Physics 740: Spring 2007: P740X20.tex; In class exam 2.

- 1. For an incompressible fluid $\nabla \cdot \mathbf{v} \neq 0$? Y —, NO!, for $\rho = \text{constant}$ the continuity equation reduces to $\nabla \cdot \mathbf{v} = 0$.
- 2. When H.2 is written in the form

$$\frac{P - P_0}{V - V_0} = \rho_0^2 (D - u_0)^2 \tag{1}$$

the units of V_0 are \mathbf{L}^3/\mathbf{M} , e.g., $[P/\rho] = [E]/M$ and $[\rho D^2] = [E]/L^3$ or ... $[\cdots] =$ units of \cdots .

- 3. In the equation $\delta^2 = 2D_{\eta}/\omega$ the quantity δ is called **viscous penetration depth** and D_{η} is given in terms of to η by the equation $D_{\eta} = -\eta/\rho$.
- 4. The dispersion relation
 - (a) $\omega^2 = gk$ describes deep water waves.
 - (b) $\omega^2 = \gamma k^3$ describes waves driven by surface tension .
 - (c) $\omega^2 = gh_0(k^2 k^4 h_0^2/3 + \cdots)$ describes shallow water waves at finite kh_0 .
- 5. In question 4 which waves have dispersion (a) Yes, (b) Yes, (c) Yes, $\omega \neq ck$.
- 6. In question 4 which waves have attenuation (a) No, (b) No, (c) No, ω is not complex.
- 7. For a shallow water wave $kh_0 \ll 1$? Yes, N— .
- 8. If

$$f(\omega) = \alpha \omega^2 + i\beta\omega, \tag{2}$$

$$f(-\omega) = \alpha \omega^2 - i\beta\omega, \tag{3}$$

then f(t) (to answer (a) and (b) you need ω vs k)

- (a) has attenuation Y ——, **No**
- (b) has dispersion Y ——, **No**

- (c) is real **Yes**, N——? $(f(-\omega) = f(\omega)^*$ for real)
- 9. For the 3 fluids shown in Fig. 1 what are the contact angles? (a) $\theta = 135^{\circ}$, (b) $\theta = 60^{\circ}$, (c) $\theta = 90^{\circ}$.
- 10. The equation

$$\frac{\partial^2 \delta h}{\partial \tau^2} = \frac{\partial}{\partial z} \left(\left[1 - z^2 \right] \frac{\partial \delta h}{\partial z} \right),\tag{4}$$

comes from the equation

$$\frac{\partial^2 \delta h}{\partial t^2} = g \frac{\partial}{\partial x} \left(h_0 \left[1 - \frac{x^2}{a^2} \right] \frac{\partial \delta h}{\partial x} \right), \tag{5}$$

upon making the changes of variable $\mathbf{z}=\mathbf{x}/\mathbf{a}$ and $\tau = \omega \mathbf{t}$, where $\omega^2 = \mathbf{g}h_0/a^2$.

11. The equations

$$\dot{u} = \frac{\partial^2 u}{\partial x^2},\tag{6}$$

$$\ddot{u} = \frac{\partial^2 u}{\partial x^2},\tag{7}$$

$$\ddot{u} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u^2}{\partial x^2},\tag{8}$$

$$\dot{x}^2 = -x^2, \tag{9}$$

$$\dot{x} = -sinx,\tag{10}$$

are

- (a) (7) linear
- (b) (8) linear
- (c) (9) nonlinear
- (d) (10) linear
- (e) (11) **nonlinear**
- 12. An aluminum plate atop a fluid is driven at frequency 0.10 Hz. The velocity field in the fluid is a shown in Fig. 2. What is D_{η} for the fluid? $D_{\eta} = \pi \delta^2 / T_{\omega} \approx 30$, where $\delta \approx 10$ from the figure. The needed equation is in problem 3.
- 13. The units of pressure are $dyne/cm^2$; the units of viscosity are gm/cm-sec, the units of γ_{SL} are gm/sec^2 (cgs).

FIG. 1: three fluids on a surface.

14. In H.1,

$$D = \frac{F_0 - F}{\rho_0 - \rho},$$
 (11)

F, called **flux** (or current), is given by $F=\rho u$?

FIG. 2: Fluid motion at times separated by 1/2 period.