

energie atomique + energies alternatives

Vacancy and interstitial type defects in Fe, W and other bcc metals

Lisa VENTELON, Chu Chun FU, Mihai-Cosmin MARINICA, <u>François WILLAIME</u>

Physical Metallurgy Laboratory (SRMP)

Department of Materials for Nuclear Energy, CEA/Saclay, France

Normand MOUSSEAU

Department of Physics, University of Montreal, Canada

F. Willaime • CEA/Saclay, France

Group dependence of defect properties in BCC transition metals

3d	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu
4d	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag
5d	La	Hf	Та	W	Re	Os	Ir	Pt	Au

- Strong group dependence of the properties of bcc metals: elastic constants, phonons, self-diffusion
- Related to bimodal shape of the electronic density of states
- Impact on radiation defect properties: vacancy clusters, selfinterstitials and self-interstitial clusters ?

Tool box

Empirical potentials for iron

M.I.Mendelev et al., Phil. Mag. (2003)

- Mendelev et al. 2003/2004 ; new fits
- Molecular statics
- Lattice dynamics
- Activation Relaxation Technique (ART) for systematic exploration of potential energy surface

Ouline

- 1. Vacancy clusters
 - Di-vacancy binding energy
 - The case of W
 - Migration energies in Fe
- 2. Self-interstitial clusters
 - Structure of SIA
 - Complexity of SIA clusters in Fe

Vacancy clusters

Di-vacancy binding energies

Binding energies of di-vacancies in W

- Di-vacancies do not bind until 5th nearest neighbors
- Non-bonding character highly reproducable within DFT-GGA

* C. Becquart and C. Domain, NIMB (2007)

Contradiction with experimental evidence for di-vacancy binding and vacancy clustering

- Field-ion microscopy on quenched in defects in ultra-high purity W predicted the di-vacancy binding enthalpy to be 0.7 eV (J.Y. Park *et al.*, Philos. Mag. A 48, 397 (1983)) – Surface effect ?
- Positron annihilation experiments (M.F. Barthe 2010): evidence for the formation of small vacancy clusters by vacancy migration
- DFT predicts that vacancies become attractive for larger clusters. But is it kinetically possible if di-vacancies do not bind ?
- Failure of DFT ?

Number of vacancies in cluster

Fig. 2. Total binding energy for vacancy clusters versus the number of vacancies in the void.

* C. Becquart and C. Domain, NIMB (2007)

Effect of exchange correlation functional on vacancy properties

LDA vs GGA-PBE: vacancy properties of FCC metals

Effect of xc functional on vacancy properties in W

	GGA-PBE	LDA	AM05
E _f (V ₁)	3.24 +/- 0.01	3.27	3.55
E _b (V ₂ 1nn)	-0.06 +/-0.03	-0.12	-0.06
E _b (V ₂ 2nn)	-0.44 +/- 0.03	-0.50	-0.43

- Significant effect on the vacancy formation energy
- Divacancy binding energy indenpendent on xc functional

AM05: R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005)

Finite temperature effect – electronic entropy

 Changes at E_{Fermi} in the LDOS of the nearest neighbors of the vacancy are known to have a strong impact on the Gibbs formation energy (Satta et al. PRB 1998)

- Due to the electronic entropy, the 2NN di-vacancies become more attractive, at 3000 K:
- 1 NN: Eb=+0.09 eV (attractive)
- 2 NN: Eb=-0.27 eV (repulsive)

Alloying effects in the VCA approximation

- Virtual Crystal Approximation (VCA)
- Vacancy formation energy is maximum at W_{0.75}Ta_{0.25}

- Di-vacancies in W become attrative upon Ta alloying
- Solutes which decrease the d-band filling and bind with the vacancy (eg Hf) are predicted to make divacancies attractive

Migration of vacancy type defects (DFT)

Fu, Dalla Torre, FW, Bocquet, Barbu, Nat. Mat. 4, 68 (2005)

Self-interstitial clusters

Formation energy of self-interstitials in Fe

Orientation of SIAs in Cr, Mo, W: <111> or <11x> ?

- Experimental evidence X-Ray for non trigonal symmetry (Ehrhart, JNM 1978)
- V Formation energy (eV) 0.3 Mo 0.25 $(1\overline{1}0)$ DFT calculations in Mo don't • -[110] 0.2 exclude an orientation between 0.15 <111> and <110> S. Han et al. 0.1 **PRB 2002** 0.05 0 -0.05

0.35

 DFT calculations in Cr show that SIA with an orientation close to <221> is 0.15 eV more stable than <111> crowdion Olsson (JNM 2009)

F. Willaime • CEA/Saclay, France

5

0 [110] 10

15

 θ (degree)

20

25

30

35

[111]

Orientation of SIAs in W: <111> or <11x> ?

- In *cubic* supercells the <11ξ> orientation is more stable by ~0.05 eV than <111>
 θ≈15° for cells with 128 to 432 atoms
- In *non cubic* cell (eg 5x6x6) <11ξ> relaxes towards <111>
- Interactions between periodic images yeald the <111> configuration to buckle in cubic cells

Conclusions

- Di-vacancies in bcc metals
 - Binding energy is strongly metal dependent
 - Tungsten has the most atypical behavior
 - 1NN and 2NN vacancies don't bind according to DFT
 - This result is independent on the exchange-correlation functional
 - VCA calculations show that alloying effect may strongly affect di-vacancy binding
- Self interstitial defects
 - In W the <11ξ> configuration is an artefact to due periodic boundary conditions in cubic supercells
 - Self interstitial clusters in Fe
 - configurations with non-parallel dumbbells are predicted to play a crucial role
 - Relative stability is temperature dependent
 - Methods such as ART are powerful tools to explore the complexity of their energy landscape