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Abstract
XR TELEOPERATION DEMO DEVELOPMENT

This thesis designs an educational real-time visual feedback teleoperation demonstration. The
importance of a good user experience is highlighted while showcasing the feasibility of using
open-source solutions such as Godot Engine version 4 for teleoperation setups.

Reviewed literature narrowed design requirements, outlining that a representative teleoperation
demonstration could provide a positive experience, intuitive movement control, direct real-time
visual feedback for teleoperation and be open-sourced, with user and video stream evaluations as
research objectives.

Employing design thinking, 'RoverXR' is iteratively developed with M5 RoverC-Pro for
movement and serving WebSocket protocol real-time Motion JPEG high-definition video from
Raspberry Pi v2.1 Camera Module via a Raspberry Pi Zero. Custom MPV player and Godot
scenes were prepared, featuring video stream playback and providing a virtual user interface on
the Meta Quest 2 headset.

User evaluation participants report a positive, engaging experience and provide helpful feedback,
showcasing the potential of low-latency, high-quality video streaming, and virtual scene
representation in teleoperation demonstrations for educational purposes.

Keywords: Teleoperation, Godot Engine, Video Streaming, Augmented Reality, Education

CERCS: P170 Computer science, numerical analysis, systems, control; T125 Automation,
robotics, control engineering
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Resümee
XR TELEOPERATSIOONI DEMO ARENDUS

Käesolevas lõputöös kavandatakse hariduslik reaalajas visuaalse tagasisidega teleoperatsiooni
demonstratsioon. Rõhutatakse hea kasutajakogemuse tähtsust, demonstreerides samal ajal avatud
lahenduste, näiteks Godot Engine (versioon 4), kasutamise võimalikkust teleoperatsioonide
ülesseadmisel.

Kirjandusülevaate põhjal kitsendati disaininõudeid, tuues välja, et representatiivne
teleoperatsiooni demonstratsioon võiks pakkuda positiivset kogemust, intuitiivset liikumise
kontrolli, otsest reaalajas visuaalset tagasisidet teleoperatsioonile ja olla avatud lähtekoodiga,
kusjuures uurimiseesmärkideks on kasutajauuring ja videovoo hindamine.

Kasutades disainimõtlemist, töötati iteratiivselt välja "RoverXR" lahendus, mis kasutab
liikumiseks M5 RoverC-Pro platvormi ja Raspberry Pi v2.1 kaameramoodulist Raspberry Pi Zero
kaudu reaalajas Motion JPEG kõrglahutusega video edastamiseks WebSocketi protokolli. Loodi
kohandatud MPV-mängija ja Godot' stseenid, mis sisaldavad videovoo taasesitust ja pakuvad
virtuaalset kasutajaliidest Meta Quest 2 peakomplektiga kasutamiseks.

Kasutajauuringu tagasiside põhjal oli kasutajatel positiivne ja kaasahaarav kogemus ning anti
kasulik tagasisidet. See tõstab esile madala latentsusega kvaliteetse voogedastuse ja virtuaalse
stseeni kujutamise potentsiaali hariduslikel eesmärkidel toimuvates teleoperatsiooni
demonstratsioonides.

Märksõna: Teleoperatsioon, Godot Engine, Video voogesitus, Liitreaalsus, Haridus

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine; T125 Automatiseerimine,
robootika, juhtimistehnika
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1 Introduction

Teleoperation allows human users to immerse into a distant or inaccessible environment to
perform complex tasks [1]. Telerobotics is a rapidly developing area of research that enables
remote operation of robots or other devices from a distance. Some solutions use first-person-view
(FPV) displays [2]–[5] or VR and game engine frameworks [6]–[11] to facilitate this. These
technologies have many potential applications in various areas, including logistics, mining,
agriculture, search and rescue, surveillance, military, space exploration, manufacturing and
healthcare [12], [13].

However, teleoperation can be a complex and challenging study area, requiring advanced
technical skills and knowledge. As such, there is a growing need for simple, hands-on
demonstrations that can introduce students and researchers to the basics of teleoperation and
inspire them to pursue further study in this field. Moreover, a well-designed teleoperation demo
can inspire and motivate students to pursue their research in this area. It may bring new and novel
ideas for improving or expanding existing demos, developing new frameworks, and
demonstrating the possibilities of teleoperation in a world of constraints and limitations.

In recent years, the University of Tartu has undertaken many works on using VR and game
engines for teleoperation or telerobotics. Sherafatian [6] explored the teleoperation of
remote-controlled toy cars in VR. Kõvask [7] developed a state-of-the-art VR driving simulation
for physical test cars using LiDAR for mapping the surrounding environment. RCSnail [14]
developed a toy rally track featuring small remote-controlled cars with onboard WiFi video
streaming capabilities. The RCSnail track was a fun public teleoperation demonstration. These
works together demonstrate the potential of teleoperation, game engines, and VR, in addition to
providing valuable insights into the challenges and opportunities of this field.

The Donkey Car open-source do-it-yourself self-driving platform for small-scale cars [15]
successfully provides a framework for developing self-driving solutions by enabling testing on a
smaller form factor and overall reducing the cost of deploying autonomous driving solutions to
real life. Sherafatian [6] and Kõvask [7] based their work on this platform, where they
highlighted areas of improvement, such as streaming quality and network architecture
optimisations.

This thesis documents the development of a low-cost, small-form-factor teleoperation
demonstration specifically designed for use during open lab events to provide students with
hands-on experience. These events are interactive gatherings, typically allowing participants to
engage in demonstrations, exhibits, and interactive activities in a collaborative and informal
setting. The developed toy teleoperation demo presented in this thesis uses affordable hardware,
including the Raspberry Pi Zero 1 W [16], M5Stack Rover C Pro [17] and Meta Quest 2 VR
HMD [18, p. 2]. The use of the smaller form factor of the Rover, which incorporates a
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holonomic and omnidirectional movement drivetrain, presents additional design challenges
compared to larger platforms like the Donkey Car.

This demo can showcase the benefits and limitations of VR, game engines with human-computer
interaction (HCI), and telerobotics in a real-world context. Finally, the developed demonstration
could help align student expectations when considering studying at the intersection of three
University of Tartu labs under the Computer Science or the Science and Technology Institutes:
Chair of Distributed Systems [19], Computer Graphics and VR Lab [20], and Intelligent Material
Systems Lab [21].

1.1 Problem Statement

Teleoperation is an important area of research in robotics and automation, but it can be
challenging for students to understand and appreciate its potential without hands-on experience.
To address this need, the main goal of this thesis is to develop an artefact which demonstrates
fundamental principles and capabilities of teleoperation clearly and engagingly.

Creating the demonstration required overcoming various design challenges, including Godot
Engine [22] streaming support, video streaming limitations, general physical constraints,
immersion and comfort. This thesis explores different video streaming solutions and
configurations to optimise the final demonstration, concluding with evaluating the presented
solution with volunteer participants.

1.2 Research Objective

Based on the problem statement, the following research objective was outlined for this thesis:

Primary objective:

Evaluate how users subjectively perceive the artefact as a teleoperation demo.

Optional objective:

Evaluate the video streaming quality of the artefact for real-time teleoperation.

The primary objective is understanding whether the developed artefact demonstrates
teleoperation clearly and engagingly. The additional optional objective provides insight into
understanding the success of the developed artefact as a teleoperation demonstration in terms of
real-time visual feedback.
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2 Background & Related Work

This chapter provides a concise overview of teleoperation research related to mobile robots. It
emphasises common trends and provides insights into what makes up a teleoperation
demonstration.

This thesis emphasises identifying common teleoperation principles, particularly those related to
visual feedback on mobile robots and autonomous vehicles. This understanding helped identify
and prioritise critical features during artefact development. Finally, the chapter explores the most
common teleoperation applications and how it is relevant to demo development and will provide
examples of industrial solutions.

2.1 Teleoperation of Mobile Robots

Moniruzzaman et al. surveyed teleoperation methods and enhancement techniques for mobile
robots [13]: enhancement of conventional teleoperation is necessary for effective real-time
teleoperation of robotic vehicles, particularly when complex tasks are needed. The term
'teleoperation' derives from the Greek word 'tele,' which translates to 'far off' or 'at a distance’. It
refers to the human capacity to sense and manipulate objects remotely. Figure 2.1 concisely
presents the critical elements of teleoperated mobile robots.

Figure 2.1: Schematic diagram of robotic teleoperation [13]. Teleoperators, or remote operators, communicate with
mobile robots using various communication channels, including radio links, satellite connections, cellular networks,
and wired or wireless Internet connections. Remote operators send commands to the mobile robot and receive visual

and non-visual feedback via a user interface.

Moniruzzaman et al. [13] reinforce that mobile robots are becoming increasingly crucial for
performing tasks that are difficult or dangerous for humans. Technology advancement for
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improved mobile robotic teleoperation and remote control is vital to enable these robots to
operate with increasing autonomy levels and in complex environments. Even platforms capable
of high levels of autonomy require some level of human monitoring and external direction.

2.1.1 Teleoperation Methods

Based on the method of teleoperated control, Fong and Thorpe (2001) [23] documented vehicle
teleoperation interfaces and classified them into three essential categories: direct teleoperation,
supervisory teleoperation, and multimodal teleoperation.

Direct teleoperation involves the teleoperator relying on visual feedback transmitted from the
remote vehicle and providing control input using traditional controllers. Supervisory
teleoperation is where the teleoperator and the operated robot share duty and control of the whole
system - the mobile robot is, in some regard, autonomous, and the operator can occasionally take
direct control. Multimodal teleoperation collects and synthesises more than one sensor cue,
providing the remote operator with a multimodal view representation of the world. This enhanced
interface helps reduce the remote operator's cognitive load [24].

