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A. The Boltzmann Equation. The Boltzmann equation in the relaxation time approxi-

mation to the collision term is

∂f

∂t
+ v · ∇xf + F · ∇pf = −f − f0

τ
, (1)

where f = f(x,p, t) is the density of particles at (x,p) at time t and

1. f0 = f0(x,p) is the equilibrium distribution function at (x,p),

2. ∇x = ∂/∂x and ∇p = ∂/∂p,

3. τ is the relaxation time, a characteristic time for departures from equilibrium to return

to equilibrium.

This equation is space-time local, i.e., the equilibrium distribution function can vary from

place to place, can vary slowly in time. The variations in space are on a scale large compared

to the mean free path, the variations in time are slow compared to τ .

The proper venue for deriving the Boltzmann equation from a more fundamen-

tal description is non-equilibrium statistical physics, where one starts with the

Liouville equation for the density in classical phase space. If you are interested

http://denali.phys.uniroma1.it/ puglisi/thesis/node20.html.

B. Uses for f(x,p, t).

1. Calculate local averages

< A(t) >=

∫
dx
∫

dp A(x,p)f(x,p, t)∫
dx
∫

dp f(x,p, t)
. (2)

2. Find an equation of motion for the average of A, e.g.,

∂ < A >

∂t
+ · · · , (3)

see below.
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C. Examples of f0(x,p).

1. ideal gas of N particles, in a uniform space of volume V , in contact with a temperature

reservoir at T :

f0(x,p) =
N

V
I−3
0 exp

(
−β

p2

2m

)
, (4)

n(x) =
∫

dp f0(x,p) =
N

V
, (5)

1 =
∫

dp I−3
0 exp

(
−β

p2

2m

)
. (6)

2. ideal gas of N particles, each particle confined by the single particle potential U(x),

in contact with a temperature reservoir at T :

f0(x,p) = NI−1
U I−3

0 exp

(
−β

[
p2

2m
+ U(x)

])
, (7)

n(x) =
∫

dp f0(x,p) = NI−1
U exp (−βU(x)) , (8)

1 =
∫

dp I−3
0 exp

(
−β

p2

2m

)
, (9)

1 =
∫

dx I−1
U exp (−βU(x)) . (10)

3. ideal gas of N particles, with average x-momentum P , in a uniform space of volume

V , in contact with a temperature reservoir at T :

(a)

f0(x,p) =
N

V
I−2
0 I−1

Q exp

(
−β

[
p2

2m
−Qpx

])
, (11)

n(x) =
∫

dp f0(x,p) =
N

V
, (12)

1 =
∫

dp I−2
0 I−1

Q exp

(
−β

[
p2

2m
−Qpx

])
. (13)

(b)

P =< px > =
1

β

d

dQ
lnIQ, (14)

IQ =
∫

dp exp

(
−β

[
p2

2m
−Qp

])
. (15)

(c) the symmetry p → −p is broken by the Q term, consequently < px > is non-zero.

How is Q related to < px >= P?
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D. An equation of motion for < A >. Define

n = n(x, t) =
∫

dp f(x,p, t), (16)

< A >=< A(x, t) > =

∫
dp Af(x,p, t)∫
dp f(x,p, t)

. (17)

Note. In this section < · · · > is an average over p only!!!

For A independent of t multiply Eq. (1) by A and integrate on p:

1. first term in Eq. (1)

∫
dp A

∂f

∂t
=

∂ (n < A >)

∂t
=

∂ < nA >

∂t
. (18)

2. second term in Eq. (1)

∫
dp A (v · ∇x) f = ∇x· < nAv > − < nv · ∇xA >, (19)

[use ∇ · (Avf) = f v · ∇A + A v · ∇f ].

3. third term in Eq. (1)

∫
dp A (F · ∇p) f =

∫
dp ∇p · (AFf)−

∫
dp Af∇p · F)− < nF · ∇pA >, (20)

= − < nF · ∇pA >, (21)

where the simplification occurs because the first integral goes to a surface in p-space

that can be arbitrarily far away (where f = 0) and we assume the applied forces are

independent of p (re-think this if velocity dependent forces are involved).

4. assume that A is a quantity that is conserved by the collision process so that the term

on the RHS of Eq. (1) is dropped.

