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Sampling-based Bi-level Optimization aided by Behaviour Cloning
for Autonomous Driving

Abstract:
Autonomous driving has a natural bi-level structure. The upper behavioural layer aims to
provide appropriate lane change, speeding up, and braking decisions to optimize a given
driving task. The upper layer can only indirectly influence the driving efficiency through
the lower-level trajectory planner, which takes in the behavioural inputs to produce
motion commands for the controller. Existing sampling-based approaches do not fully
exploit the strong coupling between the behavioural and planning layer. On the other
hand, Reinforcement Learning (RL) can learn a behavioural layer while incorporating
feedback from the lower-level planner. However, purely data-driven approaches often
fail regarding safety metrics in dense and rash traffic environments. This thesis presents a
novel alternative; a parameterized bi-level optimization that jointly computes the optimal
behavioural decisions and the resulting downstream trajectory. The proposed approach
runs in real-time using a custom Graphics Processing Unit (GPU)-accelerated batch
optimizer and a Conditional Variational Autoencoder (CVAE) learnt warm-start strategy
and extensive experiments on challenging traffic scenarios show that it outperforms
state-of-the-art Model Predictive Control (MPC) and RL approaches regarding collision
rate while being competitive in driving efficiency.
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Proovivõtupõhine bi-taseme optimeerimine, mida toetab autonoomse
sõidu käitumise kloonimine

Lühikokkuvõte:
Autonoomsel sõidul on loomulik kahetasandiline struktuur. Ülemise käitumiskihi
eesmärk on tagada sõiduraja asjakohane muutmine, kiirendamine ja pidurdamisotsused,
et optimeerida konkreetset sõiduülesannet. Ülemine kiht saab sõiduefektiivsust mõjutada
ainult kaudselt läbi madalama astme trajektoori planeerija, mis võtab sisse käitumuslikud
sisendid, et toota kontrollerile liikumiskäske. Olemasolevad valimipõhised lähenemisvi-
isid ei kasuta täielikult ära käitumis- ja planeerimiskihi vahelist tugevat haakumist. Teiselt
poolt saab Reinformeerimine Learning (RL) õppida käitumuslikku kihti, lisades samal
ajal tagasisidet madalama taseme planeerijalt. Puhtalt andmepõhised lähenemisviisid
ei ole aga sageli seotud ohutusnäitajatega tihedates ja lööbelistes liikluskeskkondades.
Käesolevas töös on esitatud uudne alternatiiv, parameetriline kahetasandiline optimeer-
imine, mis arvutab ühiselt välja optimaalsed käitumisotsused ja sellest tulenevad tra-
jektoorid. Väljapakutud lähenemine töötab reaalajas, kasutades kohandatud graafika
töötlemise üksust (GPU) -kiirendatud partii optimeerijat ja tingimuslikku variatsiooniau-
toencoderit (CVAE) õppinud sooja käivitamise strateegiat ja ulatuslikud katsed keerukate
liiklusstsenaariumidega näitavad, et see ületab tipptasemel mudeli ennustuskontrolli
(MPC) ja RL-i lähenemisviise kokkupõrke kiiruse osas, olles samal ajal sõidutõhususe
konkurentsivõimeline.

Võtmesõnad:
Autonoomne sõitmine, bi-taseme optimeerimine, käitumuslik kloonimine, diferentseeruv
optimeerimine, tingimuslik variatiivne autoenkoder

CERCS:
T125 Automatiseerimine, robootika, juhtimistehnika
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1 Introduction

1.1 Motion Planning For Autonomous Driving
Motion planning is defined as using computational methods to generate a robot’s motion
to achieve a specified task. Motion planning is a critical task in autonomous driving.
It involves finding a safe and efficient path for the vehicle to follow while remaining
collision-free and within a lane. Motion planning for autonomous driving can be divided
into two hierarchical components [3].

Figure 1. Motion planning for autonomous driving is divided into two hierarchical components-
the higher-level behavioural layer and the corresponding lower-level trajectory planner. The
behavioural layer makes lane-changing, speeding up, and braking decisions based on the traffic
scenarios. The trajectory planner takes in the behavioural inputs to produce motion commands
for the controller.

The higher-level behavioural layer computes decisions such as lane change, speeding
up and braking based on the traffic scenario and the driving task. This layer indirectly
influences the driving efficiency through the lower-level trajectory planner. In dense
traffic scenarios, the behavioural layer can shift from the congested to the free lane.
Similarly, the behavioural layer can request a slowing down of the vehicle when the
traffic light switches to red. A slowing down can also be requested when the neighbouring
vehicle cuts in sharply in front of the ego-vehicle.

The trajectory planner takes in the behavioural inputs, parameterized in terms of set
points for longitudinal velocity and lateral offsets from the centre line, to produce motion
commands. Parameterizing behavioural inputs in terms of set points for longitudinal
velocity and lateral offsets allows us to naturally integrate the behavioural layer with the
lower-level trajectory planner [4], [5] [6], [7]. The behavioural layer is critical for driving
in dense traffic as it can guide the lower-level planner into favourable state-space regions;
in the same way, a collision-free global plan can make the task of the local planner easier.

The two layers have a strong inter-dependency as the higher-level behavioural layer
can indirectly affect the driving efficiency through the lower-level trajectory planner.
However, existing trajectory sampling approaches [5] [6] do not fully exploit the strong
coupling between the behavioural and planning layer (see Figure 2(a)). Prior works
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have no mechanism for modifying the behavioural inputs based on how the associated
lower-level trajectory performs on the given driving task.

 
 Sampling

 Behavioral Inputs
QP Trajectory

Generator
Higher-level Driving Task    

Function Evaluation 
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ξ*p

Existing Work
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    For
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Figure 2. (a). Existing works draw behavioural inputs from a distribution and solve a simple QP
trajectory planner for all those inputs. However, there is no mechanism to modify the behavioural
input sampling based on the performance of the lower-level planner on the driving task. (b). The
proposed pipeline addresses this issue by adding a gradient estimation block and a projection
operator to satisfy constraints.

