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FIG. 1: sine Gordon and KdV potentials. The energy is shown as a heavy black line.
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1. sine-Gordon by quadrature. The equation to be solved is

Ẍ = sin X. (1)

Multiply by Ẋ and integrate to find

Ẋ2

2
= E − cos X = E − V (X). (2)

See Fig. 1. A solution for V (X) = cos X that starts at X = 0 and evolves to X = 2π can

be found for the choice E = 1. For this case

Ẋ

2
= sin

X

2
. (3)

Use x = X/2 to sterilize further

ẋ = sin x → dx

sin x
= dz. (4)

[Warning. The most sterile possible form of all equations is desirable when using algebra

programs like Mathematica, Maple, .... These programs are so smart that they see everything
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that is not tied down as a complex number or worse. Give them nothing to think about but

the most rudimentary forms.] From Dwight 432.10 the solution to this equation is

log
(
tan

x

2

)
= z. (5)

Unscrambling

X = 4tan−1( ez ). (6)

From the Note 12, z = k0(x− vt)/
√

1− β2, β = v/c0 and k0 =
√

A/c0.

X(z → −∞) = 0, X(z = 0) = π and X(z → +∞) = 2π.

2. KdV by quadrature. The equation to be solved is, Eq. (5) of Note 13,

α2ν̈ = βν − α1ν
2. (7)

Sterilize. Divide by β. Define τ = dz
√

β/α2. Scale by λ = β/α1, i.e., ν = λX. Find

Ẍ = X −X2. (8)

Multiply by Ẋ and integrate to find

Ẋ2

2
= E +

X2

2
− X3

3
= E − V (X). (9)

See Fig. 1. A solution for V (X) that starts at X = 0 and evolves back to X can be found

for the choice E = 0. For this case

Ẋ =

√
X2 − 2X3

3
. (10)

From Dwight 192.11 the solution to this equation is

tanh−1
√

1− 2X/3 = −τ

2
. (11)

Unscrambling

X =
3

2
sech2

(
τ

2

)
. (12)

Further unscramble by going through the variable changes. Compare to Eq. (13) in note 13.
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3. KdV by variational principle. [Note the quantity in the discussion on page 3 of Note

13 is KE−V , the Lagrangian density, e.g., FW chapter 7.] Why not do this in the sterilized

form from Eq. (9) above

E =
∫

dτ

(
Ẋ2

2
+

X2

2
− X3

3

)
=

< Ẋ2 >

2
+

< X2 >

2
− < X3 >

3
. (13)

With XT = Bexp(−γ2τ 2/2) find

< Ẋ2 > =

√
πγB2

2
, (14)

< X2 > =

√
πB2

γ
, (15)

< X3 > =

√
2πB3

√
3γ

, (16)

and

E =

√
π

2

(
γB2

2
+

B2

γ
− b

B3

γ

)
, (17)

where b = (2/3)3/2. Find dE/dB and dE/dγ with the results

B =

√
3

2

(
1 +

γ2

2

)
, (18)

γ2 = 2(1− bB). (19)

Combine, γ2 = 2/5 and B = (6/5)
√

3/2, just numbers. Work back through the definitions

and find

ζ = Ch0β exp −
(

3

5
β
{

x− vt

h0

}2
)

. (20)

4. Soliton Collisions. Consider the pendulum model of the sine-Gordon system. A soliton

can be defined by its helicity. Use a right hand rule. For a solition: when your thumb is in

the direction of motion of the soliton the pendulums twist in the sense of your fingers. For

an anti-soliton they twist in the opposite sense. See Fig. 2. Upper left: soliton going from

left to right. The heavy black pendulum will go through the sequence black, red, blue · · ·

as the soliton passes by. The scattering rules come from examining these figures.

1. Two solitons approaching one another put incompatible demands on the black pendu-

lum, the solitions repel.

2. Two anti-solitons approaching one another put incompatible demands on the black

pendulum, the anti-solitions repel.
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anti - solitonsoliton

anti - solitonsoliton

FIG. 2: Soliton Collisions.

3. A soliton and anti soliton approaching one another put compatible demands on the

black pendulum, the solitions pass by one another.
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