Direct teleoperation is less forgiving to latency, data loss, and other communication issues than
multimodal or supervisory teleoperation. Supervisory and multimodal teleoperation methods are
more reliant on remote computing capabilities.

At the time of publication, Fong and Thorpe (2001) [23] explained that direct teleoperation was
the most common, traditional method for vehicle teleoperation. However, according to
Moniruzzaman et al. (2021) [13], supervisory control is presently the most common control
mechanism for the teleoperation of mobile robots, followed by direct teleoperation, with
multimodal approaches emerging but not yet widely used.

2.1.2 Common Teleoperation Applications

Some of the most common teleoperation applications include the teleoperation of autonomous
vehicles, machines, robots, and drones. Remote operators use teleoperation solutions in
hazardous environments such as deep sea exploration, space exploration, and nuclear power plant
maintenance and for medical purposes such as telesurgery and remote consultations [13].

Teleoperation can provide users with an immersive and interactive experience in the development
of demos. There are numerous companies and startups specialising in teleoperation. Some
examples of enterprises in this field include Voysys [25], Clevon [26], Starship [27], Ottopia [28],
Fernride [29], Seafar [30], Shadow Robot [31] and Roboauto [32]. A great example of
teleoperation in the space industry is ESA’s ESTEC Teleoperation Workcells with the Interact
Centaur robot platform [33].
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2.1.3 VR & Teleoperation

Jerald (2016) [34], in his book about VR for human-centred design, explains that VR aims to
engage users in the experience through ‘immersion’. Immersion is the technology's ability to
make the user feel present in a virtual world, but it is only one part of the VR experience. He
explains that the subjective experience of immersion is known as ‘presence’, an internal
psychological and physiological state of the user. When present, users are not aware of the
technology but instead perceive the virtual objects and characters. Users who feel highly present
consider the VR experience a place visited rather than simply perceived. Thus, presence is a
crucial aspect of the VR experience that can enhance the user's perception of the virtual world.

In their survey, Moniruzzaman et al. [13] found that VR can immerse a teleoperator into the
environment of a robotic platform with high perceptual awareness. They add that most surveyed
studies that attempted to enhance teleoperator perception through VR relied on off-the-shelf
commercial solutions or gaming tools such as the Meta Quest 2 (Figure 3.6, top left) used in this
thesis.

Additionally, Jerald (2016) [34] states in his opening remarks that when people design a VR
experience well, the results are brilliant and pleasurable experiences that go beyond what we can
do in the real world. When an experience is uncomfortable or negative, users may give up on the
product and never try it again. Thus, the quality of an experience is essential for everything, for it
determines our quality of life on a moment-by-moment basis.

In summary, teleoperation refers to the human capacity to sense and manipulate objects remotely.
While no longer the most common, the traditional method is direct visual teleoperation. This
method involves the teleoperator relying on visual feedback from the remote vehicle and
providing control input using traditional controllers. Teleoperation has numerous applications
across various industries and is relevant to developing demos in various fields. VR can immerse a
teleoperator into the environment of a robotic platform with high perceptual awareness.

Based on these findings, the developed teleoperation demonstration should enable users to sense
and manipulate objects remotely and provide real-time visual feedback. Additionally, the demo
can incorporate VR to better immerse users into the environment of the remote platform.

2.2 Teleoperation Challenges

In their paper, Tener and Lanir [24] explore the challenges and provide guidelines for
teleoperation interfaces when remotely operating autonomous vehicles. In particular, they
highlight challenges associated with remote driving of autonomous vehicles, including the lack of
physical feedback, cognitive and perception factors, video and communication quality, remote
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interaction with humans, impaired visibility, and lack of sounds. Figure 2.2 categorically depicts
the critical challenges of teleoperating remote vehicles based on the author's findings.

Figure 2.2: Based on ‘categories of teleoperation challenges’ by Tener et al. [24]. By conducting a survey and noting
observations, they extrapolated these challenges for the teleoperation of autonomous vehicles.

Tener and Lanir [24] go on to explain that the lack of physical feedback makes it difficult for
remote operators to control a vehicle, leading to nausea and dizziness. Additionally, they found
that remote operators face challenges with spatial awareness, depth perception, and the
development of mental models. In addition, the authors point out that interaction with humans is
crucial in traffic scenarios. Poor visibility and lack of sound also pose significant challenges for
the teleoperation of remote vehicles. Finally, video and communication quality affect remote
driving, leading to latency-related issues and low-quality video stitching.

Regarding network communication protocols for low-latency video streaming, WebSocket [35],
Transmission Control Protocol (TCP) [36], User Datagram Protocol (UDP) [37], and Hypertext
Transfer Protocol (HTTP) [38] have all been used for video streaming.

Also, network architecture can directly impact the quality of a teleoperation experience.
Kaknjo et al. [39] explain that latency is an inherent property of a communication channel,
regardless of the type, medium, and protocols used for the data transmission.

Video stream latency, typically measured as pixel-to-pixel delay in milliseconds, along with jitter,
the inconsistent transmission of video frames, are the two most prevalent challenges of visual
feedback teleoperation. Video quality, bitrate, and network bandwidth are other crucial factors
that affect the overall streaming quality [13].

A direct visual teleoperation demonstration should be carefully planned to provide the best
available network architecture. This includes selecting an appropriate network communication
protocol. WebSocket is an efficient and low-latency protocol for bi-directional communication
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over a single connection [40]. TCP is a reliable, connection-oriented protocol that guarantees
in-order packet delivery [41]. UDP is a connectionless protocol that provides low-latency,
best-effort packet delivery [42]. HTTP is a connectionless, widely used protocol for web-based
applications that provides high-level abstractions for data exchange [43]. The WebSocket
protocol was chosen in the development process, discussed in 3.2.1 Network Architecture.

In summary, the main challenges of teleoperation include the lack of physical feedback, cognitive
and perception factors, video and communication quality, remote interaction with humans,
impaired visibility, and lack of sounds. Based on these challenges, the developed teleoperation
demonstration should showcase these issues and provide some examples of solutions.

2.2.1 Key VR Teleoperation Challenges & Limitations

For robotic teleoperation, a virtual environment helps to create a psychological state in which
teleoperators can identify themselves as present in the virtual environment [44, p. 8].

Milgram (1997) [45], in his work exploring AR teleoperation interfaces for unstructured
environments, found that for visual feedback-based teleoperation interfaces, the need to trade-off
between frame rates, pixels per frame, bits per frame (levels of brightness or greyscale) can be a
challenge and a particular limitation of the AR headset technology used.

Jerald and Whitton (2009) [46] explored how scene-motion thresholds relate to latency for VR
HMDs. They found that for latencies below ~100ms, users tend not to perceive latency directly
but rather its indirect consequences - a static virtual scene could appear unstable in a virtual space
when users move their heads.

In his book, Jerald (2016) [34], in chapter 15 goes into great detail, explaining that latency in an
HMD-based system causes visual cues to lag behind other perceptual cues, creating sensory
conflict, which may lead to nausea and discomfort. If an HMD user observes latency combined
with head movement, the visual scene reconstruction can move incorrectly. This effect is called
“swimming”; the lagged scene movement latency-induced effect severely impedes usability [34].
Based on these and other negative effects of latency in a virtual setting, Jerald emphasises the
need for VR scene designers to carefully consider and understand latency to mitigate and
minimise its effects. Figure 2.3 highlights the cumulative effect of various delay sources in a
typical VR HMD scene.

13



Figure 2.3: Several delays contribute to total system delay. In chapter 15.4, Jerald (2016) [34] presents this figure.
End-to-end system delay is the result of individual system components' delays. Total system delay includes tracking

user gestures, running applications, rendering, displaying and synchronising these components.

In Chapter 14.1, Jerald (2016) [34] touches on the hardware challenges of VR HMDs,
highlighting physical fatigue from the prolonged physical activity of the user, mainly when the
mass of the headset is not centred correctly. In Chapter 14.2, Jerald (2016) [34] discusses the
relevance of good fit and comfort of the headset, which is important and can be a source of
discomfort and headaches if the pressure points between the HMD and the user's head are
improper. Pressure points typically occur around the eye sockets, ears, nose, forehead, and back
of the head. Loose-fitting HMDs can cause slippage, leading to skin irritation and small scene
motions. While lighter HMDs can reduce slippage, some small motions can be compensated for
by adjusting the scene to maintain stability relative to the user's eyes.

Based on these findings and observations, careful attention should be paid to user comfort when
developing or conducting VR teleoperation demonstrations and the evaluation described in
Chapter 4. In fact, during the evaluation, participants did express some HMD-related discomforts,
as described above.

2.2.2 User Interface Suggestions

In addition to outlining the challenges in teleoperating remote autonomous vehicles discussed
previously, Tener and Lanir (2022) [24] also provide several suggestions for improving the user
experience. They suggest enriching the video feed visualisation of the user interface by including
informative cues. While their research focuses on the remote operation of autonomous vehicles,
many of their suggestions also apply to mobile robots. The following suggestions [24] were
particularly interesting for this thesis.
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1. Add UI cues to bridge the physical disconnect.
They recommend adding visual cues to the user interface, indicating felt and applied forces with
appropriate visualisations, such as brake and throttle pedal applied pressures.