Reinforcement learning (RL) techniques address this drawback by learning the be-
havioural layer. The rewards from the environment act as feedback to modify the be-
havioural inputs while considering the effect of the lower-level planner [8], [9]. Though
effective, especially in sparse traffic scenarios, the purely data-driven approaches typically
struggle with safety metrics in dense and rash traffic environments.

1.2 Contributions

The contributions of this thesis are the following:

• It proposes a bi-level optimization where the upper-level variables represent the
behavioural inputs while that at the lower level represent the associated motion
plans. The bi-level optimization estimates the direction in which the behavioural
inputs need to be perturbed to improve the trajectory optimization with respect to
the driving task.
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• It combines Quadratic Programming (QP) with gradient-free optimization for
solving the bi-level problem. In particular, it proposes an approach where sampled
behavioural inputs are used to solve lower-level trajectory optimization for all of
them as it allows for estimating gradients of the driving cost with respect to the
behavioural inputs (see Figure 2(b)).

• The thesis also proposes a behavioural cloning framework to learn a distribution
over behavioural inputs to accelerate the convergence of the proposed bi-level opti-
mizer. More specifically, the sampling portion of the proposed bi-level approach
employs a Conditional Variational Autoencoder (CVAE) to generate a distribution
over behavioural inputs.

• The thesis empirically shows improvements over the state-of-the-art Model Predic-
tive Control (MPC) and RL-based approaches in dense traffic scenarios.

1.3 Outline

• Preliminaries: This chapter introduces the mathematical preliminaries and covers
essential background on bi-level optimization and behavioural cloning.

• Related Works: This chapter reviews prior works and connections to the proposed
method.

• Methodology: This chapter explains the bi-level optimizer for combined planning
and the behavioural cloning framework to warm-start the proposed optimizer.

• Results: This chapter describes the implementation details, benchmarking scenar-
ios and presents the results of the experiments.

• Conclusion: This chapter summarizes the thesis and outlines directions for future
work.
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2 Preliminaries
This chapter introduces essential concepts necessary to understand the rest of the thesis.
It describes the mathematical preliminaries- notation, trajectory and behavioural input
parameterizations. It briefly overviews central concepts such as bi-level optimization and
behavioural cloning.

2.1 Symbols and Notation
Normal font lower-case letters represent scalars, and bold font variants represent vectors.
The upper-case bold font letters represent matrices. The superscript T denotes the
transpose of a matrix or a vector.

2.2 Trajectory Parameterization
Using the differential flatness of the bi-cycle car model, we aim to directly plan in the
positional space (x(t), y(t)) of the ego-vehicle. Thus, the position-level trajectory of the
ego-vehicle is parameterized in terms of polynomials in the following form:[

x(t1), . . . , x(tm)
]
= Wcx,

[
y(t1), . . . , y(tm)

]
= Wcy, (1)

where, W is a matrix formed with time-dependent polynomial basis functions and (cx, cy)
are the coefficients of the polynomial. The derivatives can be expressed in terms of
Ẇ, Ẅ.

2.3 Behavioral Input Parameterization
The following list of behavioural inputs is considered in the formulation:

• The planning horizon is split into m parts, and a desired lateral offset set point
(yd,m) is assigned to each of these segments (see Figure 3(a)). Similarly, longitudi-
nal velocity set point (vd,m) is assigned to each of the m segments.

• The goal positions are included along longitudinal (xf ) and lateral directions (yf )
as behavioural inputs.

The behavioural inputs are stacked into one parameter vector:

p =
[
yd,1, yd,2, . . . , vd,1, vd,2, . . . vd,m, xf , yf

]
. (2)

Note that not all elements of p need to be used simultaneously in the lower-level trajec-
tory planner, and (2) represents all the behavioural input parameterization that can be
accommodated within the proposed bi-level optimizer presented in Chapter 4.1.
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Figure 3. (a). A standard parameterization for behavioural inputs is set points for lateral offset
used to induce lane-change manoeuvres in the ego vehicle. For long-horizon planning, the
trajectory can be split into multiple parts and assign a lateral offset set point to each of them, as
shown in the bottom figure. (b). Shows different trajectories generated by sampling lateral offsets
yd,m and forward velocity vd,m set points from a Gaussian distribution and using them in (3a) -
(3d). (c). The proposed bi-level optimizer can parallelly solve the lower-level trajectory planning
for all the sampled behavioural inputs. The figure represents the distribution of trajectories
obtained in a cluttered environment, with a blue rectangle representing stationary parked vehicles.

2.4 Lower-Level Trajectory Planning
The lower-level trajectory optimization is formulated in the Frenet-frame: longitudinal
x(t) and lateral y(t) motions of the ego-vehicle occur along and orthogonal to the
reference centre line, respectively [10].

min
∑
t

cs(x(t), y(t)) + cl(x(t), y(t)) + cv(x(t), y(t)) (3a)

(x(t0), y(t0), ẋ(t0), ẏ(t0), ẍ(t0), ÿ(t0)) = b0. (3b)

(x(tf ), y(tf ), ẏ(tf )) = (xf , yf , 0). (3c)

gj(x(t), y(t)) ≤ 0, ∀j, t (3d)

cs(x(t), y(t)) = (ẍ(t))2 + ÿ(t)2 (4a)

cl(x(t), y(t)) = ÿ(t)− kp(y(t)− yd,m)− kvẏ(t))
2 (4b)

cv(x(t), y(t)) = (ẍ(t)− kp(ẋ(t)− vd,m) (4c)

The first term (cs(.)) in the cost function (3a) ensures smoothness in the planned trajectory
by penalizing high accelerations. The last two terms (co(.), cv(.)) model the tracking
of lateral offset and forward velocity set-points, respectively and are inspired by works
like [8]. Different yd,m, vd,m are assigned to m trajectory segments. For the lateral-offset
tacking, a Proportional Derivative (PD) like tracking with gain (kp, kv) is defined, and
only a proportional term is used for the velocity part.

