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ABSTRACT
Finite Element method is used to build and simulate an IPMC sheet. The physical bending of the realistic
Na�on sheet due to the drift of counter-ions (e.g Na+) and dragged water in applied electric �eld are simulated.
The e�ect of the concentration of counter-ions near the electrodes are tried to relate to the physical bending of
the IPMC sheet. Mechanical properties of na�on polymer and platinum coating have taken account separately
while modeling bending. All simulations are time dependent, thus transient model and need for few additional
parameters is explaned. Some additional e�ects like voltage drop at more distance points from contacts instead of
constant electric �eld are discussed. Also some electrochemical reactions leading to self oscillations are explaned
and simulated.
Keywords: Electroactive polymers, EAP, Finite element method, Electrochemical-mechanical analysis, Actuator,
Coupled problem, Self-oscillating systems

1. INTRODUCTION
EAP-based electromechanical actuators are valuable for use in a number of applications starting with miniature
robotics up to military and space. These actuators have light weight, noiseless motion, simple mechanical
construction; large controlled displacement and good damage tolerance along with an ability to perform di�erent
movements like bending and contractions makes possible to use them as arti�cial muscles. In this letter we
consider simulation of ionic polymer-metal composite (IPMC) materials with �nite element method (FEM).

IPMC materials are highly porous polymer materials such as Na�on, Fleminon, Te�on, �lled with some kind
of ionic conductive liquid. There are water based IPMCs which operate in aquatic environment and conduction is
caused by ions such as Na+, K+ dissociated in water. Ionic liquid based IPMCs do not need wet environment for
operating. The sheet of the ionoic polymer is coated with thin metal layer, usually platinum or gold. In applied
electric �eld the freely movable cationsinside the polymer migrate towards an electrode, causing expansion of
the material at the one end of the sheet and contraction at the other end, which leads to bending of the sheet.

For simulating actuation of an IPMC sheet we need to solve coupled problems due to the complex nature of
IPMC actuation. It involves working in di�erent domains such as mechanical, electrostatic and mass transfer.
XXX and YYY have already simulated mass transfer and electrostatic e�ects. We have used similar approach for
these problems. However, new approach is introduced for mechanical bending of IPMC strip. By coupling those
domains together we get enough accurate �nite element model for an IPMC muscle sheet. It allows us using the
model as a base for solving more complex problems, thus we have also introduced simulation of electrochemical
reactions.

1.1. Electrochemical oscillations
Spontaneus oscillations are common fenomenon in nature and it has been studied for many experimens, including
electrochemical systems such as oxidation of organic materials and metals [REF]. Electrochemical systems
exhibiting instabilities often behave like activator-inhibitor systems, where the potential of the electrode is
an essential variable and takes on the role either of the activator or of the inhibitor. Under certain conditions
the system can generate oscillations. We have conducted series of tests, where IPMC sheet have immersed into
acidic formaldehyde, HCHO, solution and exposed to constant outer potential. However, measurements show
current oscillations, which in turn result in oscillating bending of the IPMC sheet. Hence we have also introduced
a model in this paper for describing such systems coupled with other physicals domains.
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Figure 1. Illustration of domains and dimensions used in modeling.

2. SIMULATION DETAILS
An IPMC sheet consists of backbone polymer and metal coating. We have used Na�on 117 coated with thin
layer of platinum. Although, as it is written in the introducion that simulations in multiple physical domains are
needed for getting bending model for an IPMC, most simulation is done in one mechanical domain - backbone
polymer. Platinum coating is considered only in mechanics domain while calculating bending. So basically there
are three mechanical domains as shown in Figure 1.

Most simulations are done for IPMC strip, 1.5cm long, 200um thick polymer coated with 7um thick platinum,
for cantilever con�guration - one end of the strip is not allowed to move. Gravitational forces are not considered
in any following simulations.

2.1. Migration of cations
Nernst-Planck equations describes di�usion and convection and migration of charged particles under electric
�eld. General form of the equation is

∂Ci

∂t
+∇ · (−Di∇Ci − ziµiFCi∇φ) = −~u · ∇Ci (1)

where subscript i denotes species and C is concentration of species, µ is mobility of species,f D is di�usion
constant, T is absolute temperature, R is gas constant and φ is electric potential. This equations must be solved
only for freely movable cations. As voltage is applied to the electrodes of the IPMC, all freely movable cations
start migrating towards anode???, causing current in circuit. As ions cannot move beyond boundary of Na�on,
charges start to accumulate, resulting in increase of electric �eld of opposite direction to applied one. So the
electric �eld caused by charge distribution is described by Gauss' Law:

∇ ~E =
F · ρ

ε
(2)

where ρ is charge density, ε is absolute dielectric constant and E is the strength of the electric �eld and can
be expressed also as ∇φ = −E. Steady state of the cations forms when electric �eld created by distribution of
cations cancels out applied electric �eld, i.e. electric �eld strength inside the polymer is zero as shown in Figure
2 . Charge distribution for Na+ ion concentration of 1200mol

m3 is shown in Figure 3. It is interesting to notice
that there are di�erences in charge distribution only in really thin boundary layers.