2. Visualise Remote Vehicles' direction based on the current position of the steering wheel.
Providing continuous feedback on vehicle trajectory based on steering wheel rotation angle is
essential. They recommend projecting the future trajectory onto the video feed, helping to reduce
remote operators' cognitive effort and improve situational awareness. They add that this can also
help improve spatial awareness by accurately depicting the vehicle’s width.

3. Add depth perception cues.
Adding visual cues using colour gradients to the video feed can help depict the movements of
traffic participants. Depicting relative movements of objects can help reduce the cognitive effort
of remote operators and further improve situational awareness.

4. Visualise network and video quality.
Video and communication quality are critical challenges of both VR and teleoperation.
To help mitigate and improve the user experience, visualising network quality, speed and video
frame rate at any time can help increase situational awareness and help prevent misinterpreting
visual information.

According to these suggestions, teleoperation demonstrations could benefit from extended user
interfaces, including various intuitive cues and information visualisations.

2.3 Summary & Design Requirements

Based on the reviewed works and listed applications, the key features of a teleoperation
demonstration should incorporate a traditional, visual feedback-based solution, which enables a
user to control a remote robot base directly. This combination is simultaneously representative of
most teleoperation solutions covered and an example of the critical principles and challenges of
teleoperation.
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Figure 2.5: The Cone of Experience. Jerald [34] VR uses many levels of abstraction, adapted from Dale, E. (1969).
Audio-Visual Methods in Teaching (3rd ed.). The Dryden Press.

In his book’s introduction, Jerald (2016) [34] explains that whether through immersive
storytelling, grasping abstract concepts, or honing practical skills, VR leverages the full potential
of human sensory capabilities and motor skills to enhance learning. Direct, purposeful
experiences provide the best basis for understanding (Figure 2.5). This helps provide further
incentive and reassurance by validating that a functional, meaningful teleoperation demonstration
could be a useful pedagogical tool, leveraging the demonstration experience to provide an
entry-level understanding of teleoperation as a subject matter.

The use of VR technology may impose additional limitations on the overall teleoperation
experience, namely concerns about the overall comfort of the headset and added latency.
However, the potential for improved immersion and enhanced situational awareness are
important factors to highlight in potential VR teleoperation demonstrations.

Finally, based on the supervisor's inputs, the solution should be accessible and freely adaptable.
This way, students, who find inspiration and drive to pursue this area, may also use provided
examples of this demonstration solution for their endeavours.

The following design requirements are presented based on the key features of direct visual
teleoperation:

1. It must provide a positive experience.
2. It must incorporate key teleoperation solution demonstrations, including:

a. capable of remote control, with intuitive and responsive movements,
b. able to transmit visual feedback in real-time, and
c. provide a VR/AR user interface.

3. It must be open-sourced, documented, easy to use and ready to build on for future work.
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An overall positive user experience is vital for demonstrating teleoperation to students.
The solution should also feature some intuitive movement control, accompanied by real-time
visual feedback, akin to traditional direct visual teleoperation methods described by Fong and
Thorpe [23], mentioned previously.
By providing a VR or AR user interface, students could directly experience the benefits of
immersion and enhanced situational awareness.

Lastly, students can access all its resources and examples freely by ensuring the demonstration is
open-sourced [47]. This helps streamline their learning process by providing free access to all
related resources, documentation and provided examples. The developed prototype is intended to
be built upon in later research works and as a teaching tool, thus requiring a permissible,
open-use license such as the MIT license [48].
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3 Design & Development

This chapter describes the process of creating the teleoperation demonstration artefact, called
‘RoverXR’, composed of hardware and software components. These work together to
demonstrate fundamental principles and capabilities of teleoperation.

The goal of the design and development process aimed to prepare a teleoperation demonstration,
as discussed in 2.3, which can help inspire students to contribute to this exciting and rapidly
growing field. The resulting artefact should be an easily replicable and adaptable solution, for use
in various educational settings, primarily for demonstration purposes.

This chapter provides descriptions of design choices and implementations. Furthermore, it
discusses the limitations and challenges encountered during the development process.

3.1 Hardware

In any teleoperation demonstration, reliable components and hardware design are crucial for
providing physical presence and control in a remote environment. The design of the hardware is
an important factor in determining the quality and responsiveness of a teleoperation system.

Throughout the development of RoverXR, I employed a design thinking approach, iterating on
multiple versions of the adapter kit for the rover base. The subsequent subsections delineate this
method, encompassing component selection and RoverXR design, culminating in a
comprehensive bill of materials.

3.1.1 Component Selection

The initial design milestone was determining the essential feature list the final solution should
incorporate. Among these, the highest priority was the capability to serve a high-quality video
stream to a VR scene. The second highest priority was to provide movement control to the whole
setup. The supervisor introduced an additional form factor criteria compared to previous works
due to a current incentive towards miniaturising teleoperation demonstrations [6], [7]. After a
quick elimination round, based on component availability and form factor, a preliminary list of
possible components was ready for a more detailed analysis.

A high-quality video stream requires a camera and accompanying networked computing unit,
with excellent documentation and packaged in a compact form factor. The comparison involved
two candidates: RPi Zero 1 W (equipped with a Pi camera module) and ESP32-CAM [49]. The
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analysis considered the features of each product, with a specific focus on evaluating their
advantages and disadvantages. Please, see Table 1 below for a breakdown of the key points
between the two options.

Table 1: Pro et Contra Comparison: RPi Zero W vs ESP32-CAM.

Raspberry Pi Zero 1 W ESP32-CAM

Pro Contra Pro Contra

+ well documented
+ hardware encoding
+ full OS
+ camera variety
+ can deploy ROS
+ low power
consumption
+ more I/O

- limited compute
- larger form factor
- excess features
- 15EUR+

+ well documented
+ low power
consumption
+ smaller form factor
+ 5EUR+

- very limited compute
- no hardware encoding
- no autofocus
- manufacturing quality
- less I/O

Ultimately, the RPi Zero 1 W was selected due primarily to its hardware encoding support,
camera module variety and a possibility of a swap-in replacement with upgraded compute
capabilities - the RPi Zero 2 W. The RPi Camera Module v2.1 [50] was selected as the video
input device for testing purposes, with a later goal to switch to the more feature-rich Camera
Module v3 [51]. In hindsight, the v3 module could have been selected from the start. Both are
well-documented and support hardware video encoding.

The M5 Stack RoverC Pro [17], a small, omnidirectional robot base, was selected as the main
rover platform for various reasons. Firstly, there was an existing incentive to miniaturise
teleoperation demonstrations, as this allows for improved transportability and accessibility
compared to previous works, including the possibility of developing autonomous driving
solutions in a scaled-down cityscape.

Secondly, the RoverC Pro was available in local stock and underutilised, making it a practical
choice. It was also an attractive option: aside from its compact size, it includes a ready-made
movement control solution and its own Li-Ion battery power source. However, the included
battery’s capacity was estimated insufficient to supply both the RoverC and the RPi Zero 1 W
long enough for a prolonged demonstration event.

As a result, a second power supply was included, dedicated to powering the RPi Zero. The
Wemos 18650 PSU [52] was selected, which provides a suitable, stable power source for the RPi
and includes essential battery charging safety features. Unfortunately, in testing, it was found that
the side 5V and 3.3V power rails were not controllable with the provided switch. To resolve this,
a breakout board with a power switch was installed to supply 5V power directly to the 5V GPIO
pins of the RPi Zero. The breakout board also serves to ease future upgrades by providing access
to the complete set of GPIO pins the RPi Zero 1 W provides. Figure 3.1 showcases the final
components used to develop the teleoperation demonstration solution.
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Figure 3.1: Final components to integrate into a teleoperation demonstration solution. Raspberry Pi Zero 1 W and
Camera Module v2.1, powered by a 18650 Battery Shield PSU, and the M5 suite: RoverC Pro and JoyC remote
controller. Two M5 StickC IoT development kits provide programmable functionalities to the Rover and remote.

Powering the RoverC and the RPi Zero independently successfully extended the overall
configuration's battery runtime. However, as the final demonstration solution also includes the
Meta Quest 2 VR HMD, with its battery power supply and runtime duration, estimating more
precisely how long the demo could last can be difficult. The RoverC’s battery would run out first,
only after about 1.5 hours of aggressive, continuous use, meaning the overall teleoperation
demonstration would be viable for at least that long before having to take a break and recharge
(Figure 3.2). However, while running user evaluations, the actual time the demo lasted was not
limited by the RoverC’s battery. Instead, surprisingly, its M5 StickC microcontroller ran out first,
just shy of the 1.5-hour time.

Figure 3.2: Battery run and recharge times per component, expressed in hours. These values are calculated based on
available manufacturer-provided specifications for battery capacities and peak load current values.

Figure 3.2 shows how long an individual battery-powered component of the teleoperation demo
would last, assuming peak load current conditions. It also demonstrates how long it takes to
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recharge each component using standard USB 2.0 ports, rated at 0.5A. The Meta Quest 2
supports quick charging, dropping the recharging time to 2.5 hours (shown above) from 7 hours
(not shown above) if using a 0.5A USB port. As all components use Lithium-Ion based batteries,
the runtime error bars show the last 20% of capacity, helping to identify a safe runtime time to
help prevent over-discharging [53], [54].

After completing the initial component selection, the next stage of the development process
involved several design iterations of integration attempts, discussed in detail in the next section.

3.1.2 RoverXR Design

The end goal of the design process was to create something like a toy for educational
teleoperation demonstration purposes - specifically, for university students. Thus, it should be
something a student could interact with, pick up, play with, explore and thoroughly investigate.

