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We have developed a reactive molecular dynamics (RMD) scheme to simulate irreversible polymerization of
realistic polymer systems in a coarse-grained resolution. We have studied the chain propagation of styrene to
polystyrene. For monodisperse polystyrene samples, we reproduce the results of equilibrium MD simulations:
density, end-to-end distance, radius of gyration, and different geometrical distribution functions. The RMD
simulations on polydisperse systems should be considered as case studies intended to understand the influence
of different tuning parameters of the RMD approach on calculated polymer quantities. The parameters for
the irreversible polymerization include the number and position of the initiator units (I*) as well as capture
radii ry (rp) defining the geometrical conditions for chain initiation (propagation) and a characteristic delay
time 7, separating two reactive MD time steps. As a function of the r; (rp) and 7, it is possible to model
polymerization processes both in the limit of almost unrelaxed and fully relaxed samples. The strong influence
of the spatial localization of the I* on the polymer size distribution is discussed in detail. The RMD results
are used to formulate optimized computational conditions for the simulation of irreversible polymerizations,
to explain observed trends in the polydispersity index, and to suggest experiments that might lead to an

unexpected polymer size distribution.

1. Introduction

For quite a long time the development of connectivity-altering
molecular dynamics (MD) and Monte Carlo (MC) methods had
not been in the focus of computer simulation studies. The
expected prohibitively long computer time demands of reactive
MD (RMD) and MC (RMC) calculations seemed to be an
obstacle for scientific activities in this direction. The increasing
computational facilities in the past 15 years, however, initiated
the development of reactive simulation techniques. The first
RMD and RMC simulations aimed at generating equilibrated
structures of chainlike and cross-linked polymers.'~® Khare et
al. combined atomistic MD simulations with periodic MC trials
to connect monomer units.” The approach of these authors as
well as similar studies' ™8 has been performed with the intention
to build up glassy structures. Successful RMD approaches on
the basis of generic bead-and-spring models have been suggested
by several groups to study the polymerization kinetics of linear
chains as well as the structural properties of the resulting
melts.'%"!12 The efficient simulation method of Svaneborg et al.
rendered possible the formation of topologically disordered
polymer networks.'? At roughly the same time, a first MC
realization under consideration of translational, orientational,
and reactive moves was published.'* The end- and double-
bridging MC algorithms of Theodorou et al. have grown into
powerful methods for the generation of well-equilibrated
polymer samples with chainlike or even more complex
architectures.'>™'® In the approach of Liu et al., a dissipative
particle dynamics has been used to study phase separation which
is coupled with polymerization.'
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In more recent contributions, new RMD and RMC methods
have been suggested. A generic MD model using hard ellipsoids
to map irreversible polymerization has been described by
Correzzi et al.?® An RMD scheme in a coarse-grained (CG)
resolution to study the formation of polymer chains has been
developed by Perez et al.?! In addition to a Lennard-Jones
interaction, these authors have coupled adjacent beads via the
anharmonic finite extensible nonlinear elastic potential. In
analogy to the RMD work of Akkermans et al.,!! a capture radius
had to be defined in the latter formalism to model reactive steps;
see below. These reactive simulations'!?! can be considered as
an extension of the pioneering work of Gao.!°

Outside the context of polymerization, RMD simulations on
the basis of a local equilibrium have been described for very
simple processes.?>”2* Smith et al.> have developed a RMD
formalism to simulate the thermal decomposition of polymers
and nanostructures. Similar processes have been studied by other
groups.?®?” Reactive force fields of quantum chemical accuracy,
however, have not been combined yet with reactive MD or MC
schemes in the study of polymerization processes.?®?° Finally,
we want to mention the reactive ensemble Monte Carlo method*
developed to study the equilibrium behavior of reacting systems.
On the basis of the existing RMD literature, the following picture
appears. While simple local reactions in polymers can be
modeled with system-specific force fields at an atomistic level,
the majority of polymerization reactions have been described
only at the CG level with generic potentials.'!?!

It is the purpose of the present study to take new steps toward
RMD simulations using CG potentials of specific systems. We
have modeled the polymerization of styrene (parametrized and
from here on denoted as ethylbenzene (EB)) to atactic poly-
styrene (PS). The CG mapping scheme employed is displayed
in Figure 1. Each ethylbenzene monomer as well as each repeat
unit of PS has been identified with a CG bead. The labels R
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Figure 1. Coarse-grained mapping scheme for ethylbenzene (EB, left)
as a model of styrene and for polystyrene (PS, right). A coarse-grained
bead encompasses either one EB molecule ((C¢Hs)C,Hs) or one repeat
unit of PS (—(C¢Hs)C,H;—). In a PS chain, the two absolute configura-
tions of the carbon center substituted by the phenyl rings give rise to
CG beads symbolized by R and S. In atactic PS the sequence of the R
and S beads is random.

and S in the schematic diagram characterize the two enantio-
meric orientations of the —CHPh— group with Ph abbreviating
a phenyl ring. The selection of CG polystyrene in our first RMD
investigation is due to our recent simulation studies of this
polymer.3'=3* A coarse-grained model for ethylbenzene and
polystyrene as well as their mixtures has been tested in detail.
Their temperature (7) transferability has been investigated in
comprehensive equilibrium simulations.?! In atomistic nonequi-
librium calculations of PS and PS-CO, mixtures, we have
analyzed the thermal conductivity of these species.*** Crystal-
line syndiotactic PS has been chosen to study the correlation
between the calculated thermal conductivity and degrees of
freedom in a given force field.*> The published CG potential of
PS3' adopted in the present article offers the possibility to
compare RMD data for monodisperse PS samples with results
of nonreactive equilibrium MD simulations on melts of a given
chain length. Note that the CG potentials derived by Qian et al.
were optimized to generate the same structure as the atomistic
MD simulation. It should be noted that the present reactive MD
implementation is an extension of the RMD model of Akker-
mans et al.!' So far, the model has only been applied in
connection with generic potentials which offer enough flexibility
to simplify the implementation of a reactive MD scheme.!!?!
Employing specific potentials in RMD simulations is less
straightforward as will be shown in the second and third sections.
In contrast to former RMD studies, the focus is here more
oriented on the growth history of the polymer samples. The
present simulations show that qualitative features of polymer-
ization experiments are already in reach.

The organization of the present paper is as follows. In the
next section we explain the background of the developed RMD
formalism. All simulations have been performed with the
program IBIsCO which has been written in our group for CG
studies of polymers.* The reactive MD extension of IBIsCO
has led to the R-IBIsCO code. The computational conditions
for the RMD calculations are given in the third section. In the
fourth, we compare RMD results for monodisperse PS with
the output of equilibrium simulations.?' Before the conclusion,
the growth history of the PS formation in polydisperse samples
is related to experimental results in section 5.

