
University of Tartu

Faculty of Science and Technology

Institute of Technology

Erki Veeväli

Development of a continuous teleoperation system for

urban road vehicle
Bachelor’s thesis (12 ECTS)

Computer Engineering

Supervisors:

PhD Karl Kruusamäe

PhD Ulrich Norbisrath

Tartu 2023

Abstract

Development of a continuous teleoperation system for urban road vehicle

Teleoperation is a remote control technology that also provides situational awareness to the

remote operator via camera feeds and other data. In the context of road vehicles, teleoperation

is needed for testing the self-driving abilities as well as assisting the vehicle or implementing

a fully teleoperated solution on a similar platform. At the University of Tartu, a self-driving

vehicle is being developed at Autonomous Driving Lab (ADL), which currently lacks a

suitable teleoperation solution.

The goal of this thesis is to develop a prototype teleoperation solution, which could be later

used on the actual self-driving vehicle. During the process multiple software solutions are

compared, taking into account previous teleoperation test results from ADL as well. The

result is a teleoperation prototype that uses RTCBot, which is a Python library for

teleoperation. Finally the prototype is tested on the Robotont platform

CERCS: T120 Systems engineering, T125 Robotics

Keywords: teleoperation, self-driving vehicles

2

Lühikokkuvõte

Linnasõiduki pideva kaugjuhtimissüsteemi arendus

Teleopereerimine on kaugjuhtimistehnoloogia, mille puhul tagatakse kaugjuhile pidev

olukorrateadlikkus, seda nii läbi videopildi roboti ümber toimuvast kui ka muudelt sensoritelt

saadava info abil. Autode kontekstis on teleopereerimist vaja peamiselt isejuhtivate autode

arenduses ja testimisel või ka sarnastel sõidukiplatformidel eraldi lahedndusena

kasutamiseks. Tartu Ülikoolis arendatakse Isejuhtivate sõidukite laboris autot, millel hetkel

puudub sobilik kaugjuhtimise lahendus.

Antud töö eesmärgiks on luua isejuhtiva auto jaoks kasutatava kaugjuhtimissüsteemi

prototüüp. Sealjuures võrreldakse erinevaid tarkvaravõimalusi selle loomiseks, võttes arvesse

ka eelnevate iesjuhtival sõidukil läbi viidud kaugjuhtimistestide tulemusi. Tulemusena valmib

kaugjuhtimissüsteem kasutades RTCBoti, mis on spetsiaalselt kaugjuhtimise tarbeks

kasutatav pythoni teek ning kaugjuhtimist testitakse Robotont robotiplaformil.

CERCS: T120 Süsteemitehnoloogia, T125 Robootika

Märksõnad: kaugjuhtimine, isejuhtivad autod

3

Contents

Abstract 2
Lühikokkuvõte 3
Contents 4
Acronyms 5
Introduction 6
1 Literature review 7

1.1 Teleoperation 7
1.2 Existing teleoperation solutions 11

1.2.1 Remote-controlled road vehicles in Estonia 11
1.3 Previous testing at ADL 13

1.3.1 GetUgo 13
1.3.2 RcSnail 14

2 Requirements 15
2.1 Objective 15
2.2 Functional requirements 15
2.3 Research questions 15
2.4 System requirements 16

2.4.1 Software 16
2.4.2 Hardware 17

3 Implementation 18
3.1 Architecture of the solution 18

3.1.1 RTCBot 20
3.1.2 Networking 21
3.1.3 Technical challenges 21

4 Testing 23
4.1 Migrating to Autoware 24

5 Conclusions 25
Bibliography 26
Acknowledgements 28
Appendices 29

Appendix 1. Source code 29
Licence 33

4

Acronyms

ADL - Autonomous Driving Lab

ROS - Robot Operating System

OS - Operating System

CPU - Central Processing Unit

RAM - Random Access Memory

GPU - Graphics Processing Unit

API - Application Programming Interface

IEEE - Institute of Electrical and Electronics Engineers

HTML - HyperText Markup Language

LAN - Local Area Network

VPN - Virtual Private Network

5

Introduction

At the University of Tartu the Autonomous Driving Lab (ADL) is currently one of the

research groups working on teleoperation. They have been developing a self-driving vehicle

since 2019. In its current state, their self-driving vehicle, a Lexus RX450h has self-driving

capabilities but lacks a working and open enough teleoperation solution for allowing a human

operator to control it on the streets from a distance.[1]

The topic of vehicle teleoperation has been more widely studied since the 1970s with usages

in the air, on the ground and underwater [2]. The use of teleoperation has many applications,

ranging from military operations[3] to industrial automation[4] and transportation[5]. Mostly

in situations where a human operator can not be present, due to dangers or inconveniences

[5]. Nowadays, one of the promising areas of application is in the development of self-driving

vehicles, where teleoperation systems are needed for testing and deploying self-driving

features. That’s because a remote human operator is still expected to be ready to intervene

even with fully autonomous self-driving vehicles, with the highest level of autonomy [6].