Equality constraints (3b) ensures that the planned trajectory satisfies the initial boundary
conditions. Thus, vector b0 is simply a stacking of initial position, velocity, and accelera-
tion. The final boundary conditions are represented through constraints (3c). Inequalities
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(3d) enforces collision avoidance, velocity, acceleration, centripetal acceleration, curva-
ture bounds, and lane boundary constraints. Table 1 summarizes the set of inequality
constraints used in the lower-level optimization (gj(x(t), y(t)) ≤ 0).

Table 1. List of Inequality Constraints used in the lower-level optimization

Constraint Type Expression Parameters

Collision Avoidance − (x(t)−xo,i(t))
2

a2 − (y(t)−yo,i(t))
2

b2
+ 1 ≤ 0

a
2
, b
2

:
axis of the circumscribing
ellipse of vehicle footprint.

xo,i(t), yo,i(t):
trajectory of neighboring vehicles

Velocity bounds
√

ẋ(t)2 + ẏ(t)2 ≤ vmax
vmax:

maximum velocity of the ego-vehicle

Acceleration bounds
√

ẍ(t)2 + ÿ(t)2 ≤ amax
amax:

maximum acceleration of the ego-vehicle

Curvature bounds −κmax ≤ ÿ(t)ẋ(t)−ẍ(t)ẏ(t)

(ẋ(t)2+ẏ(t)2)1.5
≤ κmax

−κmax:
maximum curvature bound for the

ego-vehicle trajectory

Centripetal Acceleration bounds −cmax ≤ ẋ(t)2κ(x(t)) ≤ cmax

cmax:
maximum centripetal acceleration bound

for the ego-vehicle.

Lane boundary ylb(x(t)) ≤ y(t) ≤ yub(x(t))
ylb, yub:

Lane limits as a function
of the ego-vehicle’s position.

2.5 Bi-level Optimization
General optimization problems are single-level problems that can be formulated as:

minimize f0(ξ), (5)

subject to gi(ξ) ≤ 0, i = 1, ..., a (6)

hi(ξ) = 0, i = 1, ..., b (7)

where ξ ∈ Rn is the optimization variable, f0 : Rn → R is the cost function, gi : Rn → R
for i = 1, ..., a is the inequality constraint function, and hi : Rn → R for i = 1, ..., b is
the equality constraint function [11].

However, autonomous driving has a natural bi-level structure divided into two hierarchical
components leading to a bi-level optimization problem (see Figure 4) [12]. More
formally,

minimize
p∈P

F (p, ξ∗), (8)

subject to ξ∗ ∈ S(p) (9)

where S(p) is the set of optimal solutions of p-parameterized problem:
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Figure 4. Overview of Bi-level Optimization-a hierarchical optimization problem where one
problem is embedded within another. The higher-level optimization task is referred to as the
upper-level problem while the lower-level optimization task is called the lower-level problem.

S(p) := argmin
ξ∗ ∈Ξ∗

f(p, ξ∗), (10)

Problem (8) is the upper-level problem while Problem (10) is the lower-level problem
parameterized by upper-level’s decision p. The variables p ∈ Rnp are the upper-level
variables and ξ∗ ∈ Rnξ∗ are the lower-level variables. The objective functions are given
by F, f : Rnp × Rnξ∗ → R.

2.6 Behavioural Cloning
Behavioural cloning is one of the most popular approaches for end-to-end autonomous
driving. Behavioural cloning is a form of supervised learning that mimics expert demon-
strations from offline collected expert data [13], [14]. Given an expert policy π∗(s)
with access to the environment state s, we can execute this policy to produce a dataset
D = {oi, τ

i
e}Ni=1, where oi are sensory data observations and τ i

e = π∗(si) is the resulting
expert trajectory. The goal of behavioural cloning is to learn a policy π, parameterized
by θ, to produce trajectories ξ∗ similar to expert τ e based only on observations o. The
optimal parameters θ∗ are obtained by minimizing an imitation cost L:

θ∗ = argmin
θ

∑
i

L (π(oi;θ), τ
i
e) (11)
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2.6.1 Differentiable Optimization Layers

Existing approaches for behavioural cloning model relationship between the input obser-
vations o and output trajectory ξ∗ explicitly in an imperative node for some differentiable
function π (see Figure 5(a)):

ξ∗ = π(o;θ) (12)

Alternatively, the input-output relationship can be modelled implicitly in a declarative
node as a solution to an optimization problem [2]. The imperative and declarative
nodes can be parameterized and learned with backpropagation using standard gradient
descent optimization algorithms [15]. Additionally, these nodes can co-exist in the same
computation graph. In this thesis, the proposed behavioural cloning framework combines
feedforward networks, an instance of an imperative node, with a declarative node that
implicitly defines a layer as a solution to an optimization problem of the form (see Figure
5(b)):

ξ∗ ∈ argmin
ξ∈C

π(p(o;θ), ξ) (13)

Chapter 4.3 explains the proposed framework in more detail.
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ξ*
o

Imperative Node 
a)

Declarative Nodeb)

ξ*
o

Figure 5. (a). During the forward pass of an imperative node, the input observation o is mapped
to trajectory ξ∗ by an explicit parameterized function πθ. (b). During the forward pass of
a declarative node, the trajectory ξ∗ is computed implicitly as a solution of a parameterized
objective function πθ. Both imperative and declarative are parameterized data processing nodes in
an end-to-end learnable model with loss function L. During the backward pass for either node, the
gradient of the loss function L with respect to the output trajectory ξ∗, d

dξ∗L is backpropagated
via the chain rule to produce gradients with respect to the parameters d

dθL. Backpropagation
through the imperative node is easier because it follows the chain rule to produce gradients. In
contrast, backpropagation through declarative nodes requires the use of an implicit function
theorem to compute the gradients with respect to the parameters d

dθL [1], [2].
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3 Related Works
This chapter discusses prior works related to the proposed method. It highlights key
differences between the existing approaches and the proposed method 1.