2. Theoretical Background

The theoretical setup chosen allows the mapping of a so-
called living polymerization with irreversible bond formation.**%

J. Phys. Chem. B, Vol. 114, No. 43, 2010 13657

Before the polymerization of the monomers (M) can start (in
the present work the polymerization of EB to PS), we have to
define a certain number of monomer beads (N;) which act as
initiators (I*). Such an internal initiation occurs, e.g., in
photopolymerizations. Each I* can bind one free monomer. In
the succeeding polymerization steps, the terminal monomer (P*)
of a polymer chain can react with a free monomer. Thus, the
irreversible polymerization leads to the following reactive
scheme, with the symbol * denoting a reactive unit:

¥+ M—1— P*

[—P*+M—1—P— Px

I1—P,_, —P*+M—1—P, — P n=234,.
ey

Suitable descriptors for such processes are the polymer size
(degree of polymerization) N, its mean value (Np), and the
underlying distribution function P(N.) as well as the polydis-
persity index /p. These quantities have been determined in the
present reactive MD simulations. To emphasize this origin, in
the following discussions they have been labeled with the index
“sim”. (N )sm and Ipg, are defined as

<NL>sim = z nNLNL (2)

Lo =

sim (NL>sim with NW = z WNLNL (3)

The symbols ny, and wy, denote the number fraction and weight
fraction.® The summations in relations (2) and (3) are performed
over all possible values of Ny.

It has been mentioned in the Introduction that the present
RMD implementation exhibits certain similarities with polym-
erization models suggested by Akkermans et al.'' as well as
Perez et al.>! But in contrast to these generic schemes, we have
employed a realistic CG potential derived for EB, PS, and EB-
PS mixtures.’! The present CG potential is defined by non-
bonded interactions as well as by bonded radial and angle terms.
These degrees of freedom are not considered in generic RMD
schemes with potential functions that are not system-specific.

Reactive steps in the present RMD formalism are imple-
mented as follows. We define two tuning parameters controlling
the polymerization. The first is a characteristic delay time (z;)
separating two succeeding time steps in which reactions are
allowed to take place. The interval 7, between such steps is
reserved for normal MD without connectivity alteration, e.g.,
for the relaxation and diffusion of the particles. In order to
simplify the implementation of the reactive processes, the
parameter 7, is kept constant during the simulations and is
independent of the chain length. For small 7, the particles do
not have enough time to reach equilibrium via dynamic
processes. RMD simulations under these conditions have been
denoted as “static”.!"*! For large 7,, the system has more time
to relax and diffuse before new bonds can be formed. The time
interval required for relaxation by molecular motions of course
depends on the polymer weight fraction and the degree of
polymerization. In contrast to the “static” processes in the limit
of small 7,, the descriptor “dynamic” has been employed in the
RMD literature to classify simulations performed for large
values of 7..!'?! In the present RMD formalism the number of
reactive time steps separated by 7, is not limited. Each
propagating chain as well as each initiator is allowed to form
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Figure 2. Schematic representation of the initiation step of the
polymerization (left and center diagrams) as well as the chain
propagation (right). The center diagram symbolizes the formation of a
new [—P* bond. The two different reactive processes are characterized
by capture radii r; and rp. The reaction can take place whenever a free
monomer bead M comes into the interaction sphere r of an initiator I*
or rp of a terminal reactive chain monomer P*.

only one bond per reactive step. The maximum number of chains
that can propagate simultaneously in a reactive step is equal to
the initial number of starters Nj.

In addition to the delay time 7,, we employ a geometric
criterion compatible with bond formation at reactive time steps.
This leads us to the second tunable parameter of our method.
Bonding, at the allowed time steps, takes place whenever a free
monomer is found in a sphere of radius 7 of an initiator bead
I* or rp of a terminal unit P* of a growing chain. If more than
one free monomer lies within the capture radius of a reactive
center, a bond is formed with the closest one. A schematic
display for the reactive steps is shown in Figure 2. In the left
(center) diagram characterizing the starting reaction the initiator
can bind (has bound) a free EB monomer; in the right one a
terminal monomer P* of the growing chain has formed a new
bond (propagation).Whenever a new bond is formed, the CG
potential, to be described below, switches instantaneously from
a nonbonded interaction to a bonded one described by bond
and angle terms. In contrast to the other reactive simulations
employing such a geometric criterion,'"*! we have used a force
field where ry (rp) lies inside the repulsive part of the potential.
The R-IBIsCO program written for the present research allows
the definition of individual capture radii ry (rp) for the starting
reaction and chain propagation. Thus, we can model different
reactivities at the two topology-altering centers. For the reactive
parameters r; (rp) as well as for the delay time 7,, we had to
choose values that lead to simulation times accessible with the
present computational facilities. In our simulations, we have
adopted capture radii between 0.55 and 0.40 nm. The nonbonded
interactions at these ry (rp) values lead to energy barriers of 0.47
and 16.30 kJ/mol. They measure the difference between the
minimum of the pairwise nonbonded potential and the energy
derived at r (rp). Modifications of this energy under the
influence of the reactive process are not considered in our simple
setup. Nevertheless, we suggest identifying these numbers in
the context of the present RMD scheme as the activation energy
E of the polymerization reaction. Note that these numbers are
smaller than the E, of living polymerizations. We expect,
however, that qualitative aspects of the polymerization procedure
can be reproduced by the present approach.

To sum up, in addition to the number N; and position of the
initiator beads I*, the present RMD scheme is controlled by
two tuning parameters. The delay time 7, separates two reactive
MD steps where bond formations are possible. In principle, there
is no limitation in the overall number of new bonds formed at
reactive MD steps, as long as free monomers are available.
Nevertheless, a reaction can only take place if the two reacting
beads are located within a sphere of radius r; (I—P* bonds) or
rp (P—P* bonds). The capture radii determine the activation
energy for the polymerization. The delay time 7, controls the
degree of relaxation and diffusion between reactive MD steps;
i.e., it is an element characteristic for the simulation method.
Although of different physical meaning, the influence of r (7p)
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and thus of E, on the one hand, and 7, on the other hand, cannot
be considered as completely independent. With the above choice
of parameters, the present MD simulations have approximately
the same time scale for the polymer dynamics and the chemical
activation in the reactive steps. Although differing by many
orders of magnitude in reality, they nevertheless allow the
simulation of a living polymerization which provides insight
on growth mechanisms. The introduction of the parameters N,
1 (rp), and 7, indicates that RMD simulations of polydisperse
samples can be considered as a case study to test the sensitivity
of the approach to these parameters. The present analysis of
polydisperse samples, however, goes beyond the recent generic
RMD simulations as it offers a qualitative access to experimental
features; see the discussion in a later section.

