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1. n-stars: Background. When a massive star (much larger than the sun) runs out of

nuclear fuel it no longer has the thermal means to support itself against collapse due to

gravity. It goes through a complex cycle ending in an explosion which throws much of its

mass out into space and often leaves behind a cinder of material having a mass of order

that of the Sun. This material, a collection of N electrons and N protons (p, e), can be

regarded as being at T = 0K. Lacking thermal support this material is pulled inward by its

own gravity. The electrons find themselves confined to a space of volume v = V/N (roughly,

the Pauli principle forces each electron into its share of the cinder’s volume V ) where its

energy of localization, h̄2/(mev
2/3), becomes so great that the electrons are absorbed into

the protons, e+p → n (and neutrinos). The cinder, made of neutrons, is a chunk of neutron

matter. When the neutron matter is crushed to the density of nuclear material it is able to

support itself against further collapse using the Pauli pressure of the neutrons. [These are

cold fermi systems so Pauli is everywhere.]

1. Take the cinder to have the mass of the Sun and the number density of nuclear material

to be nN = a−3
N , where aN = 1 fermi. Estimate the radius of the cinder, a spherical

object. State your answer in McCarrans. [The McCarran is a unit of length determined

by a circle approximation to McCarran Blvd (Reno, NV), C = 2πRMcC , the length

RMcC is one McCarran.]

2. The cinder, a neutron star, was created by central forces (gravity) so its final angular

momentum is the same as its initial angular momentum. Take the initial angular

momentum/size of the cider to be that of the Sun. How fast is the cinder rotating?

A rotating neutron star is a pulasr. Pulsar rotation rates vary widely but a period of

1 sec is not unusual, a millisecond is rare. Could the Sun rotate with a period of 1 sec?

3. In principle the density of the neutron star obeys the equation of hydrostatic equilib-

rium
1

r2

∂

∂r

(
r2

ρ

∂P

∂r

)
= −4πGρ, 0 ≤ r ≤ R, P (R) = ρ(R) = 0, (1)

1



where the pressure-density equation of state of T = 0K neutrons is
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, (2)

with ρ = mn(N/V ). [This pressure is the Pauli pressure of the neutrons.] Use x = r/R

and y = ρ/(M/R3) to write Eq. (1) in dimensionless form. The resulting differential

equation has a single constant involving physical variable, i.e., M , G, R, h̄, · · ·, that

is the ratio of two pressures, a gravitational pressure, PG, and a Pauli pressure, PP .

Find these two pressures. Estimate their size.

4. From Eq. (2) you can find ∂P/∂ρ. Imagine that the material being discussed in the

note P740.1.tex was neutron matter. Estimate the velocity of sound in neutron

matter. The mechanical vibrations of a material, say the breathing mode of a star,

have frequencies of order the time for sound to cross the material. What sort of

vibrational frequencies are associated with a neutron star? Could the Sun vibrate at

these frequencies?

2. Something about vortices. In the note P740.8.tex, Fig. 1 (a hard copy was handed

out in class) the equations solved to find the motion pictured were Eqs. (9) and (10) in note

P740.7.tex with the factor 2π absorbed into the definition of κ.

1. For the lower two figures find the equation for x1(t)and x2(t) that solves Eqs. (9) and

(10). Do this for general values of K1 and K2 but for x1(0) = (0, 1)and x2(0) = (0,−1);

do it by inspecting the figures and making a plausible guess as to what you see.

2. If you wanted to integrate the differential equations, (9) and (10), that describe the

motion of the vortices you would begin by writing out the 4 equations called for, i.e.,

ẋ1 = −K2
y1 − y2

r2
12

= −K2Y, (3)

ẏ1 = K2
x1 − x2

r2
12

= K2X, (4)

ẋ2 = −K1
y2 − y1

r2
12

= K1Y, (5)

ẏ2 = K1
x2 − x1

r2
12

= −K1X, (6)

four coupled, first order ODEs. The simplest integration scheme is the Euler method,
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(a) you want to learn x1, x2, y1, y2 at M moments of time tm = (m − 1)∆t, m =

1 · · ·M , between the initial time t1 = 0 and the final time tM = (M−1)∆t = tmax.

You get to choose ∆t and M .

(b) replace time derivatives by (example)

ẋ1 =
x1(tm+1)− x1(tm)

∆t
(7)

and write

x1(tm+1) = x1(tm)−∆t K2 Y (tm), (8)

y1(tm+1) = y1(tm) + ∆t K2 X(tm), (9)

x2(tm+1) = x2(tm) + ∆t K1 Y (tm), (10)

y2(tm+1) = y2(tm)−∆t K1 X(tm). (11)

This is a system of equations that can be iterated, i.e., at m = 1 (t1 = 0)

you use x1(t1 = 0), x2(t1 = 0), y1(t1 = 0), y2(t1 = 0) to evaluate the X and

Y and anything else on the RHS and learn x1(t2), x2(t2), y1(t2), y2(t2) using

Eqs. (8)-(11). With x1(t2), x2(t2), y1(t2), y2(t2) you repeat the process to learn

x1(t3), x2(t3), y1(t3), y2(t3), etc.

(c) a scheme like this is begging to be put into a for loop, e.g.

for ii=2:NT

Dx12=x1(ii-1)-x2(ii-1);

Dy12=y1(ii-1)-y2(ii-1);

r2=(Dx12*Dx12+Dy12*Dy12);

Fx=Dy12/r2;

Fy=Dx12/r2;

x1(ii)=x1(ii-1)-dt*K2*Fx;

x2(ii)=x2(ii-1)+dt*K1*Fx;

y1(ii)=y1(ii-1)+dt*K2*Fy;

y2(ii)=y2(ii-1)-dt*K1*Fy;

end

Input to this loop are the 6 numbers K1, K2, x1(0) and x2(0) and dt.

(d) Carry through this scheme for (K1, K2) = (1,−1), (1, 1), (1, 2), (1, 3), (1, 4),

(1,−3).
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(e) The choice you make for ∆t should be such that x(tm+1) does not differ greatly

from x(tm). So you try some values. See how it goes. Eventually you learn that

there are more cool method than the Euler method. These are adaptive time

step methods, where the iteration scheme keeps adjusting ∆t as you go along so

that you don’t take too big a step, don’t take such itty-bitty steps that you get

nowhere. Matlab, Mathematica, ... have various ODE solvers that have these

features. [At least in Matlab they are not completely transparent. It never hurts

to try Euler to get started and go to ode45, etc. for refinement if needed.]

3. More about a vortex. Solve Problem 1, page 21 in the text, for the case

that the cylindrical velocity field is that of a quantized vortex

v(r) =
h̄

m

1

r
eθ, r ≥ a. (12)

Find z(r) and estimate the depth of the dimple caused by the vortex for the case

of superfluid 4He, i.e., m = 4 amu. For the core radius use σ for 4He in the Table

at the top of P740.HW2.tex.
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