Physics 740: Spring 2006:
P740.3.tex
A. The Boltzmann Equation. The Boltzmann equation in the relaxation time approximation to the collision term is

$$
\begin{equation*}
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \nabla_{\mathbf{x}} f+\mathbf{F} \cdot \nabla_{\mathbf{p}} f=-\frac{f-f_{0}}{\tau} \tag{1}
\end{equation*}
$$

where $f=f(\mathbf{x}, \mathbf{p}, t)$ is the density of particles at (\mathbf{x}, \mathbf{p}) at time t and

1. $f_{0}=f_{0}(\mathbf{x}, \mathbf{p})$ is the equilibrium distribution function at (\mathbf{x}, \mathbf{p}),
2. $\nabla_{\mathbf{x}}=\partial / \partial \mathbf{x}$ and $\nabla_{\mathbf{p}}=\partial / \partial \mathbf{p}$,
3. τ is the relaxation time, a characteristic time for departures from equilibrium to return to equilibrium.

This equation is space-time local, i.e., the equilibrium distribution function can vary from place to place, can vary slowly in time. The variations in space are on a scale large compared to the mean free path, the variations in time are slow compared to τ.

The proper venue for deriving the Boltzmann equation from a more fundamental description is non-equilibrium statistical physics, where one starts with the Liouville equation for the density in classical phase space. If you are interested http://denali.phys.uniroma1.it/ puglisi/thesis/node20.html.
B. Uses for $f(\mathbf{x}, \mathbf{p}, t)$.

1. Calculate local averages

$$
\begin{equation*}
<A(t)>=\frac{\int d \mathbf{x} \int d \mathbf{p} A(\mathbf{x}, \mathbf{p}) f(\mathbf{x}, \mathbf{p}, t)}{\int d \mathbf{x} \int d \mathbf{p} f(\mathbf{x}, \mathbf{p}, t)} \tag{2}
\end{equation*}
$$

2. Find an equation of motion for the average of A, e.g.,

$$
\begin{equation*}
\frac{\partial<A>}{\partial t}+\cdots \tag{3}
\end{equation*}
$$

see below.

C. Examples of $f_{0}(\mathbf{x}, \mathbf{p})$.

1. ideal gas of N particles, in a uniform space of volume V, in contact with a temperature reservoir at T :

$$
\begin{align*}
f_{0}(\mathbf{x}, \mathbf{p}) & =\frac{N}{V} I_{0}^{-3} \exp \left(-\beta \frac{\mathbf{p}^{2}}{2 m}\right) \tag{4}\\
n(\mathbf{x}) & =\int d \mathbf{p} f_{0}(\mathbf{x}, \mathbf{p})=\frac{N}{V} \tag{5}\\
1 & =\int d \mathbf{p} I_{0}^{-3} \exp \left(-\beta \frac{\mathbf{p}^{2}}{2 m}\right) . \tag{6}
\end{align*}
$$

2. ideal gas of N particles, each particle confined by the single particle potential $U(\mathbf{x})$, in contact with a temperature reservoir at T :

$$
\begin{align*}
f_{0}(\mathbf{x}, \mathbf{p}) & =N I_{U}^{-1} I_{0}^{-3} \exp \left(-\beta\left[\frac{\mathbf{p}^{2}}{2 m}+U(\mathbf{x})\right]\right) \tag{7}\\
n(\mathbf{x}) & =\int d \mathbf{p} f_{0}(\mathbf{x}, \mathbf{p})=N I_{U}^{-1} \exp (-\beta U(\mathbf{x})) \tag{8}\\
1 & =\int d \mathbf{p} I_{0}^{-3} \exp \left(-\beta \frac{\mathbf{p}^{2}}{2 m}\right) \tag{9}\\
1 & =\int d \mathbf{x} I_{U}^{-1} \exp (-\beta U(\mathbf{x})) \tag{10}
\end{align*}
$$