We now come to the CG mapping of the chosen systems.
We have employed an existing CG potential®! derived via the
iterative Boltzmann inversion (IBI) method, a highly stable
algorithm developed by one of the present authors.* As target
functions, Qian et al. made use of inter- and intramolecular
distribution functions from atomistic simulations.®' Atactic PS
is characterized by a random arrangement of so-called R and S
beads. The sequence of the two repeat units was determined by
a random number generator with equal probabilities. There are
two terms for the bonded “two-bead” interaction R-R (= S-S)
and R-S (= S-R). The different types of angular potentials are
symbolized by R-R-R (= S-S-S), R-R-S (= S-R-R = S-S-R =
R-S-S), and R-S-R (= S-R-S). The nonbonded interactions are
described by potential terms denoted R-R (= S-S) and R-S (=
S-R). In analogy to nonreactive IBISCO simulations, all
potentials in R-IBISCO are stored in tabulated form.

The correlation between RMD results for monodisperse PS
and equilibrium data reported recently?' is used as benchmark
to estimate the capability of the present simulation scheme in
generating equilibrated polymer structures. Even in conventional
equilibrium MD calculations of complex systems, the possible
trapping in quasi-degenerate configurations, which may differ
in certain physical properties, requires a high computational
effort.*0™%2 A detailed discussion of such phenomena in non-
equilibrium simulations of PS can be found in one of our recent
articles.® It cannot be ruled out a priori that such problems are
even enhanced in the presence of reactive processes. Thus, the
comparison of RMD and equilibrium data can be considered
as an additional test to recognize and, if necessary, to suppress
the implications of such quasi-degeneracies.

3. Computational Conditions

All RMD simulations were performed in the constant-NPT
ensemble where the particle number N = Ny includes all beads
in the system, i.e., the free monomer and initiator beads as well
as the ones in the polymer chains. For simulations of mono-
disperse PS samples, we have chosen the temperature 7 = 500
K and the pressure P = 101.3 kPa to meet the conditions of
the equilibrium runs which served as reference.’! The total
number of CG beads adopted in the benchmark studies amounts
to Ny = 3840. Monodisperse samples have been generated with
the help of a predefined chain length N;. If a growing chain
has reached this limit, further reactive processes are forbidden
by definition. At the end of the simulation we have N; polymer
chains with identical length N;. A complete list of the parameters
defining the present RMD approach can be found in Table 1.
For the monodisperse simulations, the initial number of initiators
is determined by the ratio Ny = Nw/N;, with N;, = 10, 30, 80,
and 120. In a first stage, growth and equilibration of the
monodisperse samples are performed until all free monomers
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TABLE 1: Summary of Input Parameters and Quantities
Used in the Present RMD Simulations of a Living
Polymerization

Nu total number of monomer beads including the initiators I*
N; = Np total number of initiators Ny which coincides with the total
number of chains Np

N number of initiators that have reacted at a certain
polymerization time

No degree of polymerization of a polymer chain

Dp conversion (percentage of monomers converted into

polymer beads)
r (rp) capture radius of the initiator I* (terminal monomer
bead P* of a chain)

Ip polydispersity index
Ng total number of growth steps, i.e., number of
reactive MD steps
T, time interval (in ns) between two reactive MD steps
tp time to reach a 50% conversion of the free monomers
M into polymer beads P
teo time to complete the polymerization Dp(t..) = 100%

have been captured. The values of the capture radius and delay
time adopted here are 1; = rp = 0.40 nm and 7, = 5 x 10™* ns.
Long equilibration runs are subsequently performed for these
monodisperse samples. Following the equilibration the quantities
of interest are extracted from the samples.

In the simulation of polydisperse samples, the constraint of
a common Ny, is simply removed. These calculations have been
performed at P = 101.3 kPa and 7 = 400 K which is a
characteristic condition for the living polymerization of styrene
to PS.## To derive the CG potential for this temperature, we
have used the temperature-dependent scaling factor of ref 31,
AT = (T/Ty)'"* where Ty = 500 K is the temperature for the
development of the CG force field. The CG potential at T =
400 K requires a simple transformation of the potential by the
multiplicative factor {T) ~ 0.894. A qualitative justification of
the square-root dependence of the factor f{7) can be found in
ref 31. The polydisperse samples have been modeled by
considering Ny = 4000 including an initiator number N; of 80
beads. The chosen Ny/Nj ratio is quite close to the relative
concentrations of the components in experiments.*** All
reactive MD simulations (monodisperse and polydisperse samples)
have been continued until the last free monomer had been
captured by one of the growing chains.

Constant time steps of 5 fs have been employed in the reactive
simulations. The Berendsen thermostat® is used with a coupling
time of 0.5 ps, while a coupling time of 5 ps has been chosen
for the barostat. These time constants are combined with an
isothermal compressibility of 1 x 107¢ kPa~!. The cutoff for
the nonbonded interactions has been set to 1.6 nm, and the
associated Verlet neighbor list cutoff value is 1.7 nm. The
updating procedure for the neighbor list has to be at least equal
to the delay time 7, to monitor the time evolution of the system
topology correctly. The values for the capture radius ry (rp) and
the delay time 7, employed in the different RMD simulations
are quoted in sections 4 and 5.

The alteration of the particle connectivity requires a perma-
nent control of the system. Whenever a new bond is formed,
the interaction potential between the reacting beads is switched
instantaneously from a nonbonded to a bonded interaction. The
implications of this process for the entries in the neighbor list
are evident: the RMD code has to guarantee that the newly
connected beads do not feel nonbonded interactions up to the
second neighbors in the chain. All simulations have been
performed under periodic boundary conditions and the minimum
image convention.
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Figure 3. Temperature fluctuations as a function of the simulation
time 7. The top diagram represents the 7' dependence of a conventional
equilibrium MD simulation of a monodisperse sample with N, = 80.
The T fluctuations in the other diagrams refer to reactive MD
simulations. Center plot: Dp = 30%, r;=rp = 0.40 nm, 7, = 5 x 107*
ns. Bottom plot: Dp = 90%, r, = rp = 0.55 nm, 7, = 5 X 10~* ns. The
target temperature is 7 = 500 K.