Integrating the components required a meticulous process, where rapid prototyping and design
thinking was applied to produce a single combined assembly. Simply put, RoverXR comprises a
gantry that holds a Raspberry Pi Zero 1 W, a camera and a 18650 PSU. The gantry is then
attached to the M5 RoverC Pro robot base. The gantry is a multipart structure, 3D printed from
PLA [55] filaments.

Ultimately, two rover versions were prepared, both weighing approximately 340g. Their external
dimensions are also similar, at just under 12 cm in height, 15 cm in length and 8 cm in width at
the base. Figure 3.3 showcases Rover version 1 (Rover v1) on a scale with various components
and printed test pieces, highlighting the iterative design process approach.

Figure 3.3: Printed part tests & breakout board planning. Rover v1 weighed ~342g. Rover v2’s design process
focused on the lens mount (top middle), lens placement and camera specifications, ensuring good image quality. A

breakout board with a switch was added to control the 18650 PSU (top right) power rail.

21



Rover v1’s key design features include a lightweight adapter kit design, adjustable camera mount
and good interface access. The essential design drivers included maintaining the overall small
form factor and keeping track of the centre of mass to ensure good driving performance and
stability. At the same time, the gantry's good stiffness and rigidity were priorities and minimised
overall weight. Concept brainstorming occurred in the first design iteration stage, which included
understanding the key design drivers. This phase concluded with Rover version 0, which
represented a rough sketch of the final concept layout, shown in Figure 3.4 in the bottom left,
annotated as ‘Phase I.’, also depicting the overall RoverXR design process.

Figure 3.4: Design thinking and iterative rapid prototyping approach. In developing Rover v, the first phase features
component layout brainstorming. The second acquires model files, followed by a reassessment of the layout. The
third phase adds rough component designs. Various test prints and assemblies gave insight into design issues.

Autodesk Fusion 360 [56] proved immensely powerful and significantly eased the design process
of the gantry, also called the ‘adapter mod kit’. Firstly, individual component model files had to
be prepared or sourced to begin the design. Public GrabCAD models or manufacturer-provided
specifications helped find or prepare appropriate model files whenever possible, in addition to
direct physical dimension measurements for confirmation.

The gantry’s design was gradual, following the initially sketched component layout. A secure
mounting solution was possible using the provided M3 threaded inserts on the RoverC Pro’s
chassis. The gantry was thus constructed from this point onwards, sequentially fitting and joining
components near the v0 prescribed locations. The design of an adjustable camera mounting
solution followed this, which conveniently reuses the 18650 PSU mounting holes. The RPi
Camera Module v2.1 is connected using a CSI flexible connector cable, and this cable was
intentionally routed in between the RPi Zero 1 W and the 18650 PSU circuit to reduce the risk of
entanglement or damage to the cable or its fragile connectors.

This design stage’s main focus was preventing part interference and ensuring all dimensions were
correct. After 3D printing and assembling the prototype gantry, its issues were logged, including
mismatches and misalignments to adjust. By applying the design changes, printing and then
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reassembling the gantry to the base, Rover v1 was ready. In testing the driving performance, an
unexpected handling improvement was observed compared to the stock Rover base.

Rover v1, as a prototype, helped develop and test the video streaming solution. The 5V 4A access
points of the 18650 PSU are not switchable by the board's main switch. Adding an inline switch
improved the ease of use when powering the RPi on or off. Figure 3.5 below shows this breakout
board in its final configuration, top right, and the final design iteration result, named ‘RoverXR’,
on the left, discussed below.

Figure 3.5: Assembled RoverXR, its CAD model and breakout board. The breakout board (top right) features a
switch and 2.54 male pin header pins connected to the 18650 PSU. RoverXR’s model (bottom left) incorporates
many lessons learned from Rover v1, such as elevating the gantry, adding a rear bumper and a new lens mount.

RoverXR represents a relatively small comparable update to v1. It adds a new protective rear
bumper and a heavily modified camera mount. The new mount’s careful design accommodates a
magnetic wide-angle smartphone lens kit. This kit combines a macro and wide-angle lens and a
fisheye lens. Ease of access to the M5 Stick C was also significantly improved by increasing the
clearance to the 18650 PSU circuit, thus allowing the M5 Stick C to be removed from the
assembly more easily.

Aesthetics, particularly the colour palette, were not a priority, apart from ensuring the internal
components were discernible without disassembly. Students may visually inspect the internals to
understand how RoverXR works. When asked, several persons described Rover v1’s appearance
as ‘construction-like’, pointing out the overuse of orange-coloured PLA filament. RoverXR’s
colour palette should have been orange as well. However, some of the printed parts had small
deformations. Thus a backup set of test prints was used to finalise the gantry assembly, as seen in
blue highlights in Figure 3.5 above.
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3.1.3 Bill of Materials

Table 2 below lists RoverXR’s components and their descriptions, features and costs. Note, this
does not include additional costs of assorted screws, printing filament, Meta Quest 2 VR HMD or
appropriate OpenWRT [57] router, or other infrastructure. Please, find an extended version of the
bill of materials in Appendix I, with additional component key features presented.

Table 2: RoverXR Bill of Materials.

Component Description
Cost
[EUR]

M5 Rover C Pro
Programmable Mecanum wheel omnidirectional robot base with N20 worm
gear wheel motors and servo gripping mechanism.

60

Wemos Battery Shield
18650 Battery Shield (V3) for Raspberry Pi & Arduino Affordable, portable
power supply module.

2.5

18650 Li-Ion Battery: Samsung Li-Ion 18650 cell 11

M5StickC ESP32
M5 Stick C is a mini M5 Stack, powered by ESP32.
It is a portable, easy-to-use, open-source IoT development board.

27.4

JoyC Omni-directional
Controller

Movement control extension for the M5 Stick C & Rover base. 18.2

Raspberry Pi Zero 1 W
Flexible, compact Raspberry Pi Single Board Computer.
Size: 65mm long by 30mm wide, affordable.

13.7

RPi Camera Module v2.1
High-quality camera based on Sony IMX219PQ image sensor.
Supports FHD video and still photographs.

23.65

CSI Camera Adapter Raspberry Pi Zero adapter cable to Camera CSI connector 5.12

0.67x Wide, Macro,
Fisheye Lens kit

Magnetic interlocking lens camera add-on kit 7

Totals Listed Prices - April 2023 168.57

Overall, RoverXR’s design succeeds in demonstrating a straightforward but feature-rich
teleoperation solution in a more compact and portable form factor than previously accomplished.
The projected aggregate cost for manufacturing the Rover alone is in the sub 200 EUR range,
after including the sum costs of assorted screws and filament. Finally, assembly time was
measured while assembling RoverXR, taking approximately 20 minutes from start to finish.

Thanks to the iterative design approach, ample testing was conducted to improve the success rate
of the 3D printing process. Depending on the Z layer height, printing the gantry took two to four
hours. In conclusion, if all components are at hand, it should be possible to fully prepare a
teleoperation demonstration using RoverXR within 5 hours, which includes software aspects
discussed in the next section.
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3.2 Software

RoverXR’s software component is responsible for movement, encoding and transmitting
real-time video from the RPi, decoding and rendering the received video stream on the remote
display. The software solution has two branches:

1. Embedded software running on the M5 Stick C microcontrollers for movement control.
2. An RPi-based streaming solution with an accompanying Godot Engine 4 scene featuring

custom scripts for displaying the received, streamed images.

Both are critical in ensuring that RoverXR functions as intended, and each presents unique
challenges and opportunities. Figure 3.6 illustrates these branches and their properties, such as
communication protocols.

Figure 3.6: RoverXR’s two software branches. Rover C Pro [17] and Joy C Remote [58] facilitate movement
control. The RPi [16] and its Camera [50] stream 720p 30fps MJPEG video over WebSocket at the 2.4GHz band

via an OpenWRT LAN router [59] with ~300ms latency to a Godot scene on Meta Quest 2 VR HMD [18].

This section provides an overview and descriptions of these branches' roles and functions. By the
end of this section, the reader will have a good understanding of the software side of the Rover.

3.2.1 Network Architecture

Figure 3.6 shows RoverXR’s network architecture, a vital component of any teleoperation
solution. The M5 RoverC Pro and JoyC Remote communicate using a separate UDP channel on
their independent access point network. As a result, movement control is fast, crisp and
responsive. Meanwhile, the RPi streams video over a WebSocket connection, chosen for three
main reasons:
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1. Godot Engine provides good WebSockets documentation [60]
2. Previous works successfully demonstrate video streaming using WebSockets [6]
3. WebSockets can reduce code complexity and improve performance compared to HTTP or

TCP in low-latency applications [40], [61]–[67].

For managing RoverXR’s network traffic, most commercial network routers are acceptable.
A smartphone hotspot provided convenience, portability and good performance during
RoverXR’s testing and development. However, the openWRT router [59] used during the
evaluation facilitated the best performance by providing both 2.4GHz and 5GHz bands for
communication (Figure 3.6). The RPi streamed video to the Godot scene on the VR HMD. A PC
laptop and smartphone frequently provided troubleshooting access without grossly impeding
network bandwidth.

3.2.2 Raspberry Pi Video Streaming

To develop a high-quality, low-latency video streaming solution, several solutions were
investigated, listed in Table 3. They provided examples of good practices and contributed towards
a good base subject area understanding for developing RoverXR’s real-time visual feedback
system.