3.1 Trajectory Sampling Approaches
Existing works like [6], [16] can be viewed as a particular case of the Algorithm 1,
presented in Chapter 4.1, obtained by performing only one iteration of the bi-level
optimizer. These cited works sample the behavioural inputs p (lateral offsets, forward
velocity, etc.), albeit not from a Gaussian distribution but a pre-specified grid. This is
followed by the execution of lines 6-8 and the ranking the upper-level cost (line 13)
associated with the generated trajectories.

However, [6], [16] do not have any mechanism to adapt the sampling distribution (or
grid) to reduce the upper-level cost. Authors in [17] address this drawback to some extent
as they adapt the sampling strategy based on optimal trajectories obtained in the past
planning cycles. Such an adaptation strategy would be akin to performing one iteration
of Algorithm 1 and then warm-starting the sampling distribution of p at the next planning
cycle with the updated mean and variance obtained from line 14.

The lower-level planners of [6], [16], [17] ignore inequality constraints and essentially
solve the QP presented on line 7 of Algorithm 1. The constraint residuals (e.g. obstacle
clearance) are augmented into the cost function, similar to line 11. The proposed approach
includes an additional projection operator at line 8 of Algorithm 1 to aid in constraint
satisfaction.

3.2 RL Based Approaches
Works like [8], [9], [4], [5] can be viewed as training a function approximator to learn the
solution space of the bi-level optimizer presented in 1. In Section 4.3, a similar attempt
is made using a supervised setting. The RL approaches of [8], [9], [4], [5] would achieve
this in a self-supervised setting based on just feedback of reward (upper-level cost) from
the environment.

3.3 Bi-level Optimization
The bi-level approaches are extensively used in motion planning. For example, see [18],
[19]. The proposed approach is closely related to the latter. In [19], an offline bi-level

1Reading the methodology behind the proposed method is recommended before going through this
chapter.
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optimization is used to generate optimal higher-level behaviours (parameter p) for drones.
Subsequently, a neural network is trained to learn this solution space. At run-time, the
neural network’s output is the true solution. In sharp contrast, the output from the CVAE,
trained in Section 4.3, is used as a guess for the optimal inputs p and adapted in real-time
in Algorithm 1.

3.4 Comparison with Gradient Descent
Bi-level optimizations are commonly solved through Gradient Descent [18]. It requires
computing the Jacobian of the optimal solution ξ∗ with respect to parameter p through
implicit differentiation [20]. The main drawback of this approach is that implicit dif-
ferentiation has technical difficulties in case there are multiple local minima and when
the lower-level problem is infeasible. In contrast, the Algorithm 1 does not require the
lower-level optimization to be feasible and allows for its early termination. In either case,
the constraint residuals can measure the quality of the optimal trajectory; thus, it can be
augmented into the upper-level cost on line 11.
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4 Methodology
This chapter presents the main idea behind the proposed novel bi-level optimizer for joint
behaviour and trajectory planning. It provides a detailed overview of the behavioural
cloning framework to warm-start the bi-level optimizer.

4.1 Proposed Bi-Level Optimization
The combined behaviour and trajectory planning is formulated through the following
bi-level optimization problem:

min
p

cu(ξ
∗(p)), (14a)

ξ∗ ∈ argmin
ξ

1

2
ξTQξ + qT (p)ξ, (14b)

Aeqξ = b(p), g(ξ) ≤ 0 (14c)

where (14b) - (14c) is the matrix representation of (3a) - (3d) obtained using (1). The
behavioural inputs p are defined in (2). Thus, a part comprising lateral offsets and
forward velocity set points enters the cost while the goal positions enter the affine
equality constraints. The variable of the lower-level problem is ξ = (cx, cy).

As shown, we have an upper-level cost cu(.) that models the driving task. It depends
on the optimal solution ξ∗ computed from the lower-level trajectory optimization. The
lower-level optimization explicitly depends on the parameter p while the upper-level has
an implicit dependency through ξ∗(p). The lower-level optimizer aims to compute an
optimal solution for a given p. The upper level, in turn, aims to modify the parameter
itself to drive down the upper-level cost associated with the optimal solution.

4.2 Batch Optimization and Sampling-based Gradient for Bi-level
Optimization

The main idea is to apply a gradient-free optimization technique on the upper-level cost.
Algorithm 1 summarizes the main steps of the proposed bi-level optimizer, wherein the
left superscript l is used to track variables across iterations. For example, lµp represents
the mean of the sampling distribution at iteration l. On line 4, n samples of pj are
drawn from a Gaussian distribution with mean lµp and covariance lΣp. On line 6, the
lower-level trajectory optimization is solved for each sampled parameter. The two-step
approach resulting in a sample output is shown in Figure 3(c).

The first step involves solving the trajectory optimization without the inequality con-
straints. The second step projects the obtained solution to the constrained set. On
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line 9, the constraint residuals, resulting from the optimal solutions, are computed.
In line 10, top n samples with the least constraint residuals are selected to create the
ConstraintEliteSet. Line 11 constructs an augmented cost obtained by evaluating the
upper-level cost cu(ξ∗j) on the samples from the ConstraintEliteSet and adding the
corresponding constraint residuals to it. On line 13, the top q samples with the least
augmented cost are selected to construct the EliteSet. On line 14, the mean and variance
of the sampling distribution of p is updated based on the samples of the EliteSet.

4.2.1 Updating the Sampling Distribution

There are several ways to update the mean and variance on line 14 of Algorithm 1.
The simplest among these is to just fit a Gaussian distribution to the samples of ξ∗j
belonging to the EliteSet. However, this approach ignores the exact cost associated
with the samples. Thus, this work uses the following update rule from sampling-based
optimization proposed in [21]:

l+1µp = (1− η)lµp + η

∑j=q
j=1 sjpj∑j=q
j=1 sj

, (15a)

l+1Σp = (1− η)lΣp + η

∑j=q
j=1 sj(pj − l+1µp)(pj − l+1µp)

T∑j=q
j=1 sj

(15b)

sj = exp
−1
γ

(cu(ξ
∗
j ) + rj(ξ

∗
j ) (15c)

where η is the learning-rate and γ is some scaling constant. As discussed in [21], the
update rules (15a) and (15b) are obtained by exponentiating the cost and then performing
a sample estimate of its gradient with respect to the sampled argument (in this case p).