However, open-source software solutions for implementing such teleoperation on vehicles

running ROS (Robot Operating System) or Autoware are not widely available. That is

because providing a reliable low-latency camera stream is not an easy task. Also on the other

hand, ROS is a very versatile platform, which makes building a one-for-all teleoperation

system for various vehicles practically impossible.

This thesis addresses the lack of easily implementable teleoperation solutions for ROS

vehicles as well as explores the existing possibilities of implementing teleoperation and

documents developing a prototype teleoperation system for the ADL self-driving vehicle. The

goal of the system is to be compatible with various vehicles running ROS and be easily

usable in an actual self-driving vehicle at ADL. This work on teleoperation also provides a

starting point for other students getting into teleoperation on other platforms as well.

6

https://www.zotero.org/google-docs/?ATStkI
https://www.zotero.org/google-docs/?GJm8oV
https://www.zotero.org/google-docs/?fFEF56
https://www.zotero.org/google-docs/?mwTcQU
https://www.zotero.org/google-docs/?AmVkVx
https://www.zotero.org/google-docs/?5oJ2CM
https://www.zotero.org/google-docs/?DRn5Bo

1 Literature review

1.1 Teleoperation

This chapter sets the terminological grounds and gives a brief overview of the underlying

technologies for teleoperation, mainly explaining the realm of teleoperation from the

perspective of usage on-road vehicles.

Teleoperation is a technology that provides an operator remote access to a machine to control

it. A defining feature of a teleoperation system is that it has to provide situational awareness

to the operator in addition to allowing the operator to issue commands [2]. That usually

means one or more camera feeds and other data that might help the operator localise the

machine.

The operator’s awareness of the remote situation plays a crucial role in the success of

teleoperating a vehicle [5]. Therefore the design of the environment for the remote operator

and the information presented is also important. Teleoperation systems need to provide

operators with just the right amount of information at the right times to be most effective [7].

Other important technological considerations include vehicle and system architecture and

ensuring connectivity between the operator and vehicle [7].

In the context of road vehicles, teleoperation plays an important role in the development of

autonomous (self-driving) vehicles [5]. Road-vehicle teleoperation systems usually share the

same general architecture as other types of teleoperation systems - the operator needs to have

a low-latency communication channel with the vehicle for a video feed and other driving

commands.

7

https://www.zotero.org/google-docs/?kxvQ8G
https://www.zotero.org/google-docs/?QjIRZe
https://www.zotero.org/google-docs/?6sLM8K
https://www.zotero.org/google-docs/?EZFJ5I
https://www.zotero.org/google-docs/?6NAvIr

A simplified schematic of an example teleoperation system is depicted in Figure 1. It shows

the possible main components on the vehicle side, which include antennae and modems for

network connectivity, a computer for command and video processing as well as ROS for

handling vehicle movement. On the other end of the communication channel is the operator’s

interface in the control centre, with support for all the necessary peripherals. This

communication channel needs to be low-latency enough in all network conditions to allow

controlling the vehicle in real-time.

Figure 1. Architectural diagram of a vehicle teleoperation system. [8]

For maximal situational awareness, the operator’s interface should be designed to resemble

an actual vehicle [5]. That means controls - a steering wheel and pedals as well as buttons

placed similarly to an actual car and monitors placed around the operator to see the vehicle’s

surroundings at a glance (Figure 2).

8

https://www.zotero.org/google-docs/?h53Vyb
https://www.zotero.org/google-docs/?Tvz5lM

Figure 2. Example of a teleoperator’s interface. [9]

Problems with vehicle teleoperation also mostly lay in the same categories as in other fields

[5], for example, latency, image quality, and reactiveness. Creating an environment for the

operator which feels actually like being in a vehicle is one of the main challenges ahead.

Lack of physical feedback and other perception issues have been reported as the biggest

challenges along with communication quality with the vehicle [5]. Figure 3 depicts data from

a study which analysed the challenges of remote driving by operators’ feedback. That shows

the major challenges users have reported are related to a lack of physical sensing and

perception issues followed by communication quality. This means the two most important

parts of a teleoperation system are having a good underlying solution for high-quality

streaming and then focusing on the situational awareness part. Other functions like audio are

not considered as important.

For this thesis, the results about situational awareness are not as important, but rather we need

to focus on the communication quality block in Figure 3, which clearly shows that keeping

the latency as low as possible needs to be a priority for our solution.

9

https://www.zotero.org/google-docs/?aXrwbl
https://www.zotero.org/google-docs/?yC5yuA
https://www.zotero.org/google-docs/?ABQLev

Figure 3. Categories of teleoperation challenges. [5]

10

https://www.zotero.org/google-docs/?1zlQgO

1.2 Existing teleoperation solutions

There are already a few providers/developers of teleoperation systems in the world. Examples

of those companies include driveU [10] and getUgo[11] but also Estonian companies

ELMO[12] and Clevon[13], which are using teleoperation on their own vehicles.

