3FT Microcontroller”
https://www.gaisler.com/index.php/products/components/gr716/gr716a 14.05.2024,
16:37 (UTC)

26

http://hdl.handle.net/10062/50465
 https://hdl.handle.net/10062/93428
https://libcsp.github.io/libcsp/index.html
https://doi.org/10.1002/9781119174240.ch10
https://doi.org/10.1109/DSN.2004.1311885
https://doi.org/10.1109/EDTM47692.2020.9117834
https://doi.org/10.1109/RADECS45761.2018.9328685
https://doi.org/10.1016/j.zemedi.2008.06.015
https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2934&context=smallsat
https://www.gaisler.com/
https://www.eetimes.com/european-space-agency-launches-free-sparc-like-core/
https://www.gaisler.com/index.php/products/processors
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/doc7703.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/doc7703.pdf
https://www.gaisler.com/index.php/products/components/gr716/gr716a

[30] Frontgrade Gaisler, ”GR716B - LEON3FT Microcontroller”
https://www.gaisler.com/index.php/products/components/gr716/gr716b 14.05.2024,
16:39 (UTC)

[31] Frontgrade Gaisler, ”GR712RC Dual-Core LEON3FT SPARC V8 Processor”
https://www.gaisler.com/index.php/products/components/gr712rc 14.05.2024, 16:39
(UTC)

[32] Frontgrade Gaisler, ”GR740 Quad-Core LEON4FT SPARC V8 Processor”
https://www.gaisler.com/index.php/products/components/gr740 14.05.2024, 16:40
(UTC)

[33] Frontgrade, Microprocessor UT699 product description
https://www.frontgrade.com/product/ut699 14.05.2024, 16:48 (UTC)

[34] Frontgrade, Microprocessor UT700 product description
https://www.frontgrade.com/product/ut700 14.05.2024, 16:49 (UTC)

[35] K. Lennartsson, ”Comparing CAN FD with Classical CAN” https://kvaser.com/wp-
content/uploads/2016/10/comparing-can-fd-with-classical-can.pdf 17.05.2024, 20:24
(UTC)

[36] Arm limited, ”The Future is Built on arm” https://www.arm.com/company, 01.05.2024,
20:41 (UTC).

[37] Vorago Technologies, https://www.voragotech.com/ 12.05.2024, 20:19 (UTC)

[38] Microchip, https://www.microchip.com/ 12.05.2024, 20:20 (UTC)

[39] Microchip, ”Differences Between Arm® Cortex® Families”
https://developerhelp.microchip.com/xwiki/bin/view/products/mcu-mpu/32bit-
mcu/sam/arm-cortex-differences/ 14.05.2024, 15:19 (UTC)

[40] Vorago Technologies, ”Arm® Cortex®-M4” https://www.voragotech.com/arm-cortex-
m4-family, 01.05.2024, 18:22 (UTC).

[41] Vorago Technologies, ”Radiation Hardened VA416X0 32-Bit Arm® Cortex®-M4 (with
FPU) microcontroller manufactured with HARDSIL® technology offering best in class
radiation performance and latch-up immunity.” Datasheet requested from the manufac-
turer, 01.05.2024, 19:09 (UTC).

[42] Microchip, ”Rad-Hard Arm® Cortex®-M7 Microcontroller SAMRH707”
https://www.microchip.com/en-us/product/SAMRH707, 01.05.2024, 18:43 (UTC).

[43] Microchip, ”SAMRH71 Rad-Hard Arm® Cortex®-M7 Microprocessor”
https://www.microchip.com/en-us/product/SAMRH71, 01.05.2024, 18:44 (UTC).

[44] Mouser Electronics, ”VA41630-PQ176F0PBA” https://mou.sr/3QuYrdl 07.05.2024,
13:21 (UTC).

