Physics 740: Spring 2007:

1. For an incompressible fluid $\nabla \cdot \mathbf{v} \neq 0$? Y ——, NO!., for $\rho=$ constant the continuity equation reduces to $\nabla \cdot \mathbf{v}=0$.
2. When H. 2 is written in the form

$$
\begin{equation*}
\frac{P-P_{0}}{V-V_{0}}=\rho_{0}^{2}\left(D-u_{0}\right)^{2} \tag{1}
\end{equation*}
$$

the units of V_{0} are $\mathbf{L}^{3} / \mathbf{M}$, e.g., $[P / \rho]=[E] / M$ and $\left[\rho D^{2}\right]=[E] / L^{3}$ or $\ldots[\cdots]=$ units of \cdots.
3. In the equation $\delta^{2}=2 D_{\eta} / \omega$ the quantity δ is called viscous penetration depth and D_{η} is given in terms of to η by the equation $D_{\eta}=\quad \eta / \rho$.
4. The dispersion relation
(a) $\omega^{2}=g k$ describes deep water waves.
(b) $\omega^{2}=\gamma k^{3}$ describes waves driven by surface tension .
(c) $\omega^{2}=g h_{0}\left(k^{2}-k^{4} h_{0}^{2} / 3+\cdots\right)$ describes shallow water waves at finite $k h_{0}$.
5. In question 4 which waves have dispersion (a) Yes, (b) Yes, (c) Yes, $\omega \neq c k$.
6. In question 4 which waves have attenuation (a) No, (b) No, (c) No, ω is not complex.
7. For a shallow water wave $k h_{0} \ll 1$? Yes, $\mathrm{N}-$.
8. If

$$
\begin{align*}
f(\omega) & =\alpha \omega^{2}+i \beta \omega \tag{2}\\
f(-\omega) & =\alpha \omega^{2}-i \beta \omega \tag{3}
\end{align*}
$$

then $f(t)$ (to answer (a) and (b) you need ω vs k)
(a) has attenuation Y - , No
(b) has dispersion Y-, No
(c) is real Yes, $\mathrm{N}-$? $\left(f(-\omega)=f(\omega)^{*}\right.$ for real $)$
9. For the 3 fluids shown in Fig. 1 what are the contact angles? (a) $\theta=\mathbf{1 3 5}^{\circ}$, (b) $\theta=$ $\mathbf{6 0}{ }^{\circ}$, (c) $\theta=\mathbf{9 0}^{\circ}$.
10. The equation

$$
\begin{equation*}
\frac{\partial^{2} \delta h}{\partial \tau^{2}}=\frac{\partial}{\partial z}\left(\left[1-z^{2}\right] \frac{\partial \delta h}{\partial z}\right) \tag{4}
\end{equation*}
$$

comes from the equation

$$
\begin{equation*}
\frac{\partial^{2} \delta h}{\partial t^{2}}=g \frac{\partial}{\partial x}\left(h_{0}\left[1-\frac{x^{2}}{a^{2}}\right] \frac{\partial \delta h}{\partial x}\right) \tag{5}
\end{equation*}
$$

upon making the changes of variable $\mathbf{z}=\mathbf{x} / \mathbf{a}$ and $\tau=\omega \mathbf{t}$, where $\omega^{2}=\mathbf{g} h_{0} / a^{2}$.
11. The equations

$$
\begin{align*}
\dot{u} & =\frac{\partial^{2} u}{\partial x^{2}} \tag{6}\\
\ddot{u} & =\frac{\partial^{2} u}{\partial x^{2}} \tag{7}\\
\ddot{u} & =\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u^{2}}{\partial x^{2}} \tag{8}\\
\dot{x}^{2} & =-x^{2} \tag{9}\\
\dot{x} & =-\sin x \tag{10}
\end{align*}
$$

are
(a) (7) linear
(b) (8) linear
(c) (9) nonlinear
(d) (10) linear
(e) (11) nonlinear
12. An aluminum plate atop a fluid is driven at frequency 0.10 Hz . The velocity field in the fluid is a shown in Fig. 2. What is D_{η} for the fluid? $D_{\eta}=\pi \delta^{2} / T_{\omega} \approx 30$, where $\delta \approx 10$ from the figure. The needed equation is in problem 3.
13. The units of pressure are dyne $/ \mathbf{c m}^{2}$; the units of viscosity are $\mathbf{g m} / \mathbf{c m}-\mathbf{s e c}$, the units of $\gamma_{S L}$ are $\mathbf{g m} / \sec ^{2}(\mathrm{cgs})$.

FIG. 1: three fluids on a surface.
14. In H.1,

$$
\begin{equation*}
D=\frac{F_{0}-F}{\rho_{0}-\rho}, \tag{11}
\end{equation*}
$$

F, called flux (or current), is given by $F=\rho u$?
$t=0.0$
$t=5 \mathrm{sec}$

$\mathrm{a}=30 \mathrm{~cm}$

FIG. 2: Fluid motion at times separated by $1 / 2$ period.