Table 3: Video streaming solutions investigated.
Solution Description Comments

Dietpi [68] with
MotionEye [69]

Open source camera surveillance solution.
Video stream quality was poor due to data storage
efficiency priorities.

DroidCam OBS [70]
A plugin and Android app which helps turn a
smartphone into a web-connected,
low-latency video web PC camera.

Outstanding performance; chosen as a reference benchmark
for comparison. However, it only supports smartphones.

picamera [71]
Legacy Raspberry proprietary camera library
with excellent documentation.

Great performance but requires legacy camera support
enabled with raspi-config. Supports only Raspberry Pi
camera modules. Provides ready-made video streaming
examples.

picamera2 [72]
Libcamera-based library for the Raspberry Pi,
with excellent documentation.

Same performance as picamera, but it supports more
camera modules. Provides more advanced examples,
including several video stream servers.

raspivid [73]
A command line tool for capturing video
with a Raspberry Pi camera module.

Legacy camera based with integrated TCP and UDP
streaming solutions. The least compute intense on the RPi
Zero 1 W for video streaming.

openHD [74]
Suite for long-range video transmission,
telemetry and control. Both require additional components and very specialised

solutions for FPV drones.EZ-WiFiBroadcaster
[75]

FPV-like low latency digital data
transmission solution.

DroidCam OBS performed exceptionally well and was a benchmark for comparing latency
performance with other solutions, despite only supporting smartphones. On the RPi, raspivid was
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the most compute-efficient video streaming solution, at most placing a ~15% load on the CPU.
However, raspivid relies on legacy camera drivers. Despite natively providing TCP and UDP
streaming utilities, raspivid was less flexible or feature-rich than the slightly
CPU-load-unfriendly picamera2 library, which also ships with excellent documentation.
Ultimately, picamera2 was chosen for its ease of use and flexibility.

Aside from video streaming solutions, stream playback was also in focus. Figure 3.7 summarises
the testing process results, providing glass-to-glass latency measurements in milliseconds (lower
is better) across various video stream sources & sinks, protocols, video formats and configuration
combinations.

Figure 3.7: Video stream testing latency comparison. Vertical axis lists video stream sources & sinks. Labels show
communication protocol and video format info per test. Glass-to-glass delay (lower is better) depends on video
stream configuration combination. Red-circled configuration from the Godot AR scene measured ~300ms.

The latency data were collected leveraging the Droste effect [76], a recursive picture in which an
image appears within itself in a way that creates an infinite loop.

By looking at the recursive stopwatch images and comparing the displayed time (in milliseconds)
of several stopwatch image recursions, it is possible to estimate the glass-to-glass latency (Figure
3.8). However, this method is unreliable due to a high chance of misreading the time values.

Furthermore, single-shot measurements were used exclusively in collecting the latency data of
various video streaming solutions. The results should not be regarded as conclusive because of
the lack of average values and standard deviations. Regardless, this approach provided a fast and
straightforward solution for gauging the latency of a given video streaming configuration.
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Figure 3.8: Latency measurement examples. Handheld stopwatch (top) and browser stopwatch (bottom). Leveraging
the Droste effect and reading the millisecond dial values in recursive frames, glass-to-glass delay can be estimated.

In testing, FFmpeg [77] and MPV media player [78] were explored for video streaming playback.
FFmpeg is a free, open-source software project comprising libraries and programs for handling
video, audio, and other multimedia files and streams. At its core, the command-line FFmpeg tool
is designed to process video and audio files.

MPV player a free, open source, and cross-platform performance command-line media player,
supporting a wide range of formats, codecs and platforms, including Linux, Windows, Mac and
Android. MPVs versatility allowed for multiplatform stream playback testing and latency
measurements. In particular, various raspivid arguments were tested with MPV for remote video
playback using TCP and UDP video streaming. Please see Appendix I. (Thesis GitHub
Repository: Blueprints/Testing) for a list of tested MPV, raspivid and FFmpeg command line
arguments.

When deployed to the Quest 2, MPV (Android) provides a simple solution for video stream
playback from VR. This alone provided well-performing and high-definition direct visual
feedback when testing teleoperation with RoverXR. However, with a user interface intended for
use with smartphones, operating MPV from VR proved time-consuming and exceedingly
user-unfriendly, requiring several minutes to configure. While it is possible to devise an autostart
solution, which MPV supports, ultimately, this solution would not be scalable - it would be
challenging to add new features.
A Godot standalone environment was thus requisitioned, described in 3.2.3, to provide a more
positive user experience and facilitate a more robust user interface development framework, in
line with design requirements described in section 2.3. However, this came with new limitations
as Godot supported Theora video compression format [79], [80] exclusively at the time of
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writing. Circumventing this issue required either reencoding the video stream to Theora format
on the RPi or, somehow, in Godot or adopting an alternative strategy altogether.

Every computational step would lead to added latency. However, in testing, reencoding to Theora
from H264 using FFmpeg would also fully saturate the RPi Zero 1 W CPU. Thus, another
approach was necessary. One possible solution was to manually decode the received video stream
in Godot or, alternatively, send individual video frames and display them directly.

The latter approach worked out better, and thus Motion-JPEG [81] was chosen as the video
format because it was the easiest method to work with and understand, in line with the design
requirements outlined in section 2.3. An MJPEG extension video file is created by compressing
individual video frames as a JPEG image in a sequence [82]. JPEG files (compressed images)
start with an image marker containing the marker code hex values: ‘FF D8 FF’. JPEG files do
not include embedded file size information in the file header. However, JPEG files also feature an
ending hex value [83]: ‘FF D9’. Thus it is possible to identify individual video frames in an
MJPEG video stream by looking for these two hex values and outputting the information between
both.

In order to access the video feed, picamera and picamera2 libraries were compared. Picamera
[71] is RPi’s legacy pure Python interface to the RPi camera modules, with a BSD license. Like
raspivid, picamera requires a user to enable legacy camera support using the raspi-config tool
manually. Additionally, like raspivid, picamera exclusively supports RPi camera modules and, as
legacy software, will not receive updates in the future.

Meanwhile, picamera2 [84], the successor of picamera, does not require legacy camera support
enabled in raspi-config. The picamera2 library is based on libcamera [85], an open-source camera
and framework for Linux, Android, and ChromeOS, featuring advanced functions and supporting
many off-the-shelf USB cameras. As a result, picamera2 packs more features than picamera, such
as built-in face detection and object recognition, and offers better hardware encoding support.
Picamera2 also delivers a better image aesthetic and extends libcamera’s list of supported
cameras with RPi camera modules.

Based on the design requirements outlined in 2.3, priority was given to a good user experience.
As a result, picamera2 was identified as the more suitable camera library as it does not require
additional RPi configuration steps. Additionally, the more extensive list of supported devices,
libcamera framework foundation and promise of future support provided added appeal.

The final MJPEG WebSocket server, ‘stream_mjpeg_ws.py’, written in Python3, relies on several
libraries and their classes, including io, threading, websockets, asyncio, picamera2 and libcamera.
It comprises four components: the main server function, a video stream handler function, camera
configuration and a video stream buffer. The developed MJPEG WebSocket servers’ camera and
frame buffer solution is based on the example solution provided by the picamera2 library
‘picamera2/examples/mjpeg_server_2.py’ [72]. Please, see Appendix I. (Thesis GitHub
Repository: Blueprints/stream_mjpeg_ws.py) to learn more about the WebSocket video server.
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The camera is configured once the script is run, followed by the video buffer, using io’s
BufferedIOBase class. Finally, a server is configured and started. Once a client connects on the
appropriate port, individual video frames are sent over the connection when the memory buffer
collects a new video frame and notifies the stream server thread using threading’s Condition
class. While the described example uses an HTTP server, the approach was directly transferable
to WebSockets.

The developed 2D video stream testing Godot scene, described in 3.2.3 (Figure 3.10), can
consume a full 1920x1080 px (1080p) video stream at 30 fps. This scene was also used to
measure latency (Figure 3.7: Godot 2D). However, in testing, the AR Godot scene, described in
3.2.3, could only handle up to 1280x720 px (720p) resolution video streams before suffering
noticeable performance issues, such as severely reduced frame rates and nausea-inducing motion
tracking, rendering the user experience unacceptable.

Due to the observed computational limitations of the Meta Quest 2 and Godot AR scene, the
WebSocket MJPEG video stream was limited to 720p. This translates to 44% fewer pixels
rendered per frame than a 1080p video resolution. As a result, the latency measured at ~256 ms
was also ~62.5 % slower than the Droidcam reference benchmark at ~150 ms.