4.2.2 Computational Tractability of Algorithm 1

The main computational bottleneck of Algorithm 1 stems from the requirement of solving
a large number (n ≈ 1000) of non-convex optimizations on line 6 - 8. However, each
optimization is decoupled from the other; thus, they can be solved in parallel (a.k.a.,
the batch setting) to ensure computational tractability. To this end, first, consider the
QP presented on line 7. Solving it for the jth sample of pj reduces to following linear
equations:

[
Q AT

eq

Aeq 0

] [
ξj
νj

]
=

[
q(pj)

b(pj)

]
, (16)

where, νj is the dual variable associated with the equality constraints. The left-hand side
of (16) is constant and independent of the pj . Thus, the solution for the entire batch can
be constructed in one shot in the following manner:
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Algorithm 1: Bi-Level Optimization
1 N = Maximum number of iterations
2 Initiate mean lµp,

l Σp, at l = 0

3 for l = 1, l ≤ N, l ++ do
4 Draw n Samples (p1,p2,pj , ....,pn) from N (lµp,

l Σp)

5 Initialize CostList = []
6 Solve the lower-level trajectory optimization ∀pj :

7 • Step 1: Solve the QP without inequalities

ξj = argmin
ξj

1

2
ξTj Qξj + qT (pj)ξj

Aeqξj = b(pj)

• Step 2: Project to Constrained Set8

ξ∗j = argmin
ξj

1

2
∥ξj − ξj∥22

Aeqξj = b(pj), g(ξj) ≤ 0

9 Define constraint residuals: rj(ξ∗j) = ∥max(0, g(ξ∗j))∥1.
10 ConstraintEliteSet← Select top n samples of pj, ξ

∗
j with lowest

constraint residuals.
11 cost← cu(ξ

∗
j) + rj(ξ

∗
j), over ConstraintEliteSet

12 append cost to CostList

13 EliteSet← Select top q samples of (pj, ξ
∗
j ) with lowest cost from

CostList.
14 (l+1µp,

l+1Σp)← Update distribution based on EliteSet

15 end
16 return Parameter pj and ξ∗j corresponding to lowest cu(ξ∗j ) + rj(ξ

∗
j ) in the EliteSet

[
ξ1 ... ξn
µ1 ... µn

]
=

constant︷ ︸︸ ︷
(

[
Q AT

eq

Aeq 0

]−1

)

[
q(p1) ... q(pn)
b(p1) ... b(pn)

]
, (17)

The inverse on the right-hand side of (17) needs to be computed only once, irrespective
of the batch size. Thus the batch solution of QP reduces to just a large matrix-vector
product that can be trivially accelerated over GPUs.

The Algorithm 1 is build on the recent work [22] to handle the projection operation
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on line 8. This recent work showed that the core numerical algebra associated with
projecting sampled trajectories on the collision avoidance constraints and motion bounds
has the same batch QP structure as (16) and (17). The proposed Algorithm 1 uses
an extension of [22] that includes curvature, centripetal acceleration bounds, and lane
boundary constraints while retaining its efficient batch projection update rule [23].

4.3 Learning a Good Initialization Distribution
This section presents a Behaviour Cloning (BC) framework to learn a neural-network
policy that maps observations o to optimal behavioural inputs p. We assume access to a
dataset o, τ e that demonstrates the expert (optimal) trajectory τ e for each observation
vector o. The core challenge is that demonstrations of optimal p are available indirectly
through the expert trajectory τ e.

Observations Feed-Forward 
Network

Differentiable Optimizer Loss Function
p 

a)

ξ* 

Encoder
𝝓

Observations

 Expert Trajectory
𝝈2

μ

    Latent 
    Distribution

O

𝜏
e

𝜖 ∼ N(0, I) 

z

Reparameterization

Reconstructed 
Trajectory

Observations

O

b)

             

                

      

p 

Decoder
𝜭 ξ* 

Figure 6. (a) The proposed BC framework combines conventional feedforward and differen-
tiable optimization layers. (b) To learn a good initialization distribution, a CVAE is trained to
approximate the optimal distribution of p that results in prediction ξ∗ as close as possible to
expert demonstrations τ e.

The problem of indirect observation is addressed by using a network architecture com-
bining conventional feedforward (imperative node) and differentiable optimization layers
(declarative node) [20]. Figure 6(a) presents an overview of the main concept. The
learnable weights are only present in the feedforward layer. It takes in observations
o to output the behavioural inputs p, which is then fed to an optimizer resulting in an
optimal trajectory ξ∗. The BC loss is computed over ξ∗. The backpropagation required
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for updating the weights of the feedforward layer needs to trace the gradient of the loss
function through the optimization layer.

4.3.1 Need for CVAE

The learned policy needs to induce a distribution over p, such that for each observation
o, a sample is drawn from the learned distribution to initialize the bi-level optimizer
presented in Algorithm 1 (line 4). With this motivation, a probabilistic generative model
called Conditional Variational Autoencoder (CVAE) [24], [25], illustrated in Figure 6(b),
is used as the learning framework. It consists of an encoder and decoder architecture
constructed from a Multi-layer Perceptron (MLP) with weights ϕ and θ respectively.
Additionally, the decoder network has an optimization layer that takes the output p of its
MLP to produce an estimate of an optimal trajectory ξ∗.

Let z be a latent variable such that the pθ(z) represents the prior isotropic normal
distribution N (0, I). The decoder network maps this distribution to pθ(ξ

∗|z, o). The
encoder network on the other hand maps (o, τ e) to a distribution qϕ(z|o, τ e) over z. In the
offline phase, both the networks are trained end-to-end with loss function (18). The first
term is the reconstruction loss responsible for bringing the output of the decoder network
as close as possible to the expert trajectory. The second term in (18) acts as a regularizer
that aims to make the learned latent distribution qϕ(z|o, τ e) as close as possible to the
prior normal distribution. The β hyperparameter acts as a trade-off between the two cost
terms.