At the end of this section we analyze the stability of the
present RMD implementation. We just have emphasized that
each reactive event between two beads is accompanied by a
spontaneous switch of the CG potential from a nonbonded to a
bonded interaction. In Figure 3 we show that the excess heat
produced in these processes does not lead to significant changes
in the temperature fluctuations. The target temperature adopted
in these reactive MD runs is 500 K. The top diagram provides
the 7 fluctuations in a conventional equilibrium simulation (i.e.,
absence of reactive processes). In the middle diagram we have
plotted the temperature fluctuations in a polydisperse sample
at a conversion of 30%. The RMD runs are performed with r
= =040nm and 7, = 5 x 107* ns; i.e., we follow a slow
process. It can be seen that the formation of new bonds does
not lead to any increase of the temperature. The same behavior
is found when increasing the conversion continuously, i.e., in
the limit of complete polymerization. In the faster process shown
in the bottom diagram (r; = rp = 0.55 nm and 7, = 5 x 107*
ns), only a slight increase of T of roughly 2 K near the time
origin can be detected. This increase is due to the switching
from the nonbonded to the bonded potentials when bonds are
being formed in this fast process. But even this excess energy
is quickly removed from the system by the Berendsen thermostat
with standard settings. In analogy to the middle diagram, the
bottom T profile is characteristic for the whole reactive process.
Finally, we also have checked the length fluctuations of a bond
formed at a certain time + = O up to the end of the reactive
simulation (results not shown here). The length fluctuations of
the bonds formed during the reactive simulations are similar to
those experienced by the same system simulated with standard
MD (i.e., topology of the system fixed at the beginning of the
simulation).

4. Growth of Monodisperse Systems: Validation of the
Method

We have chosen the density (p) as the first quantity to present
the correlation between equilibrium MD and RMD data for
monodisperse PS samples. All nonreactive equilibrium simula-
tions reported below have been repeated for the present work
by adopting the setup described by Qian et al.’! In the top
diagram of Figure 4 we have plotted the density of PS as a
function of the predefined chain length N;. The agreement
between MD and RMD data is very good. The equilibrium MD
and RMD densities for Np = 10, 30, 80, and 120 differ by less
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Figure 4. Density p of monodisperse polystyrene samples as a function
of the predefined chain length N, (top diagram) and as a function of
1/Ny, (bottom diagram). The data points of the standard equilibrium
MD simulations (circles) in the top diagram have been connected by a
full line as a guide to the eye, the reactive MD (RMD) derived data
are represented by squares. The bottom diagram shows the RMD data
(squares) along with the fitted linear curve used for an extrapolation
of the density of a monodisperse system with an average chain length
of 500 monomers.
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Figure 5. Root-mean-square end-to-end distance R.. (top) and radius
of gyration R, (bottom) for monodisperse PS of chain lengths N;, =
10, 30, 80, and 120 as derived by standard and reactive MD simulations.
All simulations have been performed at 7= 500 K. Note the double
logarithmic representation of the plot. The literature data labeled by
“a” and “b” have been taken from refs 31 and 48, respectively.

than 1%. The 500 K density of the initial EB sample amounts
to 631.1 kg/m®. With increasing length of the polymer the
density increases. The present MD and RMD densities are of
the same order of magnitude as experimentally determined
values. In ref 46, a density of 950 kg/m? at T = 500 K has
been reported for atactic PS. It refers to a polymer sample with
an average molecular weight of 51 000 g/mol corresponding to
an averaged chain length of 500. The bottom diagram of Figure
4 contains the RMD based densities as a function of the inverse
polymer size N.. In this linear correlation, the limit 1/N, — 0
can be used to estimate the density of polymers with long chains.
For Ny, = 500 the extrapolation leads to a density of 995 kg/m®
which differs by less than 5% from the experimental value.
The same good agreement between equilibrium and RMD
results for PS is observed for the root-mean-square end-to-end
distance R.. = (Rg)"? and gyration radius R, = (RG>)'. Rg
(Rg) symbolizes the end-to-end distance (radius of gyration).
The Ny, dependence of R.. is shown in Figure 5 (top diagram)
along with the simulation results of Qian et al.>' The RMD-
based scaling exponent v in the relation R o< N " of 0.571
differs by less than 3% from the theoretical estimate for self-
avoiding walks of v = 0.588. This value of v is characteristic
for the excluded volume behavior of short chains.!'*” For the
radius of gyration (Figure 5, bottom diagram) we have correlated
the present RMD and MD results with two equilibrium
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Figure 6. Bond length distribution between the centers of mass of
RR (SS) and RS (SR) beads in atactic polystyrene (top, bottom) from
the present RMD approach and a conventional equilibrium MD
simulation. The data refer to N, = 120 and 7 = 500 K.
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Figure 7. Angle distribution between three adjacent repeat units of
atactic PS from the present RMD approach and in standard equilibrium
MD simulations. The data refer to Ny = 120 and 7 = 500 K.

simulations from the literature.’'** As expected on the basis of
the R.. plot, we again observe a linear relation between R, and
Np. when plotted in a double-logarithmic scale. All equilibrium
results considered in the benchmark studies are reproduced
perfectly by the reactive MD approach. Thus, it seems that
sampling problems***! are small for the quantities derived for
monodisperse PS samples by the two different MD techniques.

We continue our comparative analysis of monodisperse PS
in CG resolution with distribution functions for the bonds and
angles. In Figure 6 we show the length distribution between
the centers of mass of bonded beads as derived under RMD
and conventional equilibrium MD conditions. The same com-
parison between the two computational schemes for the angle
distributions of the bonded beads is reported in Figure 7. The
curves in both figures have been evaluated for a predefined chain
length Ny, of 120 beads. Again, we notice an excellent agreement
between the connectivity-altering and the equilibrium MD runs.
The same is valid for the angle distributions in Figure 7. From
Figures 6 and 7, we deduce that intramolecular length and angle
distributions are correctly determined by the present RMD
method. The same agreement between the two MD codes has
been observed for the other chain lengths studied (N, = 10,
30, 80). The intramolecular distributions plotted in Figures 6
and 7 confirm the trends already formulated in connection with
the density as well as the R.. and R, profiles.

A comparison of the nonbonded radial distribution function
g(r) between RR (SS) beads for monodisperse PS chains with
N, = 120 and 10 concludes our validation of the RMD
implementation. In analogy to the bonded distribution curves,
also the nonbonded ones in Figure 8 are correctly reproduced
by the RMD method. Thus, the present connectivity altering
MD code is an efficient tool to derive equilibrated structures of
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Figure 8. Nonbonded radial distribution functions g(r) between RR
(SS) beads of atactic PS with N, = 10 (top) and N, = 120 (bottom)
from the present RMD approach and conventional equilibrium MD
simulation at 7 = 500 K.