Figure 2. Electric �eld strength inside the IPMC in charge balance state. Notice that the �eld is zero inside the polymer,
except really thin boundary layer.

2.2. Modeling actuation of an IPMC
Many authors have used Euler cantilever beam equation to model bending of an IPMC strip in cantilever
con�guration. [SOME ref's to authors?]. Though it describes position of the IPMC quite accurately for small
displacements, it is not dynamical model - it does not show motion of the material in time. So using static Euler
theory does not lead to really accurate time dependent model. Hence di�erent approach is used for bending
model: sti�ness will be also considered when calculating. Importance of viscoelacity have been brought out also
by some other authors like [REF].

2.2.1. Assumptions about bending mechanism
There are di�erences in charge distribution only in really thin boundary layers as we brought out before. General
conclusion by many authors is that locally generated charge imbalance nearby platinum electrodes is main cause
of bending of the IPMC [REFS]. We have de�ned longitudinal force in each point of the IPMC as follows:

~F = (A · ρ + sgn(ρ) ·B · ρ2) · x̂, (3)

where ρ is charge density and A is a constant which could be found from di�erent experiments. Basically the
force is equivalent to the charge density and the shape of the force inside the polymer is shown in Figure 3.

2.2.2. Math behind the bending
Finite element method for solving physical equations is very powerful and allows us to get more precise results
than by using analytical methods. We used structural mechanics equations described in Comsol Multiphysics



Figure 3. Cation distribution in charge balance state. Also longitudinal force according to modeling inside the polymer
is shown. Notice that force grows faster near the boundaries of the polymer than cation distribution. The reason for that
is quadratic term in force formula as shown in Equation 3. It is important to notice that the graph is somehow illustrative
because real simulation maximum values for concentration and specially for stress are larger.

software package. Normal and shear strains are

εi =
∂ui

∂xi
, εij =

1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
(4)

Where u denotes displacement, x denotes a coordinate and indeces i and j are from 1 to 3 and denote components
correspondingly in x, y or z direction. As IPMC sheet in our simulations moves only in x-y plane, ε3 = 0 and
ε23 = ε13 = 0. Considering this we can write symmetric strain tensor in vector form and symmetric stress tensor
in vector form as follows:
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, τij = τji

and the stress-strain relationship is
σ = Dε. (5)

D is elasticity matrix which is 6 x 6 matrix and consists of components of Young's modulus and Poisson's ratio.
The system is in equilibrium if the following equation is satis�ed:

−∇ · σ = ~F ,



Figure 4. Longitudinal stress inside the polymer backbone in global coordinates.

which is basically Navier's equation for displacement. For instance, stress generated in the polymer is shown in
Figure 4. The stress inside the platinum coating is very much bigger, thus it is not shown.

2.2.3. Transient analysis of bending
As our simulation is rather dynamic than static, we have to introduce equation for describing motion of the
IPMC sheet. For that the Newton's Second law is used:

ρ
∂2~u

∂t2
−∇ · c∇~u = ~F ,

where second term in the equation is static Navier's equation. Dynamic part is introduced by the �rst term of
the equation. This equation describes a system without damping.

Motion with Rayleigh damping model for system with single degree of freedom can be described

m
d2u

dt2
+ ξ

du

dt
+ ku = f(t),

where ξ is damping parameter and can be expressed ξ = αm + βk and parameter m is mass and k is sti�ness.
Comsol Multiphysics similar form for systems with multiple degrees of freedom:

ρ
∂2~u

∂t2
−∇ ·

[
c∇~u + cβ∇∂~u

∂t

]
+ αρ

∂~u

∂t
= ~F

where c is constant from static analysis.
All values used to simulate previously described equations are shown in Table 1.



Variable Value Dimension

Table 1. Values used in simulations.

2.3. Bending simulation results
Though there are couple of parameters in Equation 3, which depend on experimental results and are not very
uniquely speci�ed for all IPMC sheets, the simulates results predict the bending of an IPMC sheet precisely
enough to use in further modeling problems. There are illustration of bending and the graph about the illustration
shown in Figure XXX. And as we are not modeling static problem, the time dependence of tip displacement of
an IPMC muscle is shown in Figure YYY.

By coupling previously described equations, we have developed very good base model. Now it is possible to
extend this base by adding more equations to get physically meaningful results for more complicated problems.


