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... and Traffic.

1. Nonlinear waves, some concluding remarks.

Most of the work we have done on nonlinear waves has focused on the Korteweg deVries

equation, derived in Note 12, and on several ad hoc nonlinear equations, nonlinear

Schroedinger, sine-Gordon, etc. The orientation of our interest was in the solitary waves

(solitons) that could exist in the systems described by these equations.

Let’s spend a minute with nonlinear effects in fluid dynamics. Where do they come from?

The nonlinear effects come in principle from those terms that we drop when the equations

of fluid dynamics are linearized. For simplicity take the ideal fluid having no transport

phenomena.

1. In the continuity equation, Note 1, Eq. (1), the term neglected in Eq. (3) is

∇ · ρv − ρ0∇ · v = δρ∇ · v +∇δρ · v.. (1)

2. In the Euler equation, Note 1, Eq. (2), there are two sources of nonlinearity

(a) the intrinsic nonlinearity

(v · ∇)v (2)

(b) nonlinearity from the EOS used to close the equations, e.g.,

δP (ρ) =

(
∂P

∂ρ

)
S

δρ +

(
∂2P

∂ρ2

)
S

δρ2

2
+ · · · (3)

The nonlinearity in the EOS is usually the largest of these.

Equations (1) and (2), Note 1, can be re-arranged without approximation to read

∂2ρ

∂t2
−∇2P = ∇ · [ρ (v · ∇)v] +∇ · [v ∇ · (ρv)]. (4)

When Eq. (3) is used we have

∂2ρ

∂t2
− c2

S∇2ρ =
1

2

(
∂c2

S

∂ρ

)
S

∇2 ρ2 +∇ · [ρ (v · ∇)v] +∇ · [v ∇ · (ρv)], (5)
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TABLE I: δP , Q and nonlinearity

source δP Q

threshhold of hearing 10−5Pa 10−10

normal speech 10Pa 10−4

loud speech 104Pa 10−1

rock concert 105Pa 1

jet take off 109Pa 104

where terms of order ρ3, from Eq. (3) have been dropped. The EOS provides the first term

on the RHS. Assume this is the largest nonlinearity and drop the two terms in ρvv. One of

the things we want is some sense of how large this nonlinear term is, when is it important?

Construct the parameter

γS =
ρ0

c2
S

(
∂c2

S

∂ρ

)
S

(6)

and write Eq. (5) in the form (use δρ in place of ρ for emphasis)

∂2δρ

∂t2
− c2

S∇2δρ = c2
SγS∇2 δρ2

2ρ0

. (7)

Use Q = δρ/ρ0 a dimensionless measure of the size of the fluctuations in ρ. Then we have

∂2Q

∂t2
− c2

S∇2Q = c2
SγS∇2 Q2

2
. (8)

The quantity γS is often called the ”B/A parameter” (look on google) and typically has a

value between 1 and 10. If we write Eq. (8) in the form

∂2Q

∂t2
= c2

S∇2
(
1 +

γS

2
Q
)

Q, (9)

then it is easy to judge the relative importance of the nonlinear term. For an ideal gas

δρ/ρ0 = δP/P0. Use this to judge the size of Q. Here are some numbers: Table I. For 5Q

(γS = 10) as a measure of nonlinearity loud speech, a rock concert, jet take off will have

important nonlinear aspects.

Fourier analysis. Perhaps the most important qualitative consequence of nonlnearity in

wave equations is the failure of single frequency Fourier analysis. It is single frequency

Fourier analysis that was used to find the dispersion relation for waves in an ideal fluid,

in a fluid with viscosity and thermal conductivity, Note 1 and problem 3 on HW3. The
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nonlinear term Q2 in Eq. (9) means that (1) if there is frequency ω in Q, e.g., Q ∝ exp− iωt,

the nonlinear term causes frequency 2ω (Q2 ∝ exp − 2iωt) to be a part of Q, (2) if there

is frequency 2ω in Q, e.g., Q ∝ exp − 2iωt, the nonlinear term causes frequency 4ω

(Q2 ∝ exp− 4iωt) to be a part of Q, etc.

2. Advection and Traffic.

The continuity equation, under certain conditions, can be looked at without recourse to

the Euler equation. When this is done it can be manipulated into the form of an advection

equation and some aspects of solution can be learned by using methods appropriate to such

equations. [The moves we make next are made to get to the equation we want quickly. The

same equation arises in a more general case following a fairly detailed discussion, L and L

Sec. 101.]

The continuity equation, in one dimension, is

∂ρ

∂t
+

∂

∂x
ρv = 0. (10)

Suppose that we are deling with a material for which the velocity v is a known functiion of

the density, i.e., there is an EOS of the form

v = v(ρ). (11)

Italics around EOS because this is certainly no thermodynamic equation of state, v isn’t

even a thermodynamic variable.

[Begin Aside.] To give this notion meaning consider a particular example, a traffic model.