TABLE 2: Characteristic Times (Half-Life #;, and Time to
Full Conversion ¢..) as a Function of the Capture Radius r =
r; = rp in RMD Simulations of Polydisperse Samples®

r=rp hip loo
0.40 6.00 29.6
0.45 0.40 2.5
0.48 0.13 1.2
0.55 0.03 0.86

@ The delay time is 7, = 5 x 107 ns. The values #, and t.. are
given in ns and ry and rp in nm.

monodisperse polymer samples. On the basis of the above
simulation results, we strongly feel that the RMD approach
should be also a useful tool to study the properties of
polydisperse systems under different growth conditions.

5. Growth History in Polydisperse Samples

The polymer growth in the monodisperse samples of the last
section has been terminated by the predefined parameter N
which defines the common length of all chains. In the simula-
tions described below, this constraint on N, has been removed
in order to allow a free growth of the N different polymer
chains. In analogy to monodisperse samples, we have again a
good agreement between the calculated p of 1025 kg/m?® and
measured values of 1005 and 1013 kg/m?. The experimental
data refer to samples with an averaged chain length of 500
monomers,*** while the RMD results correspond to a value of
roughly 50 at 7= 400 K. The literature data have been recorded
at T = 408 K.

A. Influence of the Capture Radius and Delay Time. In
this section, the initiator positions have been distributed
randomly in the simulation box. First, we have chosen a
common capture radius r (r = r; = rp) for the initiator I* and
the terminal polymer bead P* in the chains at a constant value
of the delay time 7, = 5 x 107* ns. Numerical results on the
correlation between r and characteristic polymerization times
are given in Table 2 where we have collected the parameters
ti» and t., as a function of r. The time ¢, indicates that one-
half of the initial free monomers M has been converted into
polymer beads P (i.e., Dp = 50%), while t.. denotes that the
polymerization process has been completed (i.e., Dp = 100%).
The t,, numbers indicate that an increase of r from 0.40 to 0.55
nm leads to an enhancement of the reaction velocity by a factor
of 200. This acceleration is a manifestation of the higher
probability to find a monomer in the vicinity of a terminal chain
bead if the capture radius is enlarged. This can be quantified
by averaging the number of free beads within the capture radius
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Figure 9. Distribution function P(N.) for the polymer size N from
RMD simulations with r = 0.40 nm and with » = 0.55 nm (r = =
7p). The value of the delay time is 7, = 5 x 107* ns. Both RMD curves
have been averaged over 55 simulations. Each simulation starts with a
different random initial distribution of the starters in the box. The bold
curve is a Poisson profile (analytical solution (4)) derived by assuming
that all polymerization steps can be described by the same rate law
and rate constant.

of a reactive bead during a certain simulation time. For r =
0.55 nm the averaged number of free beads in the reactive sphere
of the chain end during 0.03 ns is 0.63. Note that 0.03 ns refers
to the time to reach Dp = 50%. For the same time of simulation
(i.e., 0.03 ns) the averaged number of free beads found within
a capture radius of 0.40 nm is reduced to 0.0125. In contrast to
t152, the time to full conversion f.., however, differs by only a
factor of roughly 34. This leveling indicates the decelerating
influence of equilibration and diffusion steps in the end phase
of a polymerization even if these factors are unimportant at the
beginning of a fast reaction.

We come to the influence of r on the degree of polymerization
Ny of the Ny polymer chains. The final chain length distribution
P(Ny) derived for 7. = 5 x 107 ns has been plotted in Figure
9 for the two limiting r considered (0.40 and 0.55 nm). The
fast reaction (large r) leads to a broader P(N,) profile.

The small activation energy associated to r = 0.55 nm allows
reactive steps in configurations only partially relaxed that are
characterized by a trapping of initiator units or terminal polymer
beads in a nonreactive surrounding.

Under certain assumptions, it is possible to solve the kinetic
equations for a polymerization process analytically. In this
framework, it is assumed that the reaction rate coefficient for
the bimolecular reaction (I-P,—;-P* + M) is independent of V..
This is fulfilled under the following conditions. (i) The reactants
have to be ideally mixed preventing a diffusion control. (ii) The
initiation kinetics has to be fast relative to the chain propagation.
Condition (ii) will be examined in more detail in following
subsections. The analytical solution for P(N}, + 1) corresponds
to the following Poisson distribution function.

NL
PN, + 1) = N]f]i‘ expl(=N@®)] N, =12,.. @
X

N(t) is the average number of bonds per chain (ratio between
the total number of bonds formed and the total number of
activated chains) at any time ¢. The recurrence formula offers
an access to the fraction of polymers with polymerization degree
Ny + 1 (number of polymer chains with length N + 1 divided
by the total number of growing chains). In addition to the two
RMD curves in Figure 9, we have displayed the P(NV.) profile
using the above Poisson formula. For more information we refer
to the literature.!" Figure 9 indicates that the r = 0.40 nm
simulations follow a Poisson-like behavior. Thus, we can



13662 J. Phys. Chem. B, Vol. 114, No. 43, 2010

80 f
60
40+t
20
80 f

L 60}

Z 40t
20 t
80 f
60
40
20

0 10 20 30 40 50 60 70 80 90 100
D, (%)

Figure 10. Evolution of the polymer size N for the two shortest and
the two longest chains as a function of the conversion Dp in RMD
simulations performed with » = 0.40 nm (top) and r = 0.55 nm (middle)
associated with 7, = 5 x 107* ns. The bottom diagram has been
evaluated with r = 0.55 nm and 7, = 1 x 1072 ns.

conclude that equilibration and diffusion seem to be fast
compared to the polymerization rate with this small r value. In
the r = 0.55 nm case, the deviation of the P(N;) profile from
the Poisson-like behavior is due to trapping effects as described
in the following paragraph.

To emphasize differences in the growth history of the
polymers as a function of r, we have calculated the length Ny,
for the two longest and shortest chains as a function of the
conversion Dp. The curves in the top and middle diagrams of
Figure 10 refer again to the limiting capture radii r of 0.40 and
0.55 nm combined with 7, = 5 x 10™* ns. The bottom diagram
of Figure 10 will be considered later in this subsection. It appears
from the top and center diagrams that up to Dp ~ 30% there is
no large difference in the growth history of the fast and slow
polymerization. For Dp > 30% trapping processes appear in the
simulation with » = 0.55 nm and 7, = 5 x 10™* ns. They cause
a split between the Ny profiles of the short and long chains which
increases as polymerization proceeds. The implications of such
processes in the presence of a small energy barrier have been
visualized already in Figure 9.