DriveU offers teleoperation software solutions for various vehicles from delivery robots to

heavy machinery, promising up to 4K streaming and API for transmitting various control data

[10].

GetUgo is a Latvian company, which offers a complete teleoperation software and hardware

platform [11]. Their implementation promises to work on various vehicles as well, ranging

from autonomous vehicles to heavy machinery, with claimed latency under 100ms with

encrypted communications and scalability built in [11].

1.2.1 Remote-controlled road vehicles in Estonia

There are multiple successfully implemented teleoperation systems in Estonia, that are

already being used on the streets. One example is ELMO, which is offering car sharing and

renting services with their vehicles[12]. Teleoperation is used for delivering rental cars to

customers, exactly where they need them. Since teleoperation is only used for delivering the

car and every car isn’t being teleoperated all the time, the teleoperators can switch between

different vehicles. A typical scenario of teleoperating an Elmo vehicle can be seen in Figure

4. Their teleoperation systems have been approved by Estonia's Transport Administration and

they are serving customers daily with teleoperated electric vehicles [12].

11

https://www.zotero.org/google-docs/?gtGsIc
https://www.zotero.org/google-docs/?VYL8R9
https://www.zotero.org/google-docs/?gYmkjd
https://www.zotero.org/google-docs/?6X5rrK
https://www.zotero.org/google-docs/?o12K5v
https://www.zotero.org/google-docs/?bNC4yR
https://www.zotero.org/google-docs/?ERtEJs
https://www.zotero.org/google-docs/?6Re5zI
https://www.zotero.org/google-docs/?MZ8AZm

Figure 4. Elmo’s teleoperation setup [14]

Another example of teleoperated vehicles in Estonia is Clevon, whose delivery vehicle

CLEVON 1 uses teleoperation for parcel delivery as well as the development of autonomous

driving systems [13]. Unlike Elmo they don’t focus on teleoperating existing vehicles but

have developed their own new vehicle platform (Figure 5), specially for parcel delivery.

Creating a fully teleoperated vehicle means there is no need for a driver’s seat and therefore

the vehicle can be smaller and fit more cargo instead.

Figure 5. Clevon1 - Clevon’s delivery vehicle platform [13]

12

https://www.zotero.org/google-docs/?lE95D1
https://www.zotero.org/google-docs/?4Wdx0b
https://www.zotero.org/google-docs/?9BA1We

1.3 Previous testing at ADL

Multiple teleoperation implementations have been already tested on the actual vehicle before

this thesis. The author has also participated in testing two different solutions from different

providers - GetUgo and RcSnail. Participating in that work gave the author actual experience

of remotely driving a vehicle as well as allowed to see the strengths and weaknesses of these

competing solutions.

1.3.1 GetUgo

First of the tested solutions was from GetUgo[11]. A successful streaming quality result of

that solution can be seen in Figure 6. Most problems experienced during testing were related

to excessive latency and streaming quality issues or problems with network connectivity. An

example of low streaming quality can be seen in Figure 7. Ultimately these network issues

were resolved.

Figure 6. Example of achieved streaming quality.

13

https://www.zotero.org/google-docs/?pcTQTC

Figure 7. Example of worse streaming quality.

The main problem which guided ADL from not using that solution in the end was the use of

GetUgo’s servers, which caused excessive latency, connection problems and unexpected

downtime and errors.

1.3.2 RcSnail

Testing the second solution revealed similar results for the image quality. The teleoperation

software there was from RcSnail [15] and was initially meant for controlling RC cars but now

modified to run on an actual road vehicle.

Deciding against this solution was due to the authentication between the car and the operator

happening through RcSnail’s server, which meant they effectively had control over access to

the car remotely. In addition to that some of the source code was closed-source, which meant

there was no way to verify the security aspects there. That was also the reason why

open-source software was added as a requirement for the new solution and a reminder to

think about the authentication process between the car and teleoperator for establishing a

secure connection.

14

https://www.zotero.org/google-docs/?zhJGGp

2 Requirements

The given requirements are based on the findings of previous teleoperation tests at ADL.

2.1 Objective

The objective of this thesis is to develop an open-source solution to teleoperate a vehicle over

the network in an urban setting, e.g. the ADL self-driving vehicle. That includes validating

other available software and/or modifying it in addition to writing new software. Finally, the

proposed system has to meet the specified requirements to be able to solve the problem at

hand.

2.2 Functional requirements

Functional requirements define how a system should behave or what functions it needs to

have. These requirements are derived from the objective, by specifying the functions it needs

to have to meet the objective. In our case the provided solution has to allow full teleoperation

of the testing vehicle, which must include:

1. The operator can send driving commands to steer, accelerate and brake the vehicle

2. The operator can see at least one live video feed of the vehicle's surroundings

3. Dual-way audio connection between the operator and the safety driver.

2.3 Research questions

In addition the following research questions were posed, to find out the capabilities of the

proposed solution:

1. Is it possible to send multiple video feeds via a single connection? If so, how many

and with which quality?