[45] Octopart, ”Microchip SAMRH71F20E-HFB-HP” https://octopart.com/samrh71f20e-hfb-
hp-microchip-148990774?r=sp 15.05.2024, 14:11 (UTC)

27

https://www.gaisler.com/index.php/products/components/gr716/gr716b
https://www.gaisler.com/index.php/products/components/gr712rc
https://www.gaisler.com/index.php/products/components/gr740
https://www.frontgrade.com/product/ut699
https://www.frontgrade.com/product/ut700
https://kvaser.com/wp-content/uploads/2016/10/comparing-can-fd-with-classical-can.pdf
https://kvaser.com/wp-content/uploads/2016/10/comparing-can-fd-with-classical-can.pdf
https://www.arm.com/company
https://www.voragotech.com/
https://www.microchip.com/
https://developerhelp.microchip.com/xwiki/bin/view/products/mcu-mpu/32bit-mcu/sam/arm-cortex-differences/
https://developerhelp.microchip.com/xwiki/bin/view/products/mcu-mpu/32bit-mcu/sam/arm-cortex-differences/
https://www.voragotech.com/arm-cortex-m4-family
https://www.voragotech.com/arm-cortex-m4-family
https://www.voragotech.com/datasheet-request
https://www.voragotech.com/datasheet-request
https://www.microchip.com/en-us/product/SAMRH707
https://www.microchip.com/en-us/product/SAMRH71
https://mou.sr/3QuYrdl
https://octopart.com/samrh71f20e-hfb-hp-microchip-148990774?r=sp
https://octopart.com/samrh71f20e-hfb-hp-microchip-148990774?r=sp

[46] Microchip, 32-bit Arm Cortex-M7 MCUs with FPU, Audio and Graphics Interfaces,
High-Speed USB, Ethernet, and Advanced Analog SAM E70/S70/V70/V71 datasheet
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/Product
Documents/DataSheets/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527.pdf
25.04.2024, 13:57 (UTC).

[47] U Choice Manufacturing Inc, ”QFP and BGA Assembly” https://uchoice.ca/qfp-and-bga-
assembly/ 25.04.2024, 14:32 (UTC).

[48] NXP, TJA1462AT CAN FD signal improvement transceiver with Standby mode datasheet
https://www.nxp.com/docs/en/data-sheet/TJA1462.pdf 25.04.2024, 13:31 (UTC).

[49] I. Poole, ”SMT / SMD Components & packages, sizes, dimensions, details”
https://www.electronics-notes.com/articles/electronic components/surface-mount-
technology-smd-smt/packages.php 25.04.2024, 14:09 (UTC).

[50] Gadgettronix, ”Common types of connectors in electronics”
https://www.gadgetronicx.com/common-types-connectors-electronics/ 25.04.2024,
15:09 (UTC).

[51] KiCad, https://www.kicad.org/ 25.04.2024, 15:13 (UTC).

[52] Microchip, ”MPLAB® Harmony v3” https://www.microchip.com/en-us/tools-
resources/configure/mplab-harmony 26.04.2024, 7:48 (UTC).

[53] Microchip, ”Introduction to ASF4” https://onlinedocs.microchip.com/pr/GUID-
2A8AADED-413E-4021-AF0C-D99E61B8160D-en-US-4/index.html 26.04.2024,
7:46 (UTC).

[54] Microchip, Atmel START https://start.atmel.com/ 26.04.2024, 7:43 (UTC).

[55] FreeRTOS, https://www.freertos.org/ 11.05.2024, 11:20 (UTC)

[56] Microchip, ”Microchip Studio for AVR® and SAM Devices”
https://www.microchip.com/en-us/tools-resources/develop/microchip-studio 14.05.2024,
23:34 (UTC)

[57] Microchip, ”MPLAB® X IDE” https://www.microchip.com/en-us/tools-
resources/develop/mplab-x-ide 14.05.2024, 23:35 (UTC)

[58] Microchip Developer Help, ”Programmers and Debuggers”
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/programmers-
and-debuggers/ 14.05.2024, 22:37 (UTC)

[59] Microchip, ”GCC Compilers for AVR® and Arm®-Based MCUs and MPUs”
https://www.microchip.com/en-us/tools-resources/develop/microchip-studio/gcc-
compilers 14.05.2024, 23:05 (UTC)