(3.1)𝑏𝑖𝑡𝑟𝑎𝑡𝑒 [𝑀𝑏𝑝𝑠] =  𝑏𝑖𝑡𝑟𝑎𝑡𝑒
𝑟𝑒𝑓

 ×  
𝑓𝑟𝑎𝑚𝑒

𝑤𝑖𝑑𝑡ℎ
×𝑓𝑟𝑎𝑚𝑒

ℎ𝑒𝑖𝑔ℎ𝑡
×𝑓𝑟𝑎𝑚𝑒

𝑟𝑎𝑡𝑒

𝑓𝑟𝑎𝑚𝑒
𝑤𝑖𝑑𝑡ℎ, 𝑟𝑒𝑓

×𝑓𝑟𝑎𝑚𝑒
ℎ𝑒𝑖𝑔ℎ𝑡, 𝑟𝑒𝑓

×𝑓𝑟𝑎𝑚𝑒
𝑟𝑎𝑡𝑒, 𝑟𝑒𝑓

The picamera2 library supports manually setting various video quality preset settings, which
directly impact compute performance and uses more network bandwidth. Its MJPEG encoder
source code [86] calculates the video stream bitrate according to equation (3.1). A set of
reference bitrates ( ) per quality preset is also provided, shown in Table 4, for a𝑏𝑖𝑡𝑟𝑎𝑡𝑒

𝑟𝑒𝑓

reference frame width ( ) of 1920 pixels, reference frame height ( )𝑓𝑟𝑎𝑚𝑒
𝑤𝑖𝑑𝑡ℎ, 𝑟𝑒𝑓

𝑓𝑟𝑎𝑚𝑒
ℎ𝑒𝑖𝑔ℎ𝑡, 𝑟𝑒𝑓

of 1080 pixels and reference frame rate ( ) of 30 fps.𝑓𝑟𝑎𝑚𝑒
𝑟𝑎𝑡𝑒, 𝑟𝑒𝑓

Table 4: Picamera2 reference bitrate at 1080p 30 fps in Mbps per JPEG quality preset.

JPEG Quality Preset Mbps

Very Low 6

Low 12

Medium 18

High 27

Very High 45
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At a very low-quality MJPEG encoding and 720p resolution at 30 fps, the configured video
stream bitrate consumes 4Mbps or 4 million bits per second of compressed video frames. During
the evaluation discussed in Chapter 4, participants, despite this, noted that the video quality was
clear, and they could see where they were going.

Finally, to further improve the user experience, I prepared an installation routine with the
supervisor's support, configuring an RPi to commence video streaming after booting up. With this
autostart feature, if correctly configured, RoverXR goes from power-on to streaming within 5
minutes.

In conclusion, several video streaming and playback solutions were compared and deployed to
gauge various setups latencies (Figure 3.7). The MPV-based concept solution left much to be
desired and requisitioned a Godot environment, which only supports the Theora video format.
The solution was to configure the RPi WebSocket MJPEG server based on the picamera2 library,
streaming 720p 30fps video at a very low JPEG quality, with a 4Mbps bitrate, due to Meta Quest
2 and Godot compute limitations.

3.2.3 Godot Engine 4 Integration

Godot Engine [22] is a free and open-source 2D and 3D game engine with native OpenXR [87]
support since the release of version 4, making it easy to develop games for various supported VR
headsets. This made it the ideal candidate, in line with the outlined design requirements discussed
in 2.3.

In preparing RoverXR’s user interface, 2D and 3D scenes were developed and deployed to the
Meta Quest 2 VR HMD. To export project scenes to the headset, Android Tools and Gradle are
used to compile the app apk file, and Android Debug Bridge (ADB) is employed to install the
compiled app scenes. All of these utilities are neatly packaged together with Godot.

GDScript [88], [89] is a dynamically typed scripting language explicitly made for Godot. Its
syntax is similar to Python's, and its main advantages are ease of use and tight integration with
the engine. A good understanding of GDScript proved to be essential throughout the development
process. It was used to develop the MJPEG WebSocket client and video stream playback in AR
and 2D scenes, described below.

Godot presents all the essential features necessary to build a VR or AR project out of the box.
However, specific game mechanics must be implemented on this foundation. While Godot makes
this relatively easy, this can be a daunting task. To streamline and extend Godot’s VR
development capabilities, the team behind Godot OpenXR has developed a toolkit called Godot
XR Tools [90] that implements many of the basic mechanics in typical AR/VR games. This
includes basic locomotion, object and user interface interactions. Godot XR Tools were designed
to support OpenXR and WebXR [91] API standards.
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Figure 3.9: WebSocket server-client video stream process diagram. Godot scene (top) connects to the RPi server
(bottom), reads incoming packets to JPEG and updates a texture. RPi serves individual picamera2 video frames.

The developed GDScript WebSocket client works as follows.
On load, the Pi2AR project scene tries to connect to the RPi video stream server over a
WebSocket connection. On the RPi, the streaming server collects video frames using the
picamera2 library [84], based on libcamera [85], to a memory buffer until the hosted WebSocket
server can send them to the connected client. Figure 3.9 illustrates the operations responsible for
transmitting individual frames from the server and receiving and displaying them in Godot.

In Godot, the WebSocket connection is polled during each game tick, and inbound frames are
stored in a local scene buffer until retrieved using the ‘load_jpg_from_buffer’ command. An
image texture is created using the loaded video frame to update either a MeshInstance3D or a
TextureRect2D node’s texture.

Figure 3.10: 2D 720p video stream scene with a Grogu figurine [92]. To the right is the local render delay and video
frame rate, and to the left is the associated node tree.
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To learn more hands-on, this 2D ‘demo’ scene was prepared to be run on a PC in addition to the
main AR scene. This scene was used to study, develop and test various video playback features
more seamlessly. Figure 3.10 shows the demo scene’s node tree to the left consists of a
TextureRect node, used to display the received video frames and several Text Label nodes, which
display connection debug information, such as if the client is connected or reported connection
errors. Once the WebSocket handling script was ready, most of these TextLabel nodes were
hidden. Key features of video stream characteristics, such as framerate, connection stability and
pixel-to-pixel delay, were tested using this 2D scene. It also served to validate possible TCP, UDP
and alternative WebSocket GDScript implementations.

To develop the final scene, titled ‘Pi2AR’, Godot version 4.0.2 was used. This final project scene
was more complex and included both AR and VR environments. However, the AR scene was
ultimately selected, as the pass-through functionality gives the user a better awareness of the
surrounding environment. This may improve the overall user comfort in possibly crowded open
lab days.

Figure 3.11: AR scene with a view from the player. The background stays black as pass-through is not available on
PC. Highlighted cubes were added to the scene to exemplify how the scene can be made more immersive and

interactive. Featured in the centre is a 16 by 9 m video playback screen.

Figure 3.11 showcases the ‘Pi2AR’ scene from the user's view, run on a PC. Two solutions for
displaying the received video frames were prepared. Their node trees are shown on the right. The
first incorporates a Sprite3D node, where a transparent texture of a MeshInstance3D node is
redrawn with each received video frame. Similarly, a TextureRect node’s texture is redrawn in the
second node tree with each received video frame.

The difference between the two approaches is that the Sprite3D scene can be directly
incorporated within the AR scene. Meanwhile, the TextureRect approach requires using a
Viewport2Din3D sub-scene from the godot-xr-tools addon pack. Both approaches produce the
same result, and no performance differences were observed in testing. However, the latter is used
in the final Pi2AR project scene. The Viewport2Din3D sub-scene provides extended
functionality, which includes advanced user interaction features. While these were not utilised, it
was included to provide an example use-case.
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Figure 3.12: Annotated AR scene. The video stream playback screen is placed front and centre, with four directional
light sources providing lighting to the user area box with play cubes and a debug terminal opposite the primary video

stream screen. Transparent collision boxes confine the user to the moveable area.

The black background environment in the AR scene (Figure 3.12) is configured to be transparent
in order to be able to display pass-through video, which in the case of the Quest 2, is black &
white. The moveable area allows users to adjust their view angle to the primary floating screen.
By moving around, they can also zoom and pan the video stream.

Figure 3.13: Closeup of AR scene’s debug panel. Positioned behind the user, it provides information on the
connection status and framerate. It includes an input field if a user wishes to change or set a new RPi IP address and

two text labels showing the current IP address and framerate. The ‘Show Debug’ button toggles the display of
information.
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The added debug panel (Figure 3.13) was included to provide useful information when
troubleshooting connection issues from within the AR scene during runtime. It allows a user to
manually adjust the RPi’s IP address and see relevant connection status information and the
framerate of the displayed video stream. Below the debug panel, a virtual keyboard (part of the
godot-xr-tools addon) is provided, enabling a user to input the RPi’s IP address once the relevant
text input box is set to active.

Please, see Appendix I. (Thesis GitHub Repository: Blueprints/Godot,
Blueprints/Testing/websocket_2_py_demo) for more information about the Test 2D scene and
Pi2AR (Blueprints/Godot/Pi2AR).

3.2.4 M5 RoverC Pro & JoyC Remote Controller Movement Control

The onboard M5 Stick C provides movement control. When paired to a second M5 Stick C in the
JoyC remote controller, it conveys speed commands to RoverC’s onboard microcontroller
(STM32F030C6T6). This way, the JoyC remote controls four independently motorised
omnidirectional Mecanum wheels with N20 worm gear motors. Fine, omnidirectional movement
control is achieved by carefully adjusting each wheel's rotation speed and direction. Figure 3.14
showcases RoverC Pro manufacturer’s provided individual wheel-to-overall-movement control
diagram.

Figure 3.14: Wheel-to-overall-movement diagram [17]. Shown are 12 RoverC outlines with four Mecanum wheels.
Carefully adjusting the individual wheel’s rotation speed and direction is necessary for omnidirectional movement

control. N20 worm gear motors, one for each wheel, are carefully regulated by the RoverC’s onboard
microcontroller, which receives speed commands over I2C from the M5 StickC.