2. What is the latency of the communication between the vehicle and the teleoperator?

3. How can additional data be sent via the same connection? For example, controlling

various extra equipment on the vehicle or getting data about the vehicle’s current state

15

2.4 System requirements

System requirements describe the functions and features of the system as well as set describe

the requirements of software and hardware components that need to be considered in

development.

2.4.1 Software

On the operator’s side:

● Client application running without any additional software installed, for example in a

web browser. That is necessary for minimising the need to install software on various

computers as well as ensuring compatibility with various operating systems.

● Support for additional input devices (steering wheel, pedals, game controllers). As

this solution is meant to be eventually implemented on an actual vehicle, then using a

steering wheel and pedals is almost mandatory. Firstly to create a comfortable

environment and secondly for creating situational awareness for the operator, which

importance was discussed before.

On the vehicle:

● Computer running Ubuntu operating system along with ROS

● Camera feed available as video device in the OS

16

2.4.2 Hardware
The software needs to be able to run on the chosen testing platform - Robotont[16], which

hardware specifications are [16]:

● CPU: Intel Core i5 (7th Gen) 7260U (2 cores, up to 3.4 GHz)

● RAM: DDR4 2133 MHz 4 GB

● GPU: Intel Iris Plus Graphics 640

● Network: Intel Dual Band Wireless-AC 8265, IEEE 802.11a/b/g/n/ac

The ADL self-driving vehicles on-board computer’s hardware specifications are [17]:

● CPU: Intel Xeon

● RAM: 32GB

● GPU: NVIDIA RTX2080Ti

● Network: 6x Gigabit Ethernet

The hardware specifications indicate that we have plenty of processing power available on

the ADL self-driving vehicle, a lot more than on the Robotont. That means if our software is

able to run on Robotont, it should not easily run on the ADL vehicle as well.

17

https://www.zotero.org/google-docs/?M1iAOk
https://www.zotero.org/google-docs/?klS9HL
https://www.zotero.org/google-docs/?eVwc5n

3 Implementation

Implementation of the teleoperation system, which takes into account the previously laid out

requirements, started with choosing the software packages that could be used. Two main

options there were RTCBot [18] and aiortc [19]. Although some initial tests were conducted

with both, ultimately RTCBot was chosen for supporting video and audio streaming as well

as sending control commands via a single connection, which promises to fully satisfy

functional requirements 1 and 2 as well as partly solve requirement 3. Aiortc on the other

hand isn’t explicitly made for teleoperation, but general streaming applications, which would

have necessitated developing a custom solution for driving commands and other signalling.

3.1 Architecture of the solution

Now considering the set requirements and capabilities of the chosen software, a prototype

solution [20] was developed for further testing and development. After that, everything was

adapted to work on the Robotont [16] and tested on that platform as well. The architecture of

the solution is described in Figure 8.

Figure 8. Block diagram of my implementation.

The centre point of the RTCBot implementation is the Python teleoperation program, which

runs on the robot’s onboard computer. That code handles serving the user interface to a web

browser as well as all the communication with ROS and the onboard cameras.

18

https://www.zotero.org/google-docs/?nQdPL1
https://www.zotero.org/google-docs/?bcleo1
https://www.zotero.org/google-docs/?uQlmOv
https://www.zotero.org/google-docs/?leWNgc

Audio was also a requirement but considering that it is a less important part of the solution,

the priority was on the actual video streaming and control - not on audio. As RTCBot had

built-in support for one-way audio that was added to the camera stream and development of

dual-way audio solution was left as future work.

For testing on the Robotont[16] platform the driving commands consist of x- and y-axis

linear speed vectors moving around and a z-axis angular vector for turning, which is the

standard command structure for the Robotont. For a vehicle that steers by turning its (front)

wheels (e.g. the ADL self-driving car) a different set of commands needs to be implemented

that uses the acceleration, steering and braking commands that are available there.

The user interface consists of a simple HTML page, which is shown in Figure 9 with a video

element and some text to guide the user. All the commands are handled by capturing

keyboard key presses. Serving this website is handled by aiohttp[21], which is integrated with

RTCBot to serve the necessary javascript code for streaming and control commands to work

on the operator’s side. Those control commands are then converted to the robot’s driving

commands in the Python code and used to control the robot.

Figure 9. Screenshot of the teleoperator’s interface.

19

https://www.zotero.org/google-docs/?YuvlFf
https://www.zotero.org/google-docs/?2G03CO

The program logic on the robot’s side is depicted in Figure 10. Getting the feed from cameras

is solved by using RTCBot’s inbuilt OpenCV [22] implementation called CVCamera. That

gets processed by RTCBot and served to the teleoperator. Processed driving commands from

the operator are passed on to ROS using rospy and a publisher on the necessary values, which

runs in a separate thread in Python.

Figure 10. Program flow of the teleoperation software on the robot.