LCVAE = min
θ,ϕ

∑
∥Wξ∗(θ,ϕ)− τ e∥22 + β DKL[qϕ(z | o, τ e) | pθ(z)] (18)

where W is a diagonal matrix formed with W. In the inferencing (online) phase, samples
of z are drawn from the prior isotropic normal distribution and then passed through the
decoder MLP, conditioned on observations o, to get samples of optimal behavioural inputs
p. Finally, the input samples are passed through the optimizer to generate distribution for
the optimal trajectory ξ∗.

4.3.2 Choice of Differentiable Optimizer

Ideally, the entire lower-level trajectory optimizer (14b) - (14c) should be embedded into
the CVAE decoder architecture. However, backpropagating through such non-convex
optimization is fraught with technical difficulties. The recent successes of learning with
optimization layers have come while embedding convex optimizers into neural networks
[20]. Thus, by adopting a simplification as shown in Figure 6(b), the optimiztion layer
is constructed with convex cost (14b) and affine equality constraints in (14c), both of
which depend explicitly on p.
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(c) (d)

Figure 7. (a),(c) shows the trajectory distribution resulting from sampling behavioural inputs p
from a Gaussian distribution. (b) shows the corresponding distribution when sampling p from
a learned CVAE. As can be seen, CVAE results in a more structured and smoother trajectory
distribution concentrated around the expert demonstration, shown in black. The trajectory samples
also conform to lane boundaries shown in dotted black lines. The blue rectangle represents
the neighbouring vehicles moving along straight-line (blue) trajectories. The green rectangle
represents the ego vehicle. (d) shows CVAE generalizing to a new traffic scenario where the other
vehicles drive in a straight line at slower speeds. It results in a trajectory distribution conforming
to the lane boundaries and towards the free lane.

The inequality constraints are ignored since the behavioural inputs p are not depended
on it. The intuition is that the expert trajectory will be collision-free and kinematically
feasible, therefore automatically satisfying the inequality constraints. Thus, the main
goal is to figure out the right set of p to mimic the expert behaviour as closely as possible.

4.3.3 Example of a CVAE Output

Figure 7 contrasts initialization of Algorithm 1 from a naive Gaussian and the learned
CVAE distribution. For Figure 7(a),(c), the p are sampled from a Gaussian distribution
to solve the QP presented in line 7 of Algorithm 1, resulting in a distribution over
trajectories ξ∗. The same process applies to drawing p from the CVAE to solve the
QP, resulting in a distribution over trajectories ξ∗ in Figure 7(b),(d). Evidently, the
distribution resulting from p drawn from CVAE is smoother than Gaussian sampling,
conforms to lane boundaries, is concentrated around the expert demonstration trajectory
and generalizes to new traffic scenarios.
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5 Results
This chapter describes the implementation details of the proposed bi-level optimizer
and CVAE model. It introduces the baselines, benchmarking scenarios and presents the
findings of the experiments.

5.1 Implementation Details
The Algorithm 1, including the lower-level optimizer, is implemented in Python using
JAX [26] library as the GPU-accelerated linear algebra backend. The matrix W in (1)
is constructed from a 10th order polynomial. The simulation pipeline was built on top
of the Highway Environment (highway-env) simulator [27]. The neighbouring vehicles
used Intelligent Driver Model (IDM) [28] for longitudinal and MOBIL [29] for lateral
control.

5.1.1 Hyper-parameter Selection

The sampling size n in Algorithm 1 was 1000. The ConstraintEliteSet (line 10, Algo-
rithm 1) and EliteSet (line 13, Algorithm 1) had 150 and 50 samples respectively. The
behavioural input p was modelled as four set points for lateral offsets and desired longi-
tudinal velocities for the bi-level optimizer. That is, p =

[
yd,1, . . . , yd,4, vd,1, . . . , vd,4

]
.

The planning horizon is divided into four segments, and one pair of lateral offset and
desired velocity is associated with each segment. The Algorithm 1 computes the optimal
p along with the associated trajectory. γ value in (15c) is 0.9.

5.1.2 CVAE Training

The details of the encoder and decoder network architecture of our CVAE are presented
in Table 2. During training, the input to the CVAE is the expert trajectory and a 55-
dimensional observation vector o containing the state of the ego-vehicle, the ten closest
obstacles and the road boundary. For the ego-vehicle, the state consists of a heading,
lateral and longitudinal speeds. The state consists of longitudinal and lateral positions and
the corresponding velocities for the ten closest obstacles. The position-level information
is expressed with respect to the centre of the ego vehicle.

During inferencing, the decoder network only needs o and samples of z drawn from the
prior isotropic Gaussian. The expert demonstration of optimal trajectories for CVAE
training is collected offline using the cross-entropy method with a batch size of 1000. We
note that our demonstrations could be sub-optimal. However, even with such a simple
data set, the CVAE can learn useful initialization for the proposed bi-level optimizer
presented in Algorithm 1 (see Figure 7).
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Encoder Network
ϕ

Block Layers Output Size Activation

MLP 1-4 Linear, Batchnorm 1024 ReLU

MLP 5 Linear, Batchnorm 256 ReLU

Mean Linear 2 None

Variance Linear 2 Softplus

Decoder Network
θ

Block Layers Output Size Activation

MLP 1-4 Linear, Batchnorm 1024 ReLU

MLP 5 Linear, Batchnorm 256 ReLU

p Linear 8 None

ξ∗ Optimization Layer 22 None

Table 2. CVAE architecture- composed of Encoder and Decoder Networks as explained
in Figure 6(b).

The optimizer used for training the CVAE was AdamW [30] with a learning rate of
1e-4 and weight decay of 6e-5 for a total of 80 epochs. Moreover, the learning rate
was decayed by γ = 0.1 every ten epochs. The posterior collapse or the KL vanishing
problem is tackled by applying a monotonic annealing schedule of β coefficient [31],
starting with 0 and gradually annealing the β at each optimizer step in loss function 18.