The RoverC and JoyC remote M5 StickC Arduino libraries incorporate a fully featured
movement control example. The only functional alteration to the manufacturer's provided
example firmware was to incorporate servo angle control. The RoverC’s firmware script first
initialises library drivers and creates a Wi-Fi hotspot. It then displays the hotspot name on the
device's LCD screen. It also sets the charging current, configures the device to act as a Wi-Fi
access point, and starts a server for communication. The script then listens for UDP packets,
reads and processes the received data, and controls the device's speed and servo angles
accordingly. Finally, the LCD screen is updated periodically with battery voltage, current, and the
status of the I2C communication.
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JoyC’s remote controller firmware first initialises hardware components. After a user selects the
RoverC’s access point hotspot, it establishes a WiFi UDP connection. It then reads thumbstick
sensor data and forwards it to the Rover. Pressing on the thumbsticks actuates the servos. The left
thumbstick controls the translation, while the right controls the rotation. Please, see Appendix I.
(Thesis GitHub Repository: Blueprints/Firmware) for more information about movement control
firmware and a video movement demo taken during the participant evaluation
(Thesisaurus/Survey/evaluation_event).

3.3 Limitations & Challenges

While developing RoverXR, many limiting and challenging problems had to be solved. Lacking
documentation was one challenge for servo control in the M5 RoverC Pro, requiring extensive
experimentation and testing.

Additionally, the filament supply condition limited the quality of 3D prints produced in-house,
which led to some mechanical issues during assembly. Finding suitable 3D models for some
components was also a challenge. Assembly of the rover also presented some challenges initially,
as the components are small and easy to misplace or damage.

The rover's layout proved challenging due to the need to accommodate many components in a
very small space. There were also concerns about driving performance, especially over rough
terrain, and some components' durability and wear resistance.

Working with the RPi Zero 1 W and developing the video streaming into the VR environment
proved exceedingly challenging, primarily because of its single-core processor, limited memory
and the fact that it was impossible to develop remotely from within the comfort of a powerful
IDE like Visual Studio Code. Above all, video streaming development was challenging due to
Godot’s limitation, supporting the Theora video format exclusively.

Throughout the development process, Godot was transitioning from version 3 to version 4, which
led to difficulties finding up-to-date documentation, with several features only partially available.
Godot’s official Discord community was consistently supportive. They provided guidance on key
issues, such as troubleshooting Gradle deployment to the Quest 2, and key insights into features
such as WebSocketPeer class and the OpenXR Tools add-on.

The cost of upgrading to the more powerful RPi Zero 2 W was also prohibitive, preventing a
more straightforward RoverXR design, which seamlessly controls the movement from a VR
scene.
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These limitations and challenges combined contributed to the resulting final product of this
thesis, a complex multi-part teleoperation demonstration solution. Many tradeoffs had to be made
between framerate, bandwidth, image quality, and various design considerations.

3.3.1 Design & Development Summary

A teleoperation educational demonstration is prepared, incorporating:
1. M5 Rover C Pro and JoyC remote controller
2. custom-designed, 3D printed adapter kit (mod kit)
3. RPi Zero 1 W and Pi camera module
4. Godot AR & 2D scenes

The RPi is configured to serve an MJPEG video stream using the WebSocket protocol to which a
counterpart Godot Engine 4 scene connects to and collects video stream bytes. These are decoded
into JPEG images individually and displayed in the scene.

Key milestones in the design of the artefact include:
1. selecting suitable components,
2. identifying appropriate streaming solutions,
3. designing the adapter kit,
4. developing video streaming solutions and
5. developing AR & 2D Godot scenes.

During the second milestone, three hackathon-like sprints were conducted under the guidance of
my supervisor. Jai Muruganantham, an MSc student at Kaunas University of Technology in
Lithuania, joined these sprint sessions remotely. We exchanged solutions for handling,
troubleshooting and evaluating video streaming, including using the Droste effect for testing
pixel-to-pixel delay using a stopwatch. Together we learned about the intricacies of FFmpeg, an
incredibly vast and powerful open-source project for handling a myriad of video, audio, and other
multimedia files and streams [77].
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4 Evaluation

The success of any solution ultimately depends on how well it meets its intended goals and how
its users perceive it. This chapter presents RoverXR’s subjective evaluation, assessing how
participants perceived RoverXR and its AR interface as a teleoperation demonstration.

Based on eight questions with various response options, including multiple-choice, rating scales,
and open-ended text answers, the primary goal of this evaluation was to gain insight into the
overall experience of persons using this demo.

4.1 Survey Evaluation

The questions covered aspects such as the user's preference about the overall setups, their level of
discomfort, their thoughts on the user interface, and their experience with the Rover. The survey
also included questions on the difficulty of driving the Rover and how motivating the experience
was for studying teleoperation. Participants were also encouraged to provide any additional
comments or feedback. The survey responses were collected and analysed to gain insights into
the user's perception of the system.

Please, see Appendix I. (Thesis GitHub Repository: Thesisaurus/Survey/Readme) for an
expanded list of questions, including question descriptions and elaborated rationale. Table 5
below showcases the list of questions and their accepted response formats.

Table 5: Survey Questions & Response Formats

Question
Accepted
response

Description

Have you experienced nausea or discomfort
in the setup?

Yes Provide insight to general comfort
in the combined setup,
check whether
nausea occurs.

No

A little

How do you feel about the interface in the
VR setup?

Short-answer text

Get keywords describing:
feelings about the interface,
user descriptions of the Rover,
user experience using the Rover,
thoughts on improvements
for the overall setup

Please, describe the Rover Short-answer text

Please, describe your experience with the
Rover

Short-answer text

Please, share your thoughts on how to
improve
the overall setup (Rover & VR)

Short-answer text

Please, rate the following
[Godot setup rating]

1 to 5 rating
Gather simple ratings for overall setup,
driving difficulty and
how well this experience motivates
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Question
Accepted
response

Description

them to study teleoperation.Please, rate the following
[Rover driving difficulty]

1 to 5 rating

Please, rate the following
[How well does this experience motivate
you to study teleoperation?]

1 to 5 rating

Additional comments or feedback Short-answer text This is an optional final question

The evaluation took place on May 9th, 2023, from 3 pm until 7 pm, outside University of Tartu
Delta Center, room 2018. A Toy Cityscape track, maintained by Autonomous Driving Lab [93]
staff, is set up to test and develop autonomous driving solutions. The track comprises plywood
walls in a configuration resembling a small-scale city track (Figure 4.1).

Figure 4.1: User evaluation set-up. Shown top right to bottom left: openWRT WiFi router, blurred survey participant,
laptop with survey questions open and to the left, a magnified view of RoverXR on the track.

The floor tiles have a stone-like texture, which provided poor grip for the rover’s wheels,
resulting in poor handling performance, as reported by the participants. A fully charged RoverXR
was prepared and placed on the track, which served the dual purpose of user evaluation and
validating standby times. Figure 4.2 shows that the setup included a dedicated openWRT network
router. Provided Wifi Analyzer screenshot illustrates network activity at the start of the
evaluation.
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Figure 4.2: WiFi Analyzer [94] and Fing [95] network statistics. During RoverXR’s evaluation (left) is a WiFi
Channel Graph showing the signal strength of the ‘RoverXR 2.4GHz’ network, hosted by the openWRT router.

List of devices (right) present on this network at both 2.4GHz and 5GHz bands, including RoverXR’s RPi, network
gateway router (GL-SFT1200 [59]), Meta Quest 2 VR HMD headset, laptop PC and a smartphone. The video stream

is played by inputting the RPi’s IP address into the Godot Scene, running on the headset.

The evaluation involved 9 participants, who were first allowed to drive the rover and get
accustomed to the controls before being introduced to the AR user interface with a quick
showcase of its features. Processing took place individually - one participant at a time.

The participants were given a Meta Quest 2 VR HMD with the ‘Pi2AR’ Godot scene preloaded
and took a moment to adjust the headset for their comfort. They further adjusted the scene to their
liking using movement controls within the scene, simulating pan and zoom control of the video
feed screen.

Afterwards, participants drove the Rover for one lap. On average, this took about 2 minutes and
25 seconds. Finally, the participants sat down for an informal interview interviewed individually,
and their responses were manually input into a Google form for analysis by the interviewer.

4.2.1 Methods & Results

The survey evaluation results indicate that the VR setup was generally comfortable for most
participants, with 5/9 reporting that they did not feel nauseous or uncomfortable. In contrast, 4/9
felt uneasy but not uncomfortable, all of which mentioned headset comfort-related issues, likely
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associated with poorly adjusted straps, bad headset positioning and incorrectly setting the VR
lenses for their particular inter-pupillary distance.

On average, the user interface received a rating of 4.33 out of 5, with 3/9 participants rating it a 5
and 6/9 rating it a 4. This result suggests they overall liked the setup.
However, when it came to driving the rover, participants reported some difficulty, with an
average rating of 3.22 out of 5, with 3/9 rating a 4, 5/9 rating a 3 and 1/9 rating a 2.
Despite this, the overall experience was motivating or engaging for most participants, on average
rating it a 4 out of 5, with 2/9 rating 5, 5/9 rating a 4 and 2/9 rating the experience a 3.

Two of the answers used to describe the Rover stood out:

‘[The Rover] looks really rugged and kind of robust.’

‘[The Rover] seems quite well built as far as the material part, it looks a little back top heavy,
and going over some obstacles, I can see that it can flip.’

These answers highlight the perceived appearance and build quality of the Rover. The first
answer appears superficial. However, it could imply that the look and feel of the Rover made this
participant feel more confident about its capabilities.

The second answer touches on the same point and suggests that the top-heavy layout may cause
inadvertent flips when traversing obstacles.

These answers stood out when describing the user interface:

‘Its okay, I liked the cubes I could throw when I'm bored. I liked that I could see my surroundings.
Video [stream] was clear, and I could see where I was going.’

‘In the first try, I got lost. In the second try it was good once I understood where to look.’