Certainly cars and the density of cars on a highway obey the continuity equation (conser-

vation of number or mass). Suppose the cars move according to the rules

1. the density can take on any value from 0 (you have the road to yourself) to ρm (traffic

jam), 0 ≤ ρ ≤ ρm.

2. the velocity of the density of cars at a place where the density is ρ is given by the EOS

v = vm

(
1− ρ

ρm

)
. (12)
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[End Aside.]

Use Eq. (11) in Eq. (10) and write

∂ρ

∂t
+

∂

∂x
ρv(ρ) = 0, (13)

∂ρ

∂t
+

d[ρv(ρ)]

dρ

∂ρ

∂x
= 0, (14)

∂ρ

∂t
+ c(ρ)

∂ρ

∂x
= 0. (15)

Here F (ρ) = ρv(ρ) is the flux and c(ρ) is a velocity associated with the flux, c = ∂F/∂ρ.

Equations (13)- (15) are various forms of the advection equation; one variable, the density,

and motion in space and time. These equations are among the simplest PDEs. [Even so

they are not necessarily easy to handle numerically.]

The method of characteristics. The method of characteristics is first a way of getting

an idea of what an advection equation is saying and second, depending on your fortitude,

a way of solving such an equation. See Fig. 1. Suppose that at t = 0 the density ρ is a

prescribed function of x. In the x-t plane from the t=0 axis at x1 draw the line with slope

1/c(ρ1) where ρ1 is the density at t = 0 at x1. Do the same at x2, etc. The lines so drawn

are called the characteristics. The density is unchanging along these lines. Why? Because

ρ(x, t) changes due to change in t and change in x as here

dρ

dt
=

∂ρ

∂t
+

∂ρ

∂x

dx

dt
. (16)

On a characteristic dt/dx = 1/c(ρ) so that the equation for dρ/dt on the charateristic is

dρ

dt
=

∂ρ

∂t
+

∂ρ

∂x
c(ρ), (17)

which is zero from Eq. (15). So the density on the t = 0 axis at x moves along the charac-

teristic at x as time evolves. When the characteristics are an opening fan, like near x = 0,

the characteristics dilute the density. When the characeristics are a closing fan, like near

large x, the characteristics increase the density, they may even cross one another and appear

to give ambiguous results. This situation can be handled by being careful. As we want the

qualitative idea from the characteristic picture we won’t worry about this. Basically shock

like features may occur where the characteristics bring the density together. By shock-like
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FIG. 1: Characteristics.

we mean that a discontinuity will develop in ρ as a function of x at fixed t. In a handout

there were 4 examples of initial density profiles and the corresponding characteristics.

Traffic. We will follow the traffic example through a number of steps, Fig. 2. The initial

density is that for traffic at a stop light, middle of figure. The characteristics for this density

profile are shown at the top. At t = 0 the light changes to green. At a time t the first

car is at x = vmt, along the characteristic t = x/vm. The characteristic from the origin for

density ρm moves to the left along t = −x/vm. A car in the pack can first move when this

characteristic passes it. See the red car that stands still until this event at the bottom of

the figure. At time t, bottom of Fig. 2, we can read off an equation for the density
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t = -x/vm t = x/vm

(vm t, t)(-vm t, t)

ρm

stopped

moving

ρ = 0

FIG. 2: Traffic problem.

ρ(x) = ρm, t < −x/vm, (18)

ρ(x) =
1

2
ρm

(
1− x

vmt

)
, − vmt < x < vmt, (19)

ρ(x) = 0, vmt < x. (20)

From these equations we can find the position of a car as a function of time. A car moves

among densities; it does not follow a single characteristic. We have dx/dt = v(ρm) = 0, t <

−x/vm and
dx

dt
= v(ρ(x, t)) =

1

2
ρm

(
1− x

vmt

)
, t < −x/vm. (21)

For t > t0(x) = −x/vm (remember the relevant values are x are at x < 0) the solution to

this equation is

x(t) = vmt− 2
√

vmt0vmt. (22)
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FIG. 3: Individual car trajectories.

[See Chapter 8, Section 4 of Boas.] In Figs. 3,4,and 5 there are results from integration

of Eq. (15) for the traffic problem. [Numerical work was done with the Lax-Wendroff

integration scheme. The shock feature at the back of the stopped car density is not

easily handled analytically. The car at the front of the density obey Eq.(22). At least

for a while. The numerical work was done for a periodic system. So cars leaving from

the right return on the left. This makes for more interesting motion of the shock.]

Look at Figs. 4 and 5. Cars peel off the front of the initial density profile in accord

with your experience. The shock, density discontinuity, stands still until it get freed

up by the characteristic t = −x/vm. Then the shock begins to move, first slowly and

then more rapidly, cars leave the front of the shock and join it from the rear. As

time evolves the amplitude of the shock decreases. At long time expect a uniform density

of cars driving at a constant speed set by the initial density averaged over the space available.
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FIG. 4: Density of cars as a function of x and t.

It is the shock that is of most interest.
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FIG. 5: Density (left column) and flux F (right column) as a function of x for 5 times. These

times correspond to the dashed lines on the density profile in Fig. 4.
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