For the polymerization simulated with » = 0.55 nm and 7, =
5 x 107* ns, eq 3 leads to a polydispersity index Ipg, of 1.058.
The relaxation and diffusion processes allowed under r = 0.40
nm imply a small reduction of Ipg, to 1.020. These polydis-
persity indices are the results of an average over 55 RMD
simulations for each of these two cases. Considering the
differences in the chain lengths of experimental systems and
the present simulations, the splitting between the calculated Ipgir,
and experimental numbers of roughly 1.3 for living polymer-
ization is not unexpected.?! Nevertheless, we feel that the
calculated Ipg, numbers emphasize that the present RMD
simulations of a living polymerization in a CG resolution offer
a reliable description of the kinetics. By means of the local
reaction parameter r it has been possible to simulate a transition
from a “static” polymerization (r large, 7, small) to a “dynamic”
scheme (r and 7, small). From the simulations it appears that r
= 0.40 nm (E5, = 16.3 kJ/mol) seems to be sufficient for a
proper consideration of equilibration and diffusion processes
in the sample of growing polymer chains.

In order to investigate the influence of the delay time, we
have adopted two different 7, values of 5 x 10™*and 1 x 1072
ns with a constant capture radius » = 0.55 nm. In Figure 11 we
have plotted the conversion as a function of the simulation time.
Of course, the polymerization is faster when using the smaller
7, value of 5 x 107 ns. Here the polymerization is finished
after 0.86 ns while f., in the 7, = 1 x 1072 ns equals 3.20 ns.
In analogy to the r-dependent simulations, let us now follow
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Figure 11. Time dependence of the conversion Dp (%) for 7, = 5 x
10* ns (thin curve) and 1 x 1072 ns (bold curve). Both RMD curves
use » = 0.55 nm for all reactive centers.
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Figure 12. Distribution P(Ny) of the polymer size Ny on the basis of
two different (r,7;) combinations. The full curve corresponds to r =
0.55 nm, 7, = 1 x 1072 ns, and the broken one to the combination r
=040nm, 7, =5 x 107 ns.

the growth history of the two longest and shortest PS chains as
a function of 7,. The curves in the bottom diagram of Figure 10
have been derived for r = 0.55 nm and 7, = 1 x 1072 ns. The
results of this diagram are compared to the evolution of the
curves in the middle diagram derived with the same capture
radius r but a smaller 7,. As could be expected on the basis of
the above findings, trapping effects are more or less absent in
the “dynamic” simulation with 7, = 1 x 1072 ns.

The RMD results presented up to now suggest, as expected,
that r and 7, cannot be considered as completely independent
control parameters. This means that similar growth histories of
the polymer chains can be modeled by different combinations
of the delay time between reactive steps 7, and the capture radius
r. This computational degree of freedom can be extracted from
Figure 12 where we have plotted the probability function P(Ny)
for two (r,7,) combinations: (0.55 nm, 1 x 1072 ns) and (0.40
nm, 5 x 107 ns). Both reactive MD runs lead to almost identical
P(Ny) profiles. The advantage of this one-to-one mapping under
different simulation conditions is evident. In fact, the simulation
with (0.55 nm, 1 x 1072 ns) is approximately 10 times faster.

B. Influence of the Spatial Distribution of the Initiator
Beads. All RMD simulations discussed up to now have been
performed for samples with a random distribution of the initiator
beads I*. Now we relate these data to RMD runs starting from
a spatially localized distribution of the I*. Experimentally, such
an arrangement can be generated by a local photoinitiation or
by the proper arrangement of the entrance slots for the initiators
in the reactor. From technical polymerizations it is known that
the size of the reaction vessel, its geometry, and the velocity of
the component mixing can have a strong influence on the chain
lengths and polydispersity index.*® By changing the localization
of the initiators [* in the simulation box, a case study for such
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Figure 13. Number of initiators that have reacted Ny, as a function of
the number of reactive steps Ng. The top curve has been derived for a
random distribution of the initiators, while the bottom one refers to a
spatially localized initial configuration of the initiators. Both RMD
simulations have been performed with » = 0.55 nm and 7, = 5 x 107*
ns.

an experimental control element can be performed. A localized
concentration of the I* is generated as follows. Before starting
the RMD run, one EB bead is randomly chosen as initiator I*.
The remaining members of the initiator ensemble are then
selected on the basis of a simple cutoff criterion (i.e., the 79
beads closest to the chosen starter serve as the remaining I*).

Let us first consider the influence of the localization of the
initiator beads on the number of I* forming an [—P* bond (Ny,)
as a function of the number of reactive MD steps (Ng). In Figure
13 we have plotted such curves for a random and a spatially
localized distribution of the 80 initiators. The RMD results have
been derived for 7, = 5 x 10~ ns and r = 0.55 nm. From the
figure we see that only Ng = 5 reactive MD time steps are
required in the sample with randomly distributed I* to allow
the 80 initiators I* to bind a monomer. Ng = 5 corresponds to
a simulation time of 25 fs. The spatially localized I* distribution
needs roughly 220 reactive steps to generate 80 growing chains.
The simulation time associated to Ng = 220 amounts to 1100
fs. The different behavior between the two consumption curves
of I* is easy to explain. For the localized [* arrangement, only
the I* at the surface of the initiator droplet can find a reactive
partner; the inner ones are trapped. Possible trapping effects as
a function of the reactive parameters r and 7, have been
commented on above. From the discussion of the growth history
of the chains under the influence of these parameters (previous
section), we expect that trapping leads to broadened polymer
size distributions. This is confirmed by the P(N.) curves in
Figure 14. They are based either on 7, = 5 x 107 ns (top) or
on 1 x 1072 ns (bottom). The P(Ny) profiles have been derived
for the two extremal I* distributions considered (random and
localized arrangements). The 7, = 5 x 107 ns polymerization
with the smaller time interval for relaxation and diffusion
between the reactive steps leads to large differences between
the two P(Ny)profiles. The nonreactive surrounding of the inner
I* in the droplet is responsible for an extremely broad P(Ny)
curve with two maxima. The first one occurs for Ny, slightly
below 10. It indicates that, as expected, some of the initiator
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Figure 14. Distribution P(Ny) of the polymer size Ny, calculated with
a random (bold curves) and a spatially localized (thin curves)
distribution of the initiator beads I*. The curves in the top diagram are
based on 7, = 5 x 107* ns, the curves in the bottom one on 7, = 1 x
1072 ns. All simulations have been performed with » = 0.55 nm.

beads have been captured in a nonreactive surrounding for a
rather long time. The second P(N;) maximum in the curve
derived for localized I* appears at P(N.) &~ 70. The double-
peak structure of the P(N.) profile obtained for the spatially
localized I* reflects that the trapping of some I* enables the
growth of long polymer chains in the subset of untrapped
reactive polymer ends.