[60] Arm limited, ”Arm GNU Toolchain” https://developer.arm.com/Tools%20and%20 Soft-
ware/GNU%20Toolchain 14.05.2024, 23:12 (UTC)

[61] OpenOCD, https://openocd.org/ 14.05.2024, 23:19 (UTC)

28

https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/SAM-E70-S70-V70-V71-Family-Data-Sheet-DS60001527.pdf
https://uchoice.ca/qfp-and-bga-assembly/
https://uchoice.ca/qfp-and-bga-assembly/
https://www.nxp.com/docs/en/data-sheet/TJA1462.pdf
https://www.electronics-notes.com/articles/electronic_components/surface-mount-technology-smd-smt/packages.php
https://www.electronics-notes.com/articles/electronic_components/surface-mount-technology-smd-smt/packages.php
https://www.gadgetronicx.com/common-types-connectors-electronics/
https://www.kicad.org/
https://www.microchip.com/en-us/tools-resources/configure/mplab-harmony
https://www.microchip.com/en-us/tools-resources/configure/mplab-harmony
https://onlinedocs.microchip.com/pr/GUID-2A8AADED-413E-4021-AF0C-D99E61B8160D-en-US-4/index.html
https://onlinedocs.microchip.com/pr/GUID-2A8AADED-413E-4021-AF0C-D99E61B8160D-en-US-4/index.html
https://start.atmel.com/
https://www.freertos.org/
https://www.microchip.com/en-us/tools-resources/develop/microchip-studio
https://www.microchip.com/en-us/tools-resources/develop/mplab-x-ide
https://www.microchip.com/en-us/tools-resources/develop/mplab-x-ide
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/programmers-and-debuggers/
https://developerhelp.microchip.com/xwiki/bin/view/software-tools/programmers-and-debuggers/
https://www.microchip.com/en-us/tools-resources/develop/microchip-studio/gcc-compilers
https://www.microchip.com/en-us/tools-resources/develop/microchip-studio/gcc-compilers
https://developer.arm.com/Tools%20and%20Software/GNU%20Toolchain
https://developer.arm.com/Tools%20and%20Software/GNU%20Toolchain
https://openocd.org/

[62] OpenOCD, ”Open On-Chip Debugger: OpenOCD User’s Guide” https://openocd.org/doc-
release/pdf/openocd.pdf 14.05.2024, 23:25 (UTC)

[63] FreeRTOS, ”What is An RTOS?” https://www.freertos.org/about-RTOS.html, 01.05.2024,
14:19 (UTC).

[64] C. Dobson, ”How To Implement A Simple Circular Buffer In C”
https://medium.com/@charlesdobson/how-to-implement-a-simple-circular-buffer-in-
c-34b7e945d30e, 01.05.2024, 15:58 (UTC).

[65] FreeRTOS, ”xQueueCreate” https://www.freertos.org/a00116.html, 01.05.2024, 16:02
(UTC).

[66] ”The basics of CSP” https://libcsp.github.io/libcsp/basic.html 17.05.2024, 20:36 (UTC)

[67] Oomipood, ”USB-TTL konverter moodul 6-pin CP2102”
https://www.oomipood.ee/product/oky3411 usb ttl konverter moodul 6 pin cp2102
17.05.2024, 10:29 (UTC)

[68] Robolabor, ”RFID module RC522” https://robolabor.ee/en/wireless-modules/909-rfid-
module-rc522.html 17.05.2024, 09:18 (UTC)

[69] NXP, ”MFRC522 Standard performance MIFARE and NTAG frontend”
https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf 17.05.2024, 09:24 (UTC)

[70] Tinytronics, ”MPU-6050 Accelerometer and Gyroscope 3-Axis Module 3.3V-5V”
https://www.tinytronics.nl/en/sensors/acceleration-rotation/mpu-6050-accelerometer-
and-gyroscope-3-axis-module-3.3v-5v 17.05.2024, 10:01 (UTC)