3. ideal gas of N particles, with average x-momentum P, in a uniform space of volume V, in contact with a temperature reservoir at T :
(a)

$$
\begin{align*}
f_{0}(\mathbf{x}, \mathbf{p}) & =\frac{N}{V} I_{0}^{-2} I_{Q}^{-1} \exp \left(-\beta\left[\frac{\mathbf{p}^{2}}{2 m}-Q p_{x}\right]\right) \tag{11}\\
n(\mathbf{x}) & =\int d \mathbf{p} f_{0}(\mathbf{x}, \mathbf{p})=\frac{N}{V} \tag{12}\\
1 & =\int d \mathbf{p} I_{0}^{-2} I_{Q}^{-1} \exp \left(-\beta\left[\frac{\mathbf{p}^{2}}{2 m}-Q p_{x}\right]\right) . \tag{13}
\end{align*}
$$

(b)

$$
\begin{align*}
P=<p_{x}> & =\frac{1}{\beta} \frac{d}{d Q} \ln I_{Q} \tag{14}\\
I_{Q} & =\int d p \exp \left(-\beta\left[\frac{p^{2}}{2 m}-Q p\right]\right) . \tag{15}
\end{align*}
$$

(c) the symmetry $\mathbf{p} \rightarrow-\mathbf{p}$ is broken by the Q term, consequently $<p_{x}>$ is non-zero. How is Q related to $<p_{x}>=P$?

D. An equation of motion for $\langle A\rangle$. Define

$$
\begin{align*}
n=n(\mathbf{x}, t) & =\int d \mathbf{p} f(\mathbf{x}, \mathbf{p}, t) \tag{16}\\
<A>=<A(\mathbf{x}, t)> & =\frac{\int d \mathbf{p} A f(\mathbf{x}, \mathbf{p}, t)}{\int d \mathbf{p} f(\mathbf{x}, \mathbf{p}, t)} \tag{17}
\end{align*}
$$

Note. In this section $\langle\cdots>$ is an average over \mathbf{p} only!!!
For A independent of t multiply Eq. (1) by A and integrate on \mathbf{p} :

1. first term in Eq. (1)

$$
\begin{equation*}
\int d \mathbf{p} A \frac{\partial f}{\partial t}=\frac{\partial(n<A>)}{\partial t}=\frac{\partial<n A>}{\partial t} . \tag{18}
\end{equation*}
$$

2. second term in Eq. (1)

$$
\begin{equation*}
\int d \mathbf{p} A\left(\mathbf{v} \cdot \nabla_{\mathbf{x}}\right) f=\nabla_{\mathbf{x}} \cdot<n A \mathbf{v}>-<n \mathbf{v} \cdot \nabla_{\mathbf{x}} A> \tag{19}
\end{equation*}
$$

$[$ use $\nabla \cdot(A \mathbf{v} f)=f \mathbf{v} \cdot \nabla A+A \mathbf{v} \cdot \nabla f]$.
3. third term in Eq. (1)

$$
\begin{align*}
\int d \mathbf{p} A\left(\mathbf{F} \cdot \nabla_{\mathbf{p}}\right) f & \left.=\int d \mathbf{p} \nabla_{\mathbf{p}} \cdot(A \mathbf{F} f)-\int d \mathbf{p} A f \nabla_{\mathbf{p}} \cdot \mathbf{F}\right)-<n \mathbf{F} \cdot \nabla_{\mathbf{p}} A> \tag{20}\\
& =-<n \mathbf{F} \cdot \nabla_{\mathbf{p}} A> \tag{21}
\end{align*}
$$

where the simplification occurs because the first integral goes to a surface in \mathbf{p}-space that can be arbitrarily far away (where $f=0$) and we assume the applied forces are independent of \mathbf{p} (re-think this if velocity dependent forces are involved).
4. assume that A is a quantity that is conserved by the collision process so that the term on the RHS of Eq. (1) is dropped.

Assemble the pieces

$$
\begin{align*}
& \frac{\partial<n A>}{\partial t}+\nabla_{\mathbf{x}} \cdot<n A \mathbf{v}>-<n \mathbf{v} \cdot \nabla_{\mathbf{x}} A>-<n \mathbf{F} \cdot \nabla_{\mathbf{p}} A>=0 \tag{22}\\
& \frac{\partial<n A>}{\partial t}+\nabla_{\mathbf{x}} \cdot<n A \mathbf{v}>-n<\mathbf{v} \cdot \nabla_{\mathbf{x}} A>-n \mathbf{F} \cdot<\nabla_{\mathbf{p}} A>=0 \tag{23}
\end{align*}
$$

where the second line is a possibly convenient re-arrangement. The quantity $<n A>$ is a density and $<n A \mathbf{v}>$ the corresponding current.
E. Conservation laws. Make 5 choices for $A, A=m, m v_{i}(i=x, y, z)$, kinetic energy.