From Figure 14 we deduce that a spatial localization of
initiator beads can lead to a length or mass profile of the chains
strongly different from the Poisson-like distribution shown
above. A Poisson-like profile occurs under conditions where
relaxation and diffusion in the sample are fast in comparison
to the chain propagation. The double-peak curve in Figure 14
can be considered as an extreme example where this balance is
violated. It remains an open question whether such a mass
distribution could be obtained in an experiment. We are aware
that the polymerization dynamics modeled by the present RMD
approach is much faster than any experimental one. But if there
was a chance to achieve this limit, two conditions would have
to be fulfilled. The activation energy has to be very low and
high sample viscosities would help to decelerate relaxation and
diffusion. The lower diagram in Figure 14 emphasizes that the
difference between the two P(Np) profiles disappears when
performing the RMD runs under “dynamic” conditions (7, = 1
x 1072 ns). Both curves are quite similar and have their
maximum at N, & 50. The longer delay time 7, between reactive
MD steps allows the I* to spread into reactive domains of the
sample before chain elongation under nonequilibrium conditions
takes place.

In analogy to the forgoing calculations, the simulations
starting from spatially localized initiators should provide insight
into conditions supporting trapping. Figure 15 contains the
length of the two shortest chains obtained under 7, = 5 x 10~
ns (bold curves) and 7. = 1 x 1072 ns (thin curves). Trapping
is almost absent under “dynamic” conditions compatible with
7, = 1 x 1072 ns. Here even the shortest chains contain more
than 30 monomers. The NV, increase continuously with increasing
polymerization. The reduction of 7, from 1 x 107>to 5 x 10™*
ns is responsible for an almost perfect trapping of the reactive
terminal beads of the chains. At the end of the polymerization,
chains with only three or five monomers are left. We believe
that Figures 14 and 15 provide useful information on the
implications of localized initiator concentrations in living
polymerizations.

C. Different Capture Radii for the Initiation and Chain
Propagation. We now relate polymerizations performed under
rn = rp to r;p Z rp ones; i.e., we consider different activation
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Figure 15. Evolution of the size Ny, of the two shortest chains in RMD
simulations starting from a localized initiator concentration for 7, = 5

x 107 ns and 7, = 1 x 1072 ns. All simulations employ r = 0.55 nm.
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Figure 16. Distribution P(Ny.) of the polymer size N for a RMD run
with r; = 0.55 nm and rp = 0.40 nm as well as for two homogeneous
processes with r; = rp = 0.40 and 0.55 nm (top diagram). The P(Np)
distribution in the bottom diagram has been evaluated for r; = 0.40
nm and rp = 0.55 nm. All simulations have been performed with a
delay time 7, of 5 x 107 ns.

energies for the reaction of the initiator [* with a monomer and
the chain propagation. In this section, the term “homogeneous”
is used to denote simulations performed with r = r; = rp. In
polymerization reactions, one usually has lower activation
energies for the initiation step than for the propagation.’” With
the present RMD model, this can be mapped by setting r; > rp.
Let us go to the top diagram of Figure 16 where we have plotted
the probability P(N.) of a process modeled by ry = 0.55 nm
and rp = 0.40 nm together with two homogeneous profiles
evaluated for common radii (r; = rp) of either 0.55 or 0.40 nm.
All RMD results have been obtained for 7. = 5 x 10™* ns. The
simulations show that the energy demand for the starting reaction
is without influence on the size distribution and polydispersity
index if the chain propagation requires a higher or equal
activation energy. The r; #Z rp curve and the homogeneous one
with high activation energy are similar; both reproduce a
Poisson-like behavior. The reasons leading to the broad P(Ny)
for the homogeneous runs with r; = rp = 0.55 nm have been
commented on in the foregoing discussion.

The time demand for the formation of 80 growing polymer
chains for simulations with r; = 0.55 nm and r, = 0.40 nm
differs from the ones with r; = rp = 0.40 nm. In the RMD
study with r; = 0.55 nm, only five reactive MD steps are
necessary to initiate the 80 growing chains. This amounts to
roughly 0.02% of the complete polymerization time .. When
choosing a capture radius of 0.40 nm for the initiation, 1174
reactive time steps are required for the initiation of the 80
growing chains. Here, the completion of the starting process
covers 2% of t... The slow propagation rate in both systems
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attenuates any difference in the initiation. In the case of r; = rp
= 0.40 nm, the coupled initiation and propagation steps do not
prevent the latest chains initiated from finding free monomers.
For r; > rp the 80 growing chains that were started already within
0.02% of the reaction will grow uniformly. The discussion in
this last subsection has shown that the present RMD results are
in line with basic principles of reaction (polymerization) kinetics.
It is the slowest step of a process that determines the final
product profile.’” This is impressively seen in the bottom
diagram of Figure 16. Here we have plotted the probability
function P(Ny) now derived for a polymerization where the
formation of the I—P* is slower than the chain propagation.
The RMD calculation leads to an extremely broad profile.
Polymer chains containing more than 150 monomers are formed
in this simulation. The small initiation radius r; = 0.40 nm leads
to an increase in the time required for all initiators to bind a
monomer. Thus, the initiation step is extended over a long
period. At the same time, the large propagation value rp = 0.55
nm guarantees a fast chain growth whenever a [—P* unit has
been formed. Therefore, a large number of monomers are
connected by the first growing chains while few remain for the
growth of the latest chains formed.

D. Comparison with Experiments and Analytical Results.
In the discussion of the RMD results of polydisperse samples,
we have emphasized that the tuning parameters ry, rp, and 7,
have a sizable influence on the molecular weight distribution
P(Nyp), its mean value (N )sm, and the polydispersity index Ipgim.
In this section, we relate the RMD-based quantities to simple
analytical expressions (N, Ip,) that are valid for a living/
controlled polymerization as well as to experimental trends. We
will show that the absence of termination reactions is only one
condition for a living/controlled polymerization. The proximity
to the limit of a living/controlled process is also determined by
the absolute and relative speed for initiation and chain propaga-
tion; see below. If the initiation step is slow relative to the
propagation, we will always have a deficit of I* leading to the
formation of long chains (large polydispersity indices). This has
been confirmed experimentally.’®~>> We next consider the
overall speed of the polymerization under the assumption that
the initiation and propagation steps require approximately the
same time. In this case, the polydispersity increases with the
speed. This has been observed experimentally in an atom transfer
radical polymerization (ATRP) of styrene, whose reaction speed
was modulated by using different iron halide complexes as
catalysts.>? For the fastest reactions, Ip values between 1.4 and
1.3 have been measured. A slight reduction of the speed has
lowered Ip to 1.3, while a slow polymerization has been
accompanied by a further decrease of /p to 1.2. Conversions of
60 and 80% were reached in this ATRP study.