[71] InvenSense Inc., ”MPU-6000 and MPU-6050 Register Map and Descriptions Re-
vision 4.2” https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-
Map1.pdf 17.05.2024, 10:03 (UTC)

29

https://openocd.org/doc-release/pdf/openocd.pdf
https://openocd.org/doc-release/pdf/openocd.pdf
https://www.freertos.org/about-RTOS.html
https://medium.com/@charlesdobson/how-to-implement-a-simple-circular-buffer-in-c-34b7e945d30e
https://medium.com/@charlesdobson/how-to-implement-a-simple-circular-buffer-in-c-34b7e945d30e
https://www.freertos.org/a00116.html
https://libcsp.github.io/libcsp/basic.html
https://www.oomipood.ee/product/oky3411_usb_ttl_konverter_moodul_6_pin_cp2102
https://robolabor.ee/en/wireless-modules/909-rfid-module-rc522.html
https://robolabor.ee/en/wireless-modules/909-rfid-module-rc522.html
https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf
https://www.tinytronics.nl/en/sensors/acceleration-rotation/mpu-6050-accelerometer-and-gyroscope-3-axis-module-3.3v-5v
https://www.tinytronics.nl/en/sensors/acceleration-rotation/mpu-6050-accelerometer-and-gyroscope-3-axis-module-3.3v-5v
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf

A Communication Protocol

A packet consists of a 4-byte header, 1 to 250-byte data and a 2-byte tail section A.1.

The header section contains all of the data necessary to route and process the packet:

• The type field of the packet header is used to differentiate between the four types of
messages:

1. Command - This type of message is the first message of an exchange from the
starting party, it determines the ID to be used throughout the rest of the exchange.

2. Reply - This type of message is a response to a command message and contains the
requested data or an error code.

3. Data - This type of message is used when the data to be transmitted does not fit into
one message. The command or reply message contains the first chunk of data and
every subsequent chunk is delivered in a data message with the ID incremented by
one from the previous.

4. Request - This type of message is used to request a re-transmission of a packet that
is lost in transmission or fails an integrity check.

• The ID field is primarily used to associate requests and replies, and to ensure data order
in data fields but also to allow for requested re-transmissions. It starts from 0 and loops
back to it after reaching 63.

• The destination and origin fields are used to store an 8-bit address of the recipient and
sender device or ’port’.

• The data length field is used to indicate the length of the following data section of the
payload.

The data section contains the payload of the packet and is at least one byte long but no more
than 250; if the data being transmitted is more than 250 bytes long, then it is split into several
separate messages.

The tail section reserves 2 bytes for error detection and correction such as a 16-bit cyclic
redundancy check.

This leads to a total protocol overhead of 6 bytes per packet - a relatively small amount of
extra bytes for the most common small transmissions while providing a 250 to 6 useful data to
transmitted data ratio for large transfers.

30

Figure A.1: Communication protocol packet

31

B Test Results

This appendix contains the UART interface test results from the UART communicator. All of
the tests in a group were conducted subsequently at a baud rate of 57600 Bd. The system was
only reset after a group of tests if the group had ended in an irrecoverable failure.

Table B.1 consists of a group of 10 tests, each of which had 50 packets of 250 bytes of data
to test the performance of maximum-size packets.

Tables B.2, B.3, and B.4 all consist of groups of 10 tests each, each of which contained 50,
100 and 200 packets respectively. Each packet’s data section was selected randomly to contain
between 1 and 32 bytes.