1. $A=m, \rho=m n, \mathbf{J}_{\rho}=<\rho \mathbf{v}>=\rho<\mathbf{v}>=\rho \mathbf{u}$,

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot \mathbf{J}_{\rho}=0 \tag{24}
\end{equation*}
$$

2. $A=m v_{i}$,

$$
\begin{equation*}
\frac{\partial<\rho v_{i}>}{\partial t}+\sum_{k} \frac{\partial<\rho v_{i} v_{k}>}{\partial x_{k}}=\frac{1}{m} \rho F_{i} . \tag{25}
\end{equation*}
$$

massage. Use $<\rho v_{i}>=\rho u_{i}$ and

$$
\begin{align*}
v_{i} v_{k} & =\left(v_{i}-u_{i}\right)\left(v_{k}-u_{k}\right)+v_{i} u_{k}+v_{k} u_{i}-u_{i} u_{k} \tag{26}\\
<\rho v_{i} v_{k}>=\rho<v_{i} v_{k}> & =\rho<\left(v_{i}-u_{i}\right)\left(v_{k}-u_{k}\right)>+\rho u_{i} u_{k} \tag{27}
\end{align*}
$$

to write

$$
\begin{equation*}
\frac{\left(\partial \rho u_{i}\right)}{\partial t}+\sum_{k} \frac{\partial\left(\rho u_{i} u_{k}\right)}{\partial x_{k}}=\frac{1}{m} \rho F_{i}-\sum_{k} \frac{\partial}{\partial x_{k}} \rho<\left(v_{i}-u_{i}\right)\left(v_{k}-u_{k}\right)> \tag{28}
\end{equation*}
$$

Define the pressure tensor

$$
\begin{equation*}
P_{i k}=\rho<\left(v_{i}-u_{i}\right)\left(v_{k}-u_{k}\right)> \tag{29}
\end{equation*}
$$

and find

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial t}+\mathbf{u} \cdot \nabla u_{i}=\frac{1}{m} F_{i}-\sum_{k} \frac{1}{\rho} \frac{\partial P_{i k}}{\partial x_{k}} \tag{30}
\end{equation*}
$$

[To get here from Eq. (27) we used Eq. (23) to get rid of the derivatives of ρ.]
3. $A=m|\mathbf{v}-\mathbf{u}|^{2} / 2$, this is the kinetic energy in the motion of the particles in the gas relative to the local average velocity, an energy that will be identified with the temperature.

$$
\begin{equation*}
\frac{1}{2} \frac{\partial}{\partial t}<\rho|\mathbf{v}-\mathbf{u}|^{2}>+\frac{1}{2} \sum_{k} \frac{\partial}{\partial x_{k}}<\rho v_{k}|\mathbf{v}-\mathbf{u}|^{2}>-\frac{1}{2} \rho \sum_{k}<v_{k} \frac{\partial}{\partial x_{k}}|\mathbf{v}-\mathbf{u}|^{2}>=0 \tag{31}
\end{equation*}
$$

massage. Define (think $\left.E=(3 / 2) k_{B} T, \theta \leftrightarrow k_{B} T\right)$

$$
\begin{align*}
\theta & =\frac{1}{3} m<|\mathbf{v}-\mathbf{u}|^{2}> \tag{32}\\
\mathbf{Q} & =\frac{1}{2} \rho<(\mathbf{v}-\mathbf{u})|\mathbf{v}-\mathbf{u}|^{2}> \tag{33}
\end{align*}
$$

