Conductive polymer actuators and Improvements by using Interpenetrated Networks of Conductive Polymers (IPN-CP)

Conductive Polymer Actuators

Conductive Polymer Structure

Delocalized π -bondings on long polymer chains

holes

High hole mobility due to π delocalization : the polymer is conductive

Creation of holes (oxidation) during the fabrication : doping

Actuation Mechanism (1)

Actuation Mechanism (2)

Electrochemical reaction between anode and cathode creates holes on one side; removes holes from the other side.

Smaller Voltages induce partial electrochemical reaction swith smaller movements

Our System : Interpenetrated Network of Conductive Polymers

CP mixed with SPE (Concentration of CP in SPE decrease following a gradient)

Gradual Interpenetrated Actuator

• Better ionic conductivity inside CP

Materials (1)

Materials (2)

Solution :

- Li+ClO4- ions in Propylene Carbonate
- EmImTFSI Ionic Liquid

• Li+CIO4- (1M) in PC : very slow evaporation

(several hours before performances drop)

• EmImTFSI : no evaporation

Use in open air

N(SO₂CF₃)₂

- **Ions : CIO4- :** good compromise between size / mobility
 - Li+ : complexed by PEO

Materials (3)

Conductive Polymer : PEDOT Conductivity : ~1S/cm very stable linear chains ratio : between 0 – 70% in the gradient zone

Fabrication

Performances

Response time: 1 second Bandwidth: 1Hz Force: 80 mN (at 1mm) displacement: 2-2.5 mm for 5mm beams

Linear Actuation

Simulation: principe

Finite element simulations with thermal analogy

Simulation: validation

simulations

Same results in each case

experimental measures

100,00

Force sensor Counter-weight

Simulations: results

Fabrication: using of masks

classical rigid masks

The not-conductive part was cut out of the actuator due to mechanical failure Cracks due to mechanical failure Increase of the conductive parts volume

Conductive part

Solutions :

- Soft masks using
- Surface treatment / washing
- Evaporation preventing
- USING OF MICROWAVES

Microwaves using

Better reproducibility

- Better Surface aspect
- Much quicker (16h → 6')
- Much less mechanical failure

Fabrication: results

Not-conductive part

Cracks due to mechanical failure

Increase of the conductive parts volume

Actuation tests

Actuation tests

Performances

- high amplitude deformation
- Linear behaviour

Other improvements

- Higher bandwidth (*2 *3)
- Higher force and displacement (depending on the length, typically * 2-3)
- New integration method without clamping : "chemical wires" without side-actuation
- Elimination of deformations loss due to length