
Physics 740: Spring 2006: 02/14/07

P740.7.tex

Vorticity and vortices. Vorticity occurs in many scenarios in fluid dynamics. The case of

an ideal fluid, i.e., no viscosity, is special and set of scenarios is much more limited. However,

problems involving ideal fluid vortices map onto a number of other problems of considerable

importance (most of which are two dimensional): the two dimensional Coulomb gas, the

two dimensional X-Y model, D=2 superconductivity, D=2 superfluidity, the roughening

transition, certain liquid crystals, etc. While the details differ all of these cases involve

vortices that have a well defined strength, circulation, but two signs (directions of motion of

the fluid around the vortex core. [Maybe the most glamorous example is the two dimensional

superfluid for which the circulation about a vortex core is quantized (essentially as Bohr

would do it). So in superfluids (superconductors) there are quanta of circulation. They

come with two signs as the circulation about the vortex core can be clockwise or counter-

clockwise. Hence, the association with the two dimensional Coulomb gas.]

1. Velocity field and energy of a vortex.

(a) Velocity field. Consider a vortex core strung from top to bottom of a finite cylindrical

container. Assume the velocity field of the fluid is axially symmetric, i.e., v=v(r)er. Then∮
v · dr =

∮
v(r)dr = 2πrv(r) = κ, (1)

v(r) =
κ

2πr
, r ≥ a, (2)

where κ is the circulation of the vortex and a is the radius of the vortex core. There are two

possible directions for he fluid flow around a vortex core. Use some sign convention and a

right hand rule. Then, each circulation will have a well defined sign. For simplicity we will

consider the case of vortices in a superfluid for which the numerical values of the circulation

are quantized in units of h̄/m, κ = ±nh̄/m. [It is found empirically that almost always

n = 1.]

Aside. You might understand Bohr quantization by the argument of deBroglie, the wave

describing a particle must be periodic over the orbit of the particle. Since p = h/λ Bohr

follows. A superfluid is a macroscopic collection of particles described by a single quantum

mechanical wavefunction (that’s why the collection of particles moves coherently) that must
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FIG. 1: A vortex at the center of a cylinder of radius R and length L. The vortex core has radius

a and v(r) ∼ 1/r.

be periodic over a closed path in the fluid. In the case of a superfluid the quantity that must

be periodic corresponds to a flow of the fluid. (Maybe the same is true of an electron flowing

around a proton in a H atom. How would you know?)

End aside.

(b) Energy. The energy in a vortex is made up of two parts, 1. the energy to form the

vortex core and 2. the energy in the flow of the fluid.

1. Core. This energy is a constant and the same for all vortex cores. There are theories

of this energy, it is of courese proportional to the length of the core, denote it as ε0.

As it does not depend on where the vortex is or on the position of a vortex relative to

other vortices it is unimportant. Rather like the self energy of an electron.

2. Kinetic energy. The important energy of a vortex is the kinetic energy in the fluid

flow around the core. This is

E =
∫ R

a
KE(r) 2πrdr =

∫ R

a

ρ

2
v(r)2 2πrdr =

ρκ2

4π
ln

R

a
, (3)
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FIG. 2: The flow field of the + vortex (blue) adds to that of the − vortex (red) in the space

between them. Beyond the two cores the flow fields tend to cancel so that the important kinetic

energy is in a volume of space of order r2L.

where R is a practical upper limit to the region of space associated with the vortex

(possibly the radius of the cylinder). Note that E is an energy per unit length as it

should be. The total kinetic energy in the fluid flow is LE .

Aside. The result here is the same as that for the electric field of a uniform line charge,

E(r) ∝ (λ/r)er, with λ the charge per unit length. The energy in the electric field is propor-

tional to the integral of E(r) · E(r) over volume. When the field lines from λ terminate on

a distant surface you get the result in Eq. (3).

End aside.

2. Velocity field and energy of a vortex pair. Consider a pair of vortices of equal

and opposite vorticity separated by distance r. The energy of the pair is 2ε0, for the two

cores, plus the kinetic energy of the flow field. Between the two vortices the flow fields

add. Outside of the two vortices they tend to cancel one another. (Just like the electric
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field of two line charges that have equal and opposite λ, i.e., a cylindrical dipole.) See Fig. 2.

The energy of a pair of vortices is approximately

E2 =
∫ r

2
−a

− r
2
+a

ρ

2
(v+(r) + v−(r))2 2πrdr ≈ −ρκ2 ln

r

a
, (4)

A careful calculation yields

E2 = − ρ

4π
κ2 ln

r

a
, (5)

and for a system of N vortices, varying circulation,

EN = − ρ

4π

N∑
i=1

N∑
j=1

κiκj ln
rij

aij

, (6)

where aij = ai + aj.

3. Equations of motion of vortices. The equation of motion is a vortex is a realization

of the consequences of the Kelvin circulation theorem. The vorticity moves with the fluid.

Thus

dxi

dt
=

∑
[x velocity at (xi, yi) from vortices j = 1 · · ·N (except i)], (7)

dyi

dt
=

∑
[y velocity at (xi, yi) from vortices j = 1 · · ·N (except i)], (8)

or

dxi

dt
= − 1

2π

′∑
j

κj
(yi − yj)

r2
ij

, (9)

dyi

dt
= +

1

2π

′∑
j

κj
(xi − xj)

r2
ij

. (10)
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