Assemble the pieces

∂ < nA >

∂t
+∇x· < nAv > − < nv · ∇xA > − < nF · ∇pA >= 0, (22)

∂ < nA >

∂t
+∇x· < nAv > − n < v · ∇xA > −n F· < ∇pA >= 0, (23)

where the second line is a possibly convenient re-arrangement. The quantity < nA > is a

density and < nAv > the corresponding current.
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E. Conservation laws. Make 5 choices for A, A = m,mvi (i = x, y, z), kinetic energy.

1. A = m, ρ = mn, Jρ =< ρv >= ρ < v >= ρu,

∂ρ

∂t
+∇ · Jρ = 0. (24)

2. A = mvi,
∂ < ρvi >

∂t
+
∑
k

∂ < ρvivk >

∂xk

=
1

m
ρFi. (25)

massage. Use < ρvi >= ρui and

vivk = (vi − ui)(vk − uk) + viuk + vkui − uiuk, (26)

< ρvivk >= ρ < vivk > = ρ < (vi − ui)(vk − uk) > +ρuiuk, (27)

to write

(∂ρui)

∂t
+
∑
k

∂(ρuiuk)

∂xk

=
1

m
ρFi −

∑
k

∂

∂xk

ρ < (vi − ui)(vk − uk) > . (28)

Define the pressure tensor

Pik = ρ < (vi − ui)(vk − uk) > (29)

and find
∂ui

∂t
+ u · ∇ui =

1

m
Fi −

∑
k

1

ρ

∂Pik

∂xk

. (30)

[To get here from Eq. (27) we used Eq. (23) to get rid of the derivatives of ρ.]

3. A = m|v − u|2/2, this is the kinetic energy in the motion of the particles in the

gas relative to the local average velocity, an energy that will be identified with the

temperature.

1

2

∂

∂t
< ρ|v−u|2 > +

1

2

∑
k

∂

∂xk

< ρvk|v−u|2 > −1

2
ρ
∑
k

< vk
∂

∂xk

|v−u|2 >= 0. (31)

massage. Define (think E = (3/2)kBT , θ ↔ kBT )

θ =
1

3
m < |v − u|2 >, (32)

Q =
1

2
ρ < (v − u) |v − u|2 > . (33)
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Then

1

2
ρ < vi |v − u|2 > =

1

2
ρ < (vi − ui) |v − u|2 > +

1

2
ρui < |v − u|2 >, (34)

= Qi +
3

2
(ρ θ ui) → conduct + convect, (35)

and using ρ < vk∂(|v − u|2)/∂xk >= −ρ < vk
∑

i(vi − ui) > ∂ui/∂xk and

ρ < vk (vi − ui) > = ρ < (vk − uk)(vi − ui) > +ρuk < vi − ui >, (36)

= Pki, (37)

find
3

2

∂

∂t
(ρ θ) +

3

2
∇ · (ρ θ u) +∇ ·Q + m

∑
k

∑
i

Pki
∂ui

∂xk

= 0. (38)

A final definition

Mik =
m

2

(
∂ui

∂xk

+
∂uk

∂xi

)
, (39)

use of Eq. (23) again and we have

ρ

(
∂

∂t
+ u · ∇

)
θ = −2

3
∇ ·Q− 2

3

∑
k

∑
i

PkjMjk = 0. (40)

F. Collect and Interpret.
∂ρ

∂t
+∇ · (ρu) = 0. (41)

(
∂

∂t
+ u · ∇

)
ui =

1

m
Fi −

∑
k

1

ρ

∂Pik

∂xk

, (42)

= external force + internal force. (43)

ρ

(
∂

∂t
+ u · ∇

)
θ = −2

3
∇ ·Q− 2

3

∑
k

∑
i

PkjMjk = 0, (44)

= conduction + internal work. (45)
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Definitions:

n(x, t) =
∫

dp f(x,p, t), (46)

< · · · (x, t) > =
1

n

∫
dp · · · f(x,p, t), (47)

ρ(x, t) = mn, (48)

u(x, t) = < v >, (49)

θ(x, t) =
1

3
m < |v − u|2 >, (50)

Q(x, t) =
1

2
ρ < (v − u)|v − u|2 >, (51)

Pij(x, t) = ρ < (vi − ui)(vj − uj) >, (52)

Mik(x, t) =
m

2

(
∂ui

∂xk

+
∂uk

∂xi

)
. (53)
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