5.1.3 MPC Baselines

Algorithm 1 is used in a receding horizon manner to create an MPC variant of the
bi-level optimizer- referred to as MPC-Bi-Level. It takes the same observation vector o
as the CVAE and outputs polynomial coefficients of the optimal trajectories. These are
converted to steering and acceleration input vectors, and the ego-vehicle executes the
first five elements of these in the open loop before initiating the next replanning. The
MPC-Bi-Level is compared with the following baselines:

• MPC-Vanilla: This baseline runs without a behavioural layer. It only includes the
lower-level optimization (14b) - (14c). The input p is a scalar representing the set
point for the desired longitudinal velocity.

• MPC-Grid: This baseline uses the same behavioural inputs p as the MPC-Bi-Level
but samples them from a pre-specified fixed grid.
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• MPC-Random: This baseline is similar to MPC-Grid but samples p from a Gaus-
sian distribution.

• Batch-MPC of [32]: This baseline is similar to MPC-Grid but uses a different
set of behavioural inputs, namely goal positions for the longitudinal and lateral
components of the trajectory. That is, p =

[
xf , yf

]
.

5.1.4 RL Baselines

MPC-Bi-Level is also compared against Deep Q-Network (DQN) and Proximal Policy
Optimization (PPO)-discrete, developed using the framework outlined in [33] and [34]
respectively. The input observation is the same as the MPC-Bi-Level. The action space
is discrete with five different behaviours, namely faster, slower, left-lane change, idle,
right-lane change.

These behaviours are then mapped to a set point for lateral offset or longitudinal ve-
locity and tracked through a PID controller using appropriate steering and acceleration
commands. DQN and PPO have been trained on the highway-env simulator using
Stable-Baselines 3 [35]. The policy estimators employed in RL baselines are Multi-Layer
Perceptrons (MLPs) with two hidden layers of 256 neurons each. The action space is
discrete with the following different behaviours:

• faster: Increase velocity by 5 m/s

• slower: Decrease velocity by 5 m/s

• left-lane change: change lateral position by 4 m to the left of the current position.

• idle: Keep moving with the current velocity and lateral offset set-points.

• right-lane change: change lateral position by 4 m to the right of the current
position.

Table 3 summarises the complete set of RL training hyper-parameters.

5.1.5 Environments, Tasks, and Metrics

The highway driving scenarios are presented in Figure 8. Each scenario has two different
traffic densities except for the two-way environment. We use the internal parameter of
highway-env named "density" to control how closely each vehicle is placed at the start
of the simulation. The RL baselines did not perform well in very dense environments
and thus were tested in sparser environments than the MPC-based approaches. In each
scenario, we evaluated 50 episodes with different randomly initialized traffic. The
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Table 3. RL baselines training hyper-parameters

Agent Parameter Value
Number of training steps 5M
Policy Scheduling Time 1s

Input neurons 55
Hidden layers 2

Hidden layers neurons 256
Output neurons 5
Discount factor 0.8
Learning rate 5e-4

DQN Replay Memory size 15k
Initial exploration constant 1
Final exploration constant 0.1

Target Network update frequency 50
Batch size 32

PPO number of steps 10
Batch size 64

Generalized Advantage Estimation(GAE) λ 0.95
clipping coefficient 0.2

value-function coefficient 0.5

random seed of the simulator was fixed to ensure that all RL and MPC baselines were
benchmarked across the same set of traffic configurations.

 Four Lane  
Density 2.5

MPC Environments

 Four Lane  
Density 3.0

 Two Lane  
Density 1.5

 Two Lane  
Density 1.0

RL Environments

 Four Lane  
Density 1.0

 Four Lane  
Density 1.5

 Two Lane  
Density 1.5

 Two Lane  
Density 1.0

Ego Vehicle

  Other 
Vehicles 

Two Way Environment

Figure 8. Two / four-lane and two-way driving scenarios with varying traffic density for
benchmarking proposed approach with MPC and RL baselines.

The task in the experiment was for the ego vehicle to drive as fast as possible without
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colliding with the obstacles and going outside the lane boundary. Thus, the upper-
level cost of the bi-level optimizer has the form (

√
(ẋ∗(t))2 + (ẏ∗(t))2 − vmax)

2, where
(ẋ∗(t), ẏ∗(t)) are the optimal velocity profiles obtained from the lower-level optimization.
Note that these are obtained from ξ∗ through relationship (1). The constraints of the
lower-level optimization handle safety. The evaluation metric has two components:
(i) collision rate and (ii) average velocity achieved within an episode. Since the ego
vehicle can achieve arbitrary high velocity while driving rashly, only velocities from
collision-free episodes are considered.

5.2 Empirical Validation of Convergence

Figure 9. Empirical validation of Algorithm 1. (a), (b) The top figures shows the trajectory
distribution resulting from sampling behavioural inputs p from a Gaussian distribution and solving
the QP at line 7 of Algorithm 1. The bottom plots in both figures show the modified distribution
after projection onto the constrained set. Both (a) and (b) correspond to the distribution at the first
and the fifth iteration, respectively. (c). As the iterations progress, the variance of the trajectory
distribution shrinks, and the upper-level cost in the top figure saturates, indicating convergence of
the bi-level optimizer. Bottom figure shows the constraint residual of the lower-level optimization
at each iteration.

Figure 9 shows the performance of the bi-level optimizer presented in Algorithm 1
on a typical environment with static obstacles. The top plot of Figure 9(a),(b) shows
the trajectory distributions at the first and the fifth iteration, respectively. Here, the
behavioural inputs p are sampled from a Gaussian distribution to solve the QP presented
in line 7 of Algorithm 1. The bottom plots in these figures show how the distribution
changes when we project them onto the feasible set of collision avoidance and kinematic
constraints. The following key observations can be made from Figure 9:

• The projection operation results in trajectories residing in different homotopies,
proving crucial for proper state space exploration.

• The variance of the trajectory distribution shrinks, and the upper-level cost, Figure
9(c) (top), saturates. This is a typical convergent behaviour observed in sampling-
based optimizers such as Algorithm 1. Please note that the shrinking of trajectory
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variance in Figure 9(a),(b) (top) also signifies that the sampling distribution for p
has also converged to an optimal one.