Test Packets Packets Correct Receive Receive Total Useful
iteration sent received packets time delay data sent data sent

(s) (ms) (byte) (byte)
1 50 50 50 2.306 49 12800 12500
2 50 50 50 2.267 49 12800 12500
3 50 50 50 2.293 48 12800 12500
4 50 50 50 2.328 49 12800 12500
5 50 50 50 2.334 49 12800 12500
6 50 50 50 2.338 50 12800 12500
7 50 50 50 2.284 49 12800 12500
8 50 50 50 2.318 48 12800 12500
9 50 50 50 2.309 49 12800 12500

10 50 50 50 2.241 48 12800 12500

Table B.1: UART loopback test, 50 packets, 250 bytes of data per packet, 57600 Bd

32

Test Packets Packets Correct Receive Receive Total Useful
iteration sent received packets time delay data sent data sent

(s) (ms) (byte) (byte)
1 50 49 48 2.035 10 1108 808
2 50 50 48 1.785 9 1136 836
3 50 50 49 1.389 9 1087 787
4 50 50 49 1.853 5 1050 750
5 50 50 49 1.440 8 1124 824
6 50 50 49 1.508 11 1104 804
7 50 50 49 1.627 10 990 690
8 50 50 49 1.405 9 1115 815
9 50 50 49 1.324 4 1266 966

10 50 50 49 1.246 10 1100 800

Table B.2: UART loopback test, 50 packets, 1 to 32 bytes of data per packet, 57600 Bd

Test Packets Packets Correct Receive Receive Total Useful
iteration sent received packets time delay data sent data sent

(s) (ms) (byte) (byte)
1 100 100 98 1.797 10 2297 1697
2 100 100 98 1.545 10 2110 1510
3 100 100 98 1.687 9 2271 1671
4 100 99 51 1.293 3 2297 1697
5 100 100 0 1.473 4 2274 1674
6 100 98 0 2.001 4 2146 1546
7 100 100 0 0.961 5 2274 1674
8 100 100 0 1.360 5 2170 1570
9 100 100 0 1.407 4 2293 1693

10 100 100 0 1.883 4 2309 1709

Table B.3: UART loopback test, 100 packets, 1 to 32 bytes of data per packet, 57600 Bd

Test Packets Packets Correct Receive Receive Total Useful
iteration sent received packets time delay data sent data sent

(s) (ms) (byte) (byte)
1 200 199 146 2.975 6 4453 3253
2 200 200 0 2.250 4 4656 3456
3 200 200 0 2.845 5 4783 3583
4 200 196 0 3.006 4 4433 3233
5 200 200 0 2.900 5 4616 3416
6 200 183 0 1.786 4 4478 3278
7 200 0 0 0.000 - 4456 3256
8 200 0 0 0.000 - 4642 3442
9 200 0 0 0.000 - 4394 3194

10 200 0 0 0.000 - 4379 3179

Table B.4: UART loopback test, 200 packets, 1 to 32 bytes of data per packet, 57600 Bd

33

Non-exclusive licence to reproduce thesis and
make thesis public

I, Artur Eksi

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to reproduce,
for the purpose of preservation, including for adding to the DSpace digital archives until
the expiry of the term of copyright,

“Development of a prototype flight computer for Kuupkulgur”

supervised by Ric Dengel and Tarvi Tepandi

2. I grant the University of Tartu a permit to make the work specified in p. 1 available to
the public via the web environment of the University of Tartu, including via the DSpace
digital archives, under the Creative Commons licence CC BY NC ND 3.0, which allows,
by giving appropriate credit to the author, to reproduce, distribute the work and commu-
nicate it to the public, and prohibits the creation of derivative works and any commercial
use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’ intellec-
tual property rights or rights arising from the personal data protection legislation.

Artur Eksi
20.05.2024

	Resümee/Abstract
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Problem Statement
	Objectives

	State of the Art
	Modern Lunar Rovers
	Communication Protocols
	Rover Reliability in Space
	Microcontroller
	LEON
	ARM Cortex

	Methodology
	Requirements and Constraints
	Interfaces
	Microcontroller
	Development Board
	Firmware

	Component Selection
	Development Board
	Firmware
	Development Environment
	Firmware Architecture
	Communication Protocol
	UART communicator tool
	Interface Tests

	The Results
	Analysis and Discussion
	Hardware
	Firmware
	Interfaces

	Conclusion and Future Works
	Bibliography
	Appendix Communication Protocol
	Appendix Test Results
	Non-exclusive license

