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Waves III: Solitary Waves and Solitons.

1. Recall. For the sine-Gordon equation, in the Taylor series approximation, Eq. (35) of

Note 12, we found the one ”kink” solution

φ(x− vt) =
√

3! tanh
κ(x− vt)√

1− β2
, (1)

by quadrature.

Following a lengthy manipulation of the equations for an incompressible fluid with a free

surface we came to the equation for the surface displacement, ζ, when weak dispersion and

nonlinearity were present, (
1− gh0

v2

)
ζ − 3

2h0

ζ2 − h2
0

3
ζ

′′
= 0, (2)

the KdV equation. We wish to solve this equation for ζ. In principle this equation can be

solved by quadrature just like sine-Gordon. It can be solved approximately by a variational

scheme. It can also be solved by the IG method, as was done in class. In the IG method

one makes an insightful guess and follows the consequences.

2. Solution to the KdV equation.

1. Further sterilize the equation by using

z =
η

h0

=
x− vt

h0

, (3)

ν =
ζ

h0

, (4)

to find

α2ν
′′

= βν − α1ν
2, (5)

where ν
′
= dν/dz, β = (1− c2

0/v
2), α2 = 1/3 and α1 = 3/2.

2. For the IG use

ν = A sech2(κz), (6)
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where A and κ are constants to be found. For ν
′′

find

ν
′′

= 4κ2AS2 − 2κ2AS4 (7)

where S is shorthand for sech(κz).

3. Assemble Eq. (5)

4α2κ
2AS2 − 2α2κ

2AS4 = βAS2 − α1A
2S4 (8)

and require that the coefficient of like powers of S vanish (why is this a valid argu-

ment?). Find

4κ2α2 = β, (9)

2κ2α2 = α1A. (10)

There are two results.

(a) The width of the soliton, κ, depends on the amplitude,

κ =

√
α1

2α2

A. (11)

(b) The velocity of the soliton depends on its amplitude

v = c0(1 + α1A). (12)

When all of the pieces are put back together find

ζ(x, t) = ζ(0)sech2

(
κ(ζ(0))

x− v(ζ(0))t

h0

)
, (13)

where

κ =

√
α1

2α2

ζ(0)

h0

, (14)

v = c0

(
1 + α1

ζ(0)

h0

)
. (15)

There are 3 lengths in the description of this soliton, h = h0, a = ζ(0) and L = h0κ
−1. The

solitons existence depends upon a balance of dispersion against nonlinearity. One can see

what is called for qualitatively by comparing the nonlinear and dispersion terms in Eq. (2)

3

2h0

ζ2 ∼ a2

h0

, (16)

h2
0

3
ζ

′′ ∼ h2
0

a

L2
. (17)
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When these terms to balance the geometrical features of the soliton obey

aL2 ∼ h3
o. (18)

Of course that is what the exact solution does. We have

ζ(0)L2 = ζ(0)
h2

0

κ2
= h3

0. (19)

3. A Variational Principle. In the two cases for which we have exact solutions we

were able to look at the problem from a pseudo classical mechanics point of view, i.e., as

T + V = E, Eq. (37) in Note 12. Suppose at a fixed moment of time we imagine the energy

of the system to be able to be represented by

E [ν] =
∫

dz

α2

2

(
dν

dz

)2

+ β
ν2

2
− α1

ν3

3

 . (20)

The equation of motion would follow upon varying E(ν) with respect to ν. Show this. When

you are not able to (or do not want to) solve the resulting differential equation it is possible

to carry out a numerical variation that will provide the essential structure of the solution.

Variational schemes familiar from all over physics, quantum mechanics, classical fields, E

and M, etc. For the case at hand as one is looking for a spatially local solution you might

use a trial function

νT = B exp(−γ2z2/2), (21)

that has two variational parameters, B that sets the amplitude of the solution and γ that

sets the spatial extent of the solution. Calculate

ET =
∫

dz

α2

2

(
dνT

dz

)2

+ β
ν2

T

2
− α1

ν3
T

3

 . (22)

vary the trial solution with respect to its parameters, i.e., solve

∂ET

∂B
= 0 , (23)

∂ET

∂γ
= 0. (24)
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