3.1.1 RTCBot

RTCBot is a Python library, purpose-built for building remote-control applications for various

robots [18]. Internally, RTCBot uses WebRTC via aiortc for its real-time streaming [18]. In

the documentation, we can find various tutorials with examples ranging from basic setup[23]

to using different controllers [24] and supporting multiple simultaneous connections [25].

Different operating systems are also supported - RTCBot claims to run on Ubuntu, Raspbian,

macOS and Windows, although on some platforms setup may be more complicated[26].

Being a small project, little active development goes on nowadays and besides the official

documentation, few resources are available to provide support. According to the GitHub

repository [27], RTCBot received its last minor update in August of 2022 with major updates

ranging back to over 2 years ago, which turned out to cause some compatibility issues later

on.

20

https://www.zotero.org/google-docs/?lgU2zE
https://www.zotero.org/google-docs/?OdilzW
https://www.zotero.org/google-docs/?4YRhs1
https://www.zotero.org/google-docs/?ekQckU
https://www.zotero.org/google-docs/?3J3vl3
https://www.zotero.org/google-docs/?wzfhe8
https://www.zotero.org/google-docs/?OqhPFP
https://www.zotero.org/google-docs/?7uNYxh

3.1.2 Networking

Since the teleoperator is expected to be at a remote location, creating a reliable and fast

network connection between the operator and vehicle is also important. The architecture

necessitates connecting two hosts from different LANs over the internet. For this thesis no

specific requirements on the configuration of said LANs were posed and implementing a

proprietary solution was not in the scope of work. Therefore existing software for handling

the network connection was used.

Three options the author explored were OpenVPN [28], WireGuard [29] and ZeroTier [30].

OpenVPN is a general-purpose VPN software, through which multiple hosts can be added to

the same virtual network and allow connecting that way [31]. Wireguard works on the same

principle but promises to be more performant [29], which is also desirable for our application.

The third option - ZeroTier was the easiest to configure, while not resulting in any noticeable

drop in performance.

Eventually, both ZeroTier and Wireguard were tested for teleoperation but ZeroTier was used

throughout testing due to easier setup on robot and operator sides. Although it is worth

keeping in mind that ZeroTier, is not free for an unlimited number of hosts. Wireguard on the

other hand is completely free to use and does not rely on service providers, which could be

desirable features for an actual deployment.

3.1.3 Technical challenges

Implementing the previously described solution did not come without any issues. Firstly,

constraining the OS version to Ubuntu 20.04 was needed, due to incompatibilities with

RTCBot. Versions 18.04 and 22.04 were also tested but without success. That set the

requirement of using Ubuntu 20.04 along with the compatible ROS version - ROS Noetic, on

the robot’s onboard computer.

21

https://www.zotero.org/google-docs/?IXSU08
https://www.zotero.org/google-docs/?kubRv5
https://www.zotero.org/google-docs/?H9W0Hu
https://www.zotero.org/google-docs/?0gnwUC
https://www.zotero.org/google-docs/?uVoCKo

Secondly, during testing, problems with pyOpenSSL[32] versioning arose. RTCBot was

found to require version 22.0 or lower. Version 22.0 was released in January of 2022, and by

the time of writing, 4 newer versions are already available [33]. Since pyOpenSSL is

dependent on the cryptography[34] library, a compatible version of that had to be installed as

well. Using incompatible versions of either software RTCBot failed to establish a connection

to the teleoperator and malfunction of other programs. Using pyOpenSSL v22.0 and

cryptography v35.0 was found to be a working configuration.

Since one of the optional requirements was support for multiple simultaneous camera

streams, implementing that was also explored. Due to a lack of support in the RTCBot, that

feature could not be added. Although it was possible to get streams from multiple sources,

there was no support in the RTCBot’s javascript side to get those streams through the same

connection. To at least partially meet that requirement, a feature to switch between different

camera sources was added, but only one of them could be visible to the user at a time.

Overall the core problem of RTCBot was dependency issues, the official documentation lists

16 dependencies to get the software running and with version updates to each of them,

problems are easy to come. A solution would be to containerize the software in some way, to

rely less on different software incompatibilities, but that was out of the scope of this thesis.

22

https://www.zotero.org/google-docs/?KzdL2D
https://www.zotero.org/google-docs/?YVtk3S
https://www.zotero.org/google-docs/?182Sy5

4 Testing

The software was tested using the Robotont [16] robot platform (Figure 11). That platform

was chosen for its availability to the author and for Ubuntu 20.04 as well as ROS running on

its onboard computer.

Figure 11. Teleoperation test with Robotont.

After solving installation and software compatibility problems, testing was successful on

Robotont. The author was able to successfully navigate the Robotont using keyboard input to

drive the robot according to the camera feed, with latencies comfortably allowing

teleoperation over a Wi-Fi network.

