stuff	σ	ϵ	m	η
	A^o	Kelvin	amu	$\times 10^{-4} gm/cm/sec$
helium	2.56	10	4	1.94
neon	2.78	36	20	3.10
argon	3.40	120	40	2.21
krypton	3.64	170	84	2.47
xenon	3.96	231	131	2.25

TABLE I: Noble Gases.

P740.HW2.tex

Due 02/12/07

1. Table I has information about the noble gases. Use the viscosity data to find the "diffusion constant for transverse velocity" (called the "kinematic viscosity"). [These data are for a gas at P = 1 atm and T = 300 K.] From the results in **P740.4** find the mean free path and the cross section. The Lennard Jones form of the pair interaction is

$$V(r) = 4\epsilon \left(\left[\frac{\sigma}{r} \right]^{12} - \left[\frac{\sigma}{r} \right]^6 \right), \tag{1}$$

where ϵ is the strength of the interaction and σ sets the length scale of the interaction. Make a plot of the cross section as a function ϵ .

- (a) Complete the calculation at the bottom of page 2 of the Boltzmann Equation notes, i.e., find the relationship of P to Q.
 - (b) Show that

$$f_0 \propto exp\left(-\beta\left(\frac{p^2}{2m} - pQ\right)\right),$$
 (2)

and

$$f_0 \propto exp\left(-\frac{\beta}{2m}\left[v-u\right]^2\right),$$
(3)

are equally good for finding $P \neq 0$.

(c) Relate P to u.

3. When normed to 1 over v

$$f_0 \propto exp\left(-\frac{\beta}{2m}v^2\right) \tag{4}$$

is P(v), the probability of v.

- (a) Find $|\overline{v}|$, the average of |v|.
- (b) Find $P_{>} = P(v > |\overline{v}|)$, the probability that $v > |\overline{v}|$.
- 4. Biased random walk. Return to problem 3 of HW.1. Suppose the random walker has a bias to go right instead of left: $\mathbf{R} \leftrightarrow p$ and $\mathbf{L} \leftrightarrow q$, p + q = 1. Unbiased walk, p = q = 1/2. Choose $p = 1/2(1 + \epsilon)$ and $q = 1/2(1 - \epsilon)$. Make a choice of ϵ . When the walker has a bias the quantites of interest are $\langle x \rangle$ and $\langle (x - \langle x \rangle)^2 \rangle$.
 - (a) How does $\langle x \rangle$ depend on time?, ϵ ?,
 - (b) How does $\langle (x \langle x \rangle)^2 \rangle$ depend on time?, ϵ ?