• Finally, Figure 9(c) (bottom) validates the role of the projection operator.

Planning to overtake Maneuver  Successful overtake

Aggressively Cutting In Emergency Braking  Averting Collision

 t  t + Δt
 
 t + 2Δt

Car Cutting In Lane Changing Maneuver  Successful Lane Change

Figure 10. The proposed bi-level optimizer ensures safe driving in dense and potentially rash
traffic scenarios. The top figure shows a scenario where a neighbouring vehicle (blue) suddenly
cuts in front of the ego-vehicle (green), requiring emergency braking. The middle figure shows a
successful overtaking in dense traffic. The bottom figure is similar to the one on the top but in a
two-lane setting.

5.3 Importance of Bi-Level Adaptation

Figure 11. Comparison of MPC Bi-Level with other MPC-based baselines in two (a, c) and
four-lane (b, d) driving scenarios.
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In a two-lane driving scenario, there is only a limited set of manoeuvres that the ego-
vehicle can do. Thus, on a low traffic density, all the baselines except MPC-Random
achieve perfect collision rate (Figure 11(a)). This shows that having a dedicated be-
havioural layer on simple driving scenarios is not critical. The observation is unsurprising
as existing results like [36], [37] have shown promising results without explicitly incor-
porating behavioural inputs, but in sparse environments.

Figure 11(a) also shows that in a sparse two-lane environment, a simple grid-search
used by MPC-Grid and Batch-MPC [32] is enough to come up with the right set of
behavioural inputs. However, as traffic density increases in the two-lane setting, the
safety improvement provided by the MPC-Bi-Level becomes distinctly apparent (see
Figure 10). The trend is particularly stark in highly dense four-lane driving scenarios,
where the proposed approach provides a 4 - 10x reduction in collision rate over other
baselines. Figure 11(b),(d) shows that the average speed achieved by the MPC-Bi-Level
is generally either better or competitive with all the baselines.

5.4 Safety Improvements over RL
Despite training DQN and PPO-discrete for over 5 million steps, it could reasonably
work in sparse two-lane / two-way traffic scenarios. Nevertheless, the collision rate and
velocity (Figure 12(a, c)) achieved by DQN and PPO-discrete were still drastically worse
than the MPC-Bi-Level. The performance gap increased further in a dense four-lane
setting, as shown in Figure 12(b, d).

Figure 12. Comparison of MPC Bi-Level with other RL-based baselines in two (a, c) and
four-lane (b, d) driving scenarios.

DQN and PPO fail to work reasonably in a relatively straightforward two-way highway
driving scenario (see Figure 8). MPC-based approaches, including the MPC Bi-Level,
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achieved zero collision rate and higher velocity than RL baselines, as shown in Figure
13(a, b).

Figure 13. Comparison of MPC Bi-Level with other RL-based baselines in two-way (a, b)
driving scenario.

5.5 Effect of CVAE Initialization
Figure 14(a) shows that for a relatively small batch size of 250, the learned CVAE
initializer achieves a 4x reduction in collision rate over the naive Gaussian distribution.
However, the performance gap between both initializations reduces a bit as the batch size
is increased (Figure 14(b)). Thus, both Figure 14(a),(b) validate that a learned CVAE
initializer can be particularly helpful when Algorithm 1 is run with a limited computation
budget or on resource-constrained hardware, wherein we have to contend with a smaller
batch size for Algorithm 1.

Figure 14. The computational advantage achieved by initializing Algorithm 1 through samples
drawn from learned CVAE over baseline Gaussian distribution. CVAE allows for achieving a
better collision rate with smaller batch sizes.

5.6 Computation Time
Figure 15 shows the computation time required for the Algorithm 1 on a laptop with
RTX 3080 GPU. In sparse traffic scenarios, two iterations of Algorithm 1 proved enough
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to achieve a low collision rate when initialized with the learned CVAE. A batch size of
250 corresponds to a feedback rate of around 100 Hz. All the benchmarking presented
in Section 5.3, 5.4 were obtained with the same batch size but used five iterations
of Algorithm 1, totalling 0.03s. Figure 15(b) demonstrates a moderate increase in
the computation time with respect to batch size; even for a batch size of 1000, the
computation time was less than 0.06s. Finally, both Fig.15(a), (b) show that the additional
overhead of inferencing the learned CVAE is very minimal.

Figure 15. Samples drawn from learnt CVAE distribution leads to better collision rate in lesser
iterations.
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6 Conclusion and Future Work
This thesis proposes a novel bi-level optimization for combined behaviour and trajectory
planning. It can simultaneously search for the optimal higher-level behavioural decisions
and the lower-level trajectories necessary for executing them. The custom optimizer
combines features from gradient-free and sampling-based optimization with QP. It runs
in real-time due to an efficient GPU parallelization of the lower-level optimization.

This thesis also presents a CVAE architecture constructed from a feedforward neural net-
work and differentiable optimization layers to learn good initialization for the proposed
bi-level optimizer. Extensive experiments exhibit the importance of having a dedicated
behavioural layer, and the proposed approach outperforms MPC and RL baselines in
dense traffic scenarios. Finally, the learned CVAE initialization improved the computa-
tional tractability of the proposed bi-level optimizer by reducing the batch size and the
number of upper-level iterations required to achieve a given collision rate.

One of the significant limitations of behavioural cloning of behavioural inputs is that
expert demonstrations can be sub-optimal or challenging to obtain in dense traffic
situations. The future work involves formulating a behavioural input learning pipeline
with a purely self-supervision loss, reducing the need for collecting expert demonstrations
in challenging dense traffic situations. Moreover, the relative success of learning with
straightforward differentiable optimization layers paves the way for embedding more
complex optimizers that help learn optimal behavioural inputs such that it can guide the
bi-level optimizer to work with the reduced batch size and no upper-level iterations in
dense traffic scenarios.
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7 Appendix
The video demos are presented in the project page:
https://sites.google.com/view/mpc-bi-level

The source code to reproduce the experiments is available at the following GitHub
repository:
https://github.com/jatan12/MPC-Bi-Level
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