23

https://www.zotero.org/google-docs/?Zq2wBx

4.1 Migrating to Autoware

Since the goal is to ultimately run the developed software on the ADL self-driving vehicle,

there are things that need to be modified in the software to ensure compatibility. List of

changes includes:

● Changing the driving command structure - Robotont uses a system where it takes one

or more velocity vectors and moves accordingly. Autoware needs inputs for

acceleration, brake and wheel angle separately. For Robotont, there was a single

command (cmd_vel) that handled the movement in every direction and there was no

extra command for braking. In Autoware 3 different commands (accel_cmd,

steer_cmd and brake_cmd) need to be used to handle accelerating, steering and

braking respectively.

● Ensure compatibility with OS and other software versioning - since the compatible

Ubuntu version was found to be 20.04, this version needs to be running on the

vehicle’s onboard computer.

● Implementing any feedback data from the vehicle

Other changes can arise during testing, but the mentioned command structure seems to be the

main difference between the platforms.

24

5 Conclusions

The objective of this thesis was fulfilled - an open-source solution for teleoperating a vehicle

over the network was developed and tested on a small robot. Functional requirements 1 and 2

were completely met. Functional requirement 3 was only partially met since the audio is

working only one way - the remote operator can hear the car but not vice versa.

Due to previously discussed issues with RTCBot and multiple video streams, the author did

not manage to successfully stream more than a single camera feed at a time, which means at

this point the maximum number of simultaneous video streams is 1. However running

multiple instances might allow more, depending on available network bandwidth.

Since RTCBot and its dependencies proved to be incompatible with some OS and software

versions. This issue does not affect the ability to run software on the self-driving vehicle but

might do so in the future.

To deploy this solution on an actual road vehicle, such as the self-driving car at ADL, the

program needs to be modified to support the command structure of that vehicle as described

before as well as thoroughly tested to ensure safety during operation.

Regarding possible deprecation issues with RTCBot, it also needs to be evaluated if it is

worth developing this existing base or if alternatives should be explored at this point. A more

robust solution using WebRTC directly for streaming and a new implementation for sending

control data would result in a more suitable and customizable solution overall if we already

need to start heavily modifying RTCBot to achieve all the necessary functionality.

However, this base definitely provides a valuable starting point for other students starting

with teleoperation and RTCBot remains a relatively easy starting point to get a basic demo

running on a robot.

25

Bibliography

[1] “About us,” Discover - Autonomous Driving Lab. https://adl.cs.ut.ee/discover/about
(accessed Mar. 21, 2023).

[2] T. Fong and C. Thorpe, “Vehicle Teleoperation Interfaces,” Autonomous Robots, vol. 11,
no. 1, pp. 9–18, 2001, doi: 10.1023/A:1011295826834.

[3] “Driving the Future,” www.army.mil.
https://www.army.mil/article/220565/driving_the_future (accessed Apr. 04, 2023).

[4] D. Aschenbrenner, M. Fritscher, F. Sittner, M. Krauß, and K. Schilling, “Teleoperation of
an Industrial Robot in an Active Production Line,” IFAC-PapersOnLine, vol. 48, no. 10,
pp. 159–164, 2015, doi: 10.1016/j.ifacol.2015.08.125.

[5] F. Tener and J. Lanir, “Driving from a Distance: Challenges and Guidelines for
Autonomous Vehicle Teleoperation Interfaces,” in CHI Conference on Human Factors in
Computing Systems, New Orleans LA USA: ACM, Apr. 2022, pp. 1–13. doi:
10.1145/3491102.3501827.

[6] K. Kuru, “Conceptualisation of Human-on-the-Loop Haptic Teleoperation With Fully
Autonomous Self-Driving Vehicles in the Urban Environment,” IEEE Open J. Intell.
Transp. Syst., vol. 2, pp. 448–469, 2021, doi: 10.1109/OJITS.2021.3132725.

[7] A. Podhurst, “The complete guide to autonomous vehicle teleoperation,” DriveU, Apr.
06, 2021. https://driveu.auto/blog/the-complete-guide-to-av-teleoperation/ (accessed Mar.
28, 2023).

[8] “Robot teleoperation connectivity platform - DriveU.auto,” DriveU.
https://driveu.auto/product/driveu-100/ (accessed Apr. 17, 2023).

[9] Editorial, “Vehicle teleoperation - Three basic models and their limitations,” RoboticsBiz,
Feb. 02, 2021.
https://roboticsbiz.com/vehicle-teleoperation-three-basic-models-and-their-limitations/
(accessed Apr. 17, 2023).

[10] “DriveU.auto - Superior connectivity platform for autonomous vehicle teleoperation,”
DriveU. https://driveu.auto/ (accessed Apr. 17, 2023).

[11] “getUgo.” https://www.getugo.com/ (accessed Apr. 17, 2023).
[12] “Esileht,” Elmo. https://www.elmoremote.com/et/ (accessed Mar. 28, 2023).
[13] “CLEVON 1,” Clevon. https://clevon.com/et/clevon1/ (accessed Apr. 04, 2023).
[14] K. K. | ERR, “Elmo rendiautod hakkavad kliendini sõitma kaugjuhtimise teel,” ERR,

Nov. 25, 2022.
https://www.err.ee/1608799978/elmo-rendiautod-hakkavad-kliendini-soitma-kaugjuhtimi
se-teel (accessed Apr. 28, 2023).