Let us continue with analytical formulas that are employed
in experiments to discuss the living/controlled character of a
polymerization process.’~32 For a well-controlled polymeriza-
tion (i.e., a process that yields narrow polymer size distribution),
the expected average degree of polymerization N, and poly-
dispersity index Ip, can be determined®-? theoretically by the
ratio between the monomers that have reacted (AM) at a given
time and the number of initiators N;. For a conversion of 100%
in our RMD simulations, AM = Ny — N; is the number of
monomers at the beginning of the reaction. We have

_AM

NLa - NI

(&)

and
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The computational conditions adopted for the polydisperse
samples imply Np, = 3920/80 = 49 and Iy, = 1.02 (Dp =
100%).

On the basis of the given experimental information and the
analytical expressions (5) and (6), let us reconsider the RMD
results derived for polydisperse samples. First, we want to
highlight some peculiarities of the simulations with the help of
figures. In one RMD run starting from a localized initiator
distribution (r = 0.55 nm, 7, = 5 x 10~ ns), we have modeled
an extremely inefficient condition for a controlled polymeriza-
tion (see top diagram in Figure 14). The small number of I*
accessible at the beginning of the reaction strongly restricts the
number of growing polymer chains. The outcome of such a
condition is the formation of broad P(Np) profiles. In our special
case, a distribution with two maxima has been observed. The
first one has been found at a N, value of roughly 10, and the
second one at N; ~ 70. But also in connection with a random
distribution of the I*, a very broad P(N.) profile has been
detected (see bottom diagram in Figure 16). Prerequisite for
this curve shape is again an initiation step that is slow in
comparison to the propagation. In our RMD simulations, it had
been generated by capture radii fulfilling 7 < rp. Already the
results in Figures 14 and 16 have indicated that the RMD
approach is able to reproduce general experimental trends of
living polymerization reactions. Inefficient starting reactions
imply broad P(Ny) profiles (large Ip numbers). In the present
approach, two mechanisms forcing such a polymerization
process have been suggested: (i) inefficient starting reaction
(here modeled by r; < rp) and (ii) localized starting configuration
of the initiators which implies that many of the I* are in the
inner region of the initiator droplet.

We continue our discussion with the RMD data in table 3. It
summarizes {(Np)sm and Ipgy, (eqs 2 and 3) values that have been
derived from single simulations under different conditions.

Case studies 1, 2, 3, and 4 are close to the boundary of a
living/controlled polymerization. Nevertheless, examples 1 and
3 show that an enhanced velocity (r = 0.55 nm in 1 relative to
r = 0.40 nm in 3) implies a larger deviation from /Ip, = 1.02
(i.e., 1.06 versus 1.016). In example 4, we are again closer to
1.02 due to the small 7p = 0.40 nm. The largest deviation from
this limit is observed for example 5, where the slow starting
reaction (r; = 0.40 nm) compared to the propagation (rp = 0.55
nm) leads to (N )gim = 58.65 and Ipg,, = 1.47. In contrast to the
case study of the previous subsection, which led to a bimodal
P(N,) curve, a random distribution of the I* has been adopted
in example 5.

The results of the present section can be summarized as
follows. (1) The correlation of the RMD data with limiting
values derived analytically for a living/controlled polymerization
has shown that we are able to reproduce this limit by properly
designed tuning parameters. (2) The RMD approach reproduces
a general experimental trend, i.e., the increase of the polydis-
persity index for slow initiation and for high propagation speed.
(3) It seems to be an advantage of the RMD simulations in the
range of nanoseconds that they reproduce experimental trends
derived for reaction times in the range of minutes. The present
findings let us hope that the simulations on polydisperse samples
go beyond a bare case study. In analogy to the RMD data
derived for monodisperse samples, also the quantities calculated
for polydisperse ones offer insight into experimental control
parameters of a living polymerization.
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TABLE 3: Simulated Average Degree of Polymerization
(NL)sim and Polydispersity Index Ipg, for RMD Simulations
under Different Conditions®

example reactive conditions (NL)sim Ipgim
1 n=r=055r17=5x 10" 49.99 1.06
2 n=r=055717=1x 1072 49.99 1.015
3 n=rp=0407,=5 x 107* 50.79 1.016
4 rn=0.55r=040,7,=5 x 107* 50 1.026
5 =040, r,=05517=5x 107* 58.65 1.47

“The quantities are derived for a conversion Dp = 100%. They
are compared with N, = 49 and Ip, = 1.02 (eqs 5 and 6). All
simulations considered in this table are based on a random
distribution of the initiators. The delay time 7, is given in ns and r
in nm.

6. Conclusions

In the present contribution, we have introduced a reactive
MD approach equipped with a material-specific CG potential.
We have chosen the polymerization of styrene monomers
(represented by ethylbenzene) to polystyrene as a model. To
simulate a living polymerization, irreversible bond formation
and the absence of chain termination reactions have been
assumed. For the mapping of the CG beads, we have employed
a potential optimized on the basis of atomistic equilibrium MD
simulations. It is characterized by system-specific radial and
angle terms that are less straightforward to implement than
generic potentials. The different degrees of sophistication in the
potential are perhaps the strongest discriminator between recent
generic models and the present implementation.

The RMD scheme developed requires the introduction of two
input parameters. The first is the delay time 7, between two
reactive MD steps, which is characteristic for simulation
methods of the MD or MC type. The second parameter is related
to an activation term for bond formation. The activation energy
for this process is indirectly determined by so-called capture
radii r; and rp defining the possibility that two nonbonded
monomers form a chemical bond in a reactive step. This process
is implemented as the transition from a nonbonded to a bonded
CG potential. In our first numerical study, we have allowed an
instantaneous transition from a nonbonded to a bonded potential
in a reactive process. The simulations discussed in the third
section have verified that there is no heat up in the sample that
exceeds the fluctuations in conventional equilibrium simulations.
The largest T enhancement found in the case of fast reaction
dynamics is still too small to be significant.

The capability of the present RMD formalism has been
validated for monodisperse samples. The reactive MD code
reproduces the results of equilibrium simulations. Densities, end-
to-end distances, and radii of gyration as well as different
geometrical distribution functions have been chosen for the
comparison of RMD and MD results. In this part of our work,
we have shown that the present RMD approach offers a
straightforward access to equilibrated polymer configurations,
which is an additional application for it. Previous coarse-grained
RMD studies were more oriented in generating equilibrated
polymer structures. Thus, the natural possibility to track the
polymerization dynamics by RMD simulations had not been
fully explored. Despite all simplifications, the present model
has been successful in reproducing the basic characteristics of
living polymerization. The results derived for polydisperse
samples have also been correlated favorably to experimental
trends. The different case studies clearly emphasized the power
of future RMD studies for (living) polymerizations.
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