‘Nice, but the problem which I got: the [video] stream had some kind of blurriness, and maybe
that made it problematic in [making] driving decisions.’

According to the first participant, the play cubes provide them with an amusing retreat. They
appreciate seeing their surroundings, despite the black-and-white pass-through of the Quest 2.
Their last point suggests that the video stream is clear.

Based on the second participant’s answer, the user interface was not immediately intuitive or easy
to understand. They add that they better understood the interface in their second attempt and
thought it was good, suggesting that the interface could be improved with additional visual guides
to better inform the user of the locations of key features.
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The last participant’s answer may suggest that their headset’s inter-pupillary adjustment slider
was not configured correctly, meaning more care and instructions should be provided to users
when setting up their headset, especially for first-time users, improving their experience.

Finally, when describing their experience with the overall setup, including the Rover and user
interface, these answers were exciting:

‘A new experience for me, I haven't tried VR before. I feel that this is very essential when put into
real-time applications, maybe some warehouses, or unmanned areas to use vehicles in - when

there are no physical people there. I think this has quite a number of applications.’

This participant explains that this was their first VR experience and goes on to identify potential
applications for this solution immediately. This answer stands out because they were inspired to
rationalise their experience and consider where this application might be useful or applicable.

‘It was nice, you are in one place and then controlling in another place. I could quickly imagine
myself in the second place and it was an interesting feeling.’

Here the participant describes how well they perceived the remote operation experience. Their
answer suggests that the overall experience can successfully create a sense of user immersion and
presence.

‘Quite very well, it's been a very good experience, it's been long since I've driven anything like a
car; this experience is nice.’

This participant expressed that the experience was nice, possibly even satisfying. They seem to
connect it to driving a car and appear to appreciate and enjoy it. Based on this answer, the overall
experience is positive, and they connected it to the feeling of driving a car.

4.2.2 Analysis

The artefact's evaluation analysis involved using Google Sheets [96] and the Rosette sentiment
analysis tool [97]. Participant sentiments were retrieved by providing Rosette with participant
answers one at a time, unaltered. Rosette associated the participant's key phrases into the
‘Automotive’ and ‘Technology and Computing’ categories. Sentiment analysis of participants'
answers to the question: ‘How do you feel about the interface in the setup?’ shows that 6/9
participants described the user interface positively. To questions: ‘Please, describe the Rover’ and
‘Please, describe your experience with the Rover’, Rosette suggests 5/9 participants replied
positively to both. Further analysis of participant answers is presented below, grouped by survey
question.

Analysis of participant replies when asked how they felt about the interface in the setup.
6/9 participants expressed positive feelings about the teleoperation setup, with comments such as
"good" and "fine." 3/9 participants noted that they enjoyed the immersive experience of the VR
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headset and appreciated the precise video feed. 4/9 participants suggested improvements, such as
wanting a more immersive experience or experiencing blurriness in the video feed. 1/9 of the
participants found the cubes gimmicky and wondered about their utility. The feedback suggests
that the setup was generally effective, with room for improvement.

Analysis of participant replies when asked to describe the Rover.
7/9 participants' responses suggest that the remote toy rover is generally stable and
well-constructed, but some improvements could be made to the controllers and the sensitivity of
the wheels. 4/9 participants noted that the rover's size and tank-like appearance influenced their
driving style and that getting used to driving in VR took some time. 4/9 participants' responses
provide helpful feedback for improving the design and usability of the teleoperated toy rover.

Analysis of participant replies when asked to describe their experience with the Rover.
The participants generally had positive experiences with the teleoperation of the toy rover using a
VR headset. They found the experience fun and immersive and could see the potential for the
technology in various applications, such as remote control of autonomous vehicles in uncrewed
areas and warehouses. Some participants noted minor issues, such as a heavy headset or latency
in controls, but overall were positive about the experience. Most participants were new to VR
technology and found the experience novel and interesting.

Analysis of participant replies when asked to share thoughts on how to improve the overall setup.
The participants generally liked the VR setup and suggested improvements such as decreasing the
sensitivity of the rotation, improving the video quality, using a curved panorama screen, adding
more objects in the VR environment, and providing better control of the rover. They also
suggested incorporating a 360 camera and a 3-axis robotic arm and making the rover bigger to
perform more tasks. Some participants suggested using different ways of controlling the rover,
such as VR or physical controllers, while others suggested improving the calibration of the
existing controller. A few participants suggested improving the camera angle to better see the
environment and obstacles.

4.3 Discussion

Overall, participants expressed positive experiences with the teleoperation setup, finding it
immersive and enjoyable. They provided valuable feedback on improving the design and
usability of the toy rover, including suggestions for improving the controllers, the sensitivity of
the wheels, and incorporating additional features such as a 360 camera and a 3-axis robotic arm.

Participants also suggested improvements to the user interface setup, such as using a curved
panorama screen and improving the video quality. In summary, their feedback provided useful
and encouraging insights for the further development of RoverXR.
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5 Conclusion & Future Work

This thesis presents a design study of a teleoperation demonstration for educational purposes,
focusing on good user experience and low latency, high-quality video streaming with a virtual
scene representation.

RoverXR’s development incorporated integrating the M5 RoverC and a Raspberry Pi Zero into
one unit. A gantry was iteratively designed and supported with extensive testing and validation.
Various video streaming solutions from the RPi were tested in different settings and compared.
Several working solutions are presented. The custom-developed AR scene on the Meta Quest 2,
built using Godot Engine 4.0, provides users with real-time visual feedback using a WebSocket
high-definition video stream. Good user experience is emphasised to inspire future work and
highlights the feasibility of using a game engine like Godot for teleoperation setups.

A subjective evaluation showed that participants had overall positive experiences with the
teleoperation setup and found it immersive and enjoyable. Participants' feedback provided
valuable and encouraging insights for the further development of RoverXR.

Overall, this thesis demonstrates the potential of low-latency, high-quality video streaming and
virtual scene representation, using open-stack solutions, in enhancing the user experience of a
teleoperation demonstration for educational purposes.

Figure 5.1: Future design concept sketch. Possible future RoverXR design implementation. Bug-like exterior shell is
a single flexible part that snaps to the base, reducing the screw count and cost.

Despite accomplishing its objective of seamlessly and reliably integrating all RoverXR
components, one aspect of future work includes further gantry design optimisations. For example,
RoverXR relies heavily on screws and plastic threads, addressable with a compliant, snap-fit
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construction design approach. This would also serve to simplify the assembly and maintenance
process. Figure 5.1 reinforces this point by depicting a concept design sketch of a possible next
design iteration of RoverXR's appearance. In this proposed design iteration, the RPi Zero 2 W is
utilised for movement control and providing a video stream, resulting in a further reduced form
factor addition to adding the opportunity to control movement from VR using default controllers.

Table 6 provides key point ideas in areas identified as possible future work, in no order of
priority. Please, see Appendix I. (Thesis GitHub Repository: Thesisaurus/Future/Readme) for a
more detailed breakdown of this list featuring additional descriptions.

Table 6: Future work recommendations as key points.
Title Key points

RoverXR
Hardware

Modifications

Integrate Pi Zero 2 W

New enclosed snap-fit shell (Figure 5.1)

New camera with autofocus

Adjustable camera angle

Improve interface

Develop a charging base

Add sensors

RoverXR
Software

Modifications

Improve streaming solution

Godot scene improvements

Autonomous driving mode

Deploy ROS

Full control from VR

Godot H264 decoding

RoverXR
Evaluation
Ideas

Compare with Unity solution

Compare with FPV

Further evaluate solution

There are many opportunities available for further research and development. Overall, RoverXR,
developed in this thesis, provides a solid foundation for future work in teleoperation.
Additionally, it demonstrates the key proponents of this research area to future inspired students.
RoverXR may additionally be incorporated into a classroom as learning material, providing
hands-on teleoperation demos in Godot v4, ready for experimentation.

Finally, with this work, a software artefact can serve as a base for the Autonomous Driving Lab
to develop teleoperation solutions in VR - both for RoverXR and Donkey Car. With this
open-source solution, it will be easier to maintain and extend support to other platforms.
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7 Appendices

I. Thesis GitHub Repository

https://github.com/mbz4/RoverXR
This is the central thesis GitHub repository, hosting all relevant files and documentation related to
RoverXR, divided into two directories: ‘Blueprints’ and ‘Thesisaurus’.

II. Thesis Workload Analysis

This subsection presents a concise summary and analysis of the workload invested during this
thesis. In total, this thesis comprises 12 milestones, completed in the preparation of this thesis
with approximately 465 hours invested. Figure 7.1 depicts time spent in hours (vertical axis) per
milestone, listed in order of completion (horizontal axis).

Clockify [98] time management software helped track time, allowing for more accurate and
precise tracking of specific tasks and activities throughout the design and development process.
Clockify was complemented with timestamps in personal notes, denoting milestone deadlines.

Figure 7.1: Thesis workload analysis across 12 milestones in order of completion. The most effort investment was in
the design phase of RoverXR, and about a third less exploring the Godot Engine. Meanwhile, reviewing previous
works, learning about video streaming, getting familiar with the M5 product ecosystem and evaluating the artefact
received relatively little attention. Based on the trendline, developments were more pronounced towards the end.

The first set of tasks completed included getting familiar with VR with a preliminary background
study, which took an estimated 25 hours to complete. The final task was the thesis write-up,
which took about 95 hours to complete. Please, see Appendix I. (Thesisaurus/Workload Analysis)
for an extended workload analysis, including key point breakdowns of each milestone.
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