[15] “RCSnail.” https://rcsnail.ee/ (accessed May 01, 2023).
[16] “Overview — Robotont 0.0.1 documentation.”

https://robotont.github.io/html/files/overview.html (accessed Mar. 21, 2023).
[17] “Vehicle,” Autonomous Driving Lab. https://adl.cs.ut.ee/lab/vehicle (accessed May

02, 2023).
[18] “Welcome to RTCBot’s documentation! — RTCBot 0.2.4 documentation.”

https://rtcbot.readthedocs.io/en/latest/ (accessed Apr. 13, 2023).
[19] “aiortc — aiortc documentation.” https://aiortc.readthedocs.io/en/latest/ (accessed

Apr. 13, 2023).
[20] erkiveevali, “erkiveevali/teleop.” Jan. 17, 2023. Accessed: May 13, 2023. [Online].

Available: https://github.com/erkiveevali/teleop
[21] “Welcome to AIOHTTP — aiohttp 3.8.4 documentation.”

https://docs.aiohttp.org/en/stable/ (accessed Apr. 23, 2023).

26

https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva

[22] “Home,” OpenCV. https://opencv.org/ (accessed Apr. 23, 2023).
[23] “RTCBot Basics — RTCBot 0.2.4 documentation.”

https://rtcbot.readthedocs.io/en/latest/examples/basics/README.html (accessed Apr. 28,
2023).

[24] “Keyboard & Xbox Controller — RTCBot 0.2.4 documentation.”
https://rtcbot.readthedocs.io/en/latest/examples/remotecontrol/README.html (accessed
Apr. 28, 2023).

[25] “Multiple Connections & Reconnecting — RTCBot 0.2.4 documentation.”
https://rtcbot.readthedocs.io/en/latest/examples/multiconnect/README.html (accessed
Apr. 28, 2023).

[26] “Installing RTCBot — RTCBot 0.2.4 documentation.”
https://rtcbot.readthedocs.io/en/latest/installing.html (accessed Apr. 28, 2023).

[27] “rtcbot/index.rst at master · dkumor/rtcbot,” GitHub.
https://github.com/dkumor/rtcbot (accessed Apr. 14, 2023).

[28] “Business VPN | Next-Gen VPN,” OpenVPN. https://openvpn.net/ (accessed May 01,
2023).

[29] J. A. Donenfeld, “WireGuard: fast, modern, secure VPN tunnel.”
https://www.wireguard.com/ (accessed May 01, 2023).

[30] “ZeroTier | Global Area Networking.” https://www.zerotier.com/ (accessed May 01,
2023).

[31] “What Is A VPN? | VPN Definition,” OpenVPN. https://openvpn.net/what-is-a-vpn/
(accessed May 01, 2023).

[32] “Welcome to pyOpenSSL’s documentation! — pyOpenSSL 23.2.0.dev
documentation.” https://www.pyopenssl.org/en/latest/ (accessed Apr. 23, 2023).

[33] “Changelog — pyOpenSSL 23.2.0.dev documentation.”
https://www.pyopenssl.org/en/latest/changelog.html (accessed Apr. 23, 2023).

[34] “Welcome to pyca/cryptography — Cryptography 41.0.0.dev1 documentation.”
https://cryptography.io/en/latest/ (accessed Apr. 23, 2023).

27

https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva
https://www.zotero.org/google-docs/?Dovrva

Acknowledgements

I would like to thank my supervisors Karl Kruusamäe and Ulrich Norbisrath for guiding me

throughout this thesis as well as Tambet Matiisen and the team at ADL for helping along the

way.

28

Appendices

Appendix 1. Source code

#teleop.py

#!/usr/bin/env python3

from aiohttp import web

from rtcbot import RTCConnection, CVCamera, Microphone, getRTCBotJS

import rospy

from geometry_msgs.msg import Twist

import threading

#rospy init

rospy.init_node("velocity_publisher")

velocity_pub = rospy.Publisher("cmd_vel", Twist, queue_size=0)

rospy.sleep(2)

#Route table definition

routes = web.RouteTableDef()

Create cameras

cam = CVCamera(cameranumber=0)

#cam2 = CVCamera(cameranumber=2)

mic = Microphone()

1 global connection

conn = RTCConnection()

Initial subscriptions

conn.video.putSubscription(cam)

conn.audio.putSubscription(mic)

keystates = {"w": False, "a": False, "s": False, "d": False, "j": False,

"k": False}

robot_speed=0.1

#Publisher for speed commands

def publisher():

global keystates

global robot_speed

loop_rate = rospy.Rate(10)

robot_vel = Twist()

29

#Slow infinite loop to set robot_vel

while True:

