From Intelligent Materials and Systems Lab

Revision as of 16:22, 6 January 2011 by Alop (talk | contribs)

Ionic Polymer Metal Composites (IPMC) modelling and control

This research focuses on building EAP devices as well as methods for their control. Particularly, we are focusing at the following research problems:

  • Electromechanical modelling of IPMC materials
  • Design of novel IPMC actuators.
  • Development of position sensors for IPMC actuators.
  • Development of control methods of IPMC actuators to achieve less energy consumption at large output force and torque.
  • Development of feedback control methods for IPMC actuators.
  • Design of autonomous IPMC actuators and devices.

Carbon-Polymer Composite Electroactive Materials

This research focuse on developing new materials based on carbide derived carbon, polymer matrix and ioni liquid composite materials. These materials are relatively strong and well controllable by open loop current control. It is possible to prepare either bending or expanding(linear) actuators. Particularly, we are focusing on:

  • Design of material with specific electromechanical properties (speed, force)
  • Atomistic and electromechanical modelling of the material
  • Design of the actuators suitable for Lab-on-Chip applications
  • Development of the fabrication technology suitable for LoC applications
  • Design of prototypes for several applications

Material study of conducting polymers

Electronically conducting polymers, polypyrrole (PPy) in particular, have been under heavy investigation during the last decades. Their useful optical, conductive, ion-exchange properties have already found use at the industrial level in various capacitors, displays, sensors, analyzers, etc. In addition to the practical use of these “classical” properties, several promising applications of the conducting polymers have been proposed in recent years, employing the bio-compatibility or electromechanical features of these polymers. Unfortunately, the lack of fundamental atomistic understanding of the development of the properties of the conducting polymers is hindering the wider use of the novel applications proposed. Our main focus has been the establishment of the relationships between the synthesis conditions, the structure and the properties of the polymers. Another field of interest is the stability (both chemical and physical) of these materials (especially if used in air, aqueous solutions or bio-liquids). Electrochemistry, spectroscopy, electron- and probe microscopy as well as theoretical modeling have been employed in order to gain a better understanding of these issues.

Molecular dynamics studies of poly(ethylene oxide) based electrolytes
PEO small.png

Solid electrolytes for the Lithium-Ion Polymer Battery can be produced by mixing a lithium salt, typically LiPF6 or LiBF4, into poly(ethylene oxide) (PEO), -(CH2CH2O)n-. However, such electrolytes only exhibit adequate ionic conductivity (>10-4 S/cm) at temperatures above 70°C, where the polymer becomes amorphous. The conventional wisdom has been that the high degree of local order (“crystallinity”) is the reason for the poor ionic conductivity at ambient temperatures. Much attention has therefore been devoted to the task of increasing the amorphous content of the PEO electrolyte at ambient temperatures.

Computer-Aided Materials Design for Proton-Conducting Fluoropolymers

Molecular Dynamics (MD) simulations give us a chance to have close insights into Nafion's dynamics and local structure on molecular level. We can study the details of proton-conductivity and find out the mechanisms what can possibly improve this process. We are interested in following research problems:

  • design of the realistic and reliable Molecular Dynamics simulation model for Nafion as an electrolyte in the fuel cell,
  • simulations of proton hopping mechanism between Nafion chain and surrounding water,
  • the effects of Nafion side chains on the proton dynamics.


Latvia (LV) and Estonia (EE) have been doing local ICT mechanic(robotics) activities for last few years. But all initiatives are planned and implemented inside one country. Some activities have been done on contest basis for many countries, but the continuity of the activities did not take place. In order to reduce national isolation and to foster external connectivity in a high value added innovative field of ICT mechanics, a joint project idea was developed. Project idea focuses on reducing external isolation by developing a joint Demo Centre [DC] network of exhibiting ICT mechanics solutions to foster information flow, by harmonising ICT study module, and by joint cross-border contests, thus to develop ICT network and improve overall access to ICT services through cross-border networking, cooperation and common information space. DC-s will be established on a joint ICT mechanics basis with each DC covering specific ICT niche. LV DC-s will cover satellite ICT DC and ICT mechanics (robotics) software DC. Tartu DC will cover ICT Mobile and location based services applications. Further activities are developed so to have a continuous joint character, by developing basic cross-border cooperation through study process, further involving DC that will work as prototype solutions exhibition places and finally getting together people interested in ICT mechanics, starting from school children, students, all enthusiasts, through joint contests. Thus a cycle of subactivities are planned to foster one joint aim of improving overall connectivity and access to information flow of innovative ICT solutions. Continuity of the program activities is ensured by developing basis for ICT mechanics further development and involving all stakeholders and interested parties. As a result cohesion of program area is increased and international competitiveness of program area is fostered.