#Forward/back

if keystates["w"]:

robot_vel.linear.x=robot_speed

elif keystates["s"]:

robot_vel.linear.x=-robot_speed

else:

robot_vel.linear.x=0

#Left/right

if keystates["a"]:

robot_vel.linear.y=robot_speed

elif keystates["d"]:

robot_vel.linear.y=-robot_speed

else:

robot_vel.linear.y=0

#Turn

if keystates["j"]:

robot_vel.angular.z=robot_speed

elif keystates["k"]:

robot_vel.angular.z=-robot_speed

else:

robot_vel.angular.z=0

velocity_pub.publish(robot_vel)

loop_rate.sleep()

@conn.subscribe

def onMessage(m):

global keystates

global robot_speed

#Reading keycodes

if m["keyCode"] == 87: # W

keystates["w"] = m["type"] == "keydown"

elif m["keyCode"] == 83: # S

keystates["s"] = m["type"] == "keydown"

elif m["keyCode"] == 65: # A

keystates["a"] = m["type"] == "keydown"

elif m["keyCode"] == 68: # D

keystates["d"] = m["type"] == "keydown"

elif m["keyCode"] == 74: # J

keystates["j"] = m["type"] == "keydown"

elif m["keyCode"] == 75: # K

keystates["k"] = m["type"] == "keydown"

30

#Change speed

elif m["keyCode"] == 38 and m["type"] == "keydown": # Up arrow

robot_speed+=0.1

elif m["keyCode"] == 40 and m["type"] == "keydown" and

robot_speed>0.1: # Down arrow

robot_speed-=0.1

#Switch cameras

#elif m["keyCode"] == 49 and m["type"] == "keydown": # 1

#conn.video.putSubscription(cam)

#elif m["keyCode"] == 50 and m["type"] == "keydown": # 2

#conn.video.putSubscription(cam2)

Serve the RTCBot javascript library at /rtcbot.js

@routes.get("/rtcbot.js")

async def rtcbotjs(request):

return web.Response(content_type="application/javascript",

text=getRTCBotJS())

This sets up the connection

@routes.post("/connect")

async def connect(request):

clientOffer = await request.json()

serverResponse = await conn.getLocalDescription(clientOffer)

return web.json_response(serverResponse)

@routes.get("/")

async def index(request):

return web.Response(

content_type="text/html",

text=open("index.html", "r").read()

)

async def cleanup(app=None):

await conn.close()

#separate thread for publisher function

pub_thread = threading.Thread(target=publisher)

pub_thread.start()

#webapp

app = web.Application()

app.add_routes(routes)

app.on_shutdown.append(cleanup)

web.run_app(app)

31

<!--index.html-->
<html>

<head>

<title>Teleop</title>

<script src="/rtcbot.js"></script>

</head>

<body style="background-color: powderblue; padding-top: 30px;

text-align: center;">

<h1 style="font-family:verdana;">RTCBot Teleoperation

Interface</h1>

<video width= "1280" height="720" autoplay muted playsinline

controls></video> <audio autoplay></audio>

<h3 style="font-family:verdana;">Instructions:</h3>

<p>Use WASD to move the robot</p>

<p>Use JK to turn the robot</p>

<p>Use up/down arrow keys to change speed</p>

<p>Press 1 and 2 to select camera</p>

<script>

var conn = new rtcbot.RTCConnection();

conn.video.subscribe(function(stream) {

document.querySelector("video").srcObject = stream;

});

conn.audio.subscribe(function (stream) {

document.querySelector("audio").srcObject = stream;

});

var kb = new rtcbot.Keyboard();

async function connect() {

let offer = await conn.getLocalDescription();

// POST the information to /connect

let response = await fetch("/connect", {

method: "POST",

cache: "no-cache",

body: JSON.stringify(offer)

});

await conn.setRemoteDescription(await

response.json());

kb.subscribe(conn.put_nowait);

console.log("Ready!");

}

connect();</script>

</body>

</html>

32

Licence

I, Erki Veeväli

1. grant the University of Tartu a free permit (non-exclusive licence) to reproduce, for

the purpose of preservation, including for adding to the DSpace digital archives until

the expiry of the term of copyright, my thesis

Development of a continuous teleoperation system for urban road vehicle

supervised by Karl Kruusamäe and Ulrich Norbisrath

2. I grant the University of Tartu a permit to make the thesis specified in point 1

available to the public via the web environment of the University of Tartu, including

via the DSpace digital archives, under the Creative Commons licence CC BY NC ND

4.0, which allows, by giving appropriate credit to the author, to reproduce, distribute

the work and communicate it to the public, and prohibits the creation of derivative

works and any commercial use of the work until the expiry of the term of copyright.

3. I am aware of the fact that the author retains the rights specified in points 1 and 2.

4. I confirm that granting the non-exclusive licence does not infringe other persons’

intellectual property rights or rights arising from the personal data protection

legislation.

Erki Veeväli

13.05.2023

33