Then

$$
\begin{align*}
\frac{1}{2} \rho<v_{i}|\mathbf{v}-\mathbf{u}|^{2}> & =\frac{1}{2} \rho<\left(v_{i}-u_{i}\right)|\mathbf{v}-\mathbf{u}|^{2}>+\frac{1}{2} \rho u_{i}<|\mathbf{v}-\mathbf{u}|^{2}> \tag{34}\\
& =Q_{i}+\frac{3}{2}\left(\rho \theta u_{i}\right) \rightarrow \text { conduct }+ \text { convect } \tag{35}
\end{align*}
$$

and using $\rho<v_{k} \partial\left(|\mathbf{v}-\mathbf{u}|^{2}\right) / \partial x_{k}>=-\rho<v_{k} \sum_{i}\left(v_{i}-u_{i}\right)>\partial u_{i} / \partial x_{k}$ and

$$
\begin{align*}
\rho<v_{k}\left(v_{i}-u_{i}\right)> & =\rho<\left(v_{k}-u_{k}\right)\left(v_{i}-u_{i}\right)>+\rho u_{k}<v_{i}-u_{i}> \tag{36}\\
& =P_{k i} \tag{37}
\end{align*}
$$

find

$$
\begin{equation*}
\frac{3}{2} \frac{\partial}{\partial t}(\rho \theta)+\frac{3}{2} \nabla \cdot(\rho \theta \mathbf{u})+\nabla \cdot \mathbf{Q}+m \sum_{k} \sum_{i} P_{k i} \frac{\partial u_{i}}{\partial x_{k}}=0 \tag{38}
\end{equation*}
$$

A final definition

$$
\begin{equation*}
M_{i k}=\frac{m}{2}\left(\frac{\partial u_{i}}{\partial x_{k}}+\frac{\partial u_{k}}{\partial x_{i}}\right) \tag{39}
\end{equation*}
$$

use of Eq. (23) again and we have

$$
\begin{equation*}
\rho\left(\frac{\partial}{\partial t}+\mathbf{u} \cdot \nabla\right) \theta=-\frac{2}{3} \nabla \cdot \mathbf{Q}-\frac{2}{3} \sum_{k} \sum_{i} P_{k j} M_{j k}=0 . \tag{40}
\end{equation*}
$$

F. Collect and Interpret.

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0 \tag{41}\\
&\left(\frac{\partial}{\partial t}+\mathbf{u} \cdot \nabla\right) u_{i}=\frac{1}{m} F_{i}-\sum_{k} \frac{1}{\rho} \frac{\partial P_{i k}}{\partial x_{k}} \tag{42}\\
&=\text { external force }+ \text { internal force } \tag{43}\\
& \rho\left(\frac{\partial}{\partial t}+\mathbf{u} \cdot \nabla\right) \theta=-\frac{2}{3} \nabla \cdot \mathbf{Q}-\frac{2}{3} \sum_{k} \sum_{i} P_{k j} M_{j k}=0 \tag{44}\\
&=\text { conduction }+ \text { internal work } \tag{45}
\end{align*}
$$

Definitions:

$$
\begin{align*}
n(\mathbf{x}, t) & =\int d \mathbf{p} f(\mathbf{x}, \mathbf{p}, t), \tag{46}\\
<\cdots(\mathbf{x}, t)> & =\frac{1}{n} \int d \mathbf{p} \cdots f(\mathbf{x}, \mathbf{p}, t), \tag{47}\\
\rho(\mathbf{x}, t) & =m n \tag{48}\\
\mathbf{u}(\mathbf{x}, t) & =<\mathbf{v}> \tag{49}\\
\theta(\mathbf{x}, t) & =\frac{1}{3} m<|\mathbf{v}-\mathbf{u}|^{2}> \tag{50}\\
\mathbf{Q}(\mathbf{x}, t) & =\frac{1}{2} \rho<(\mathbf{v}-\mathbf{u})|\mathbf{v}-\mathbf{u}|^{2}>, \tag{51}\\
P_{i j}(\mathbf{x}, t) & =\rho<\left(v_{i}-u_{i}\right)\left(v_{j}-u_{j}\right)>, \tag{52}\\
M_{i k}(\mathbf{x}, t) & =\frac{m}{2}\left(\frac{\partial u_{i}}{\partial x_{k}}+\frac{\partial u_{k}}{\partial x_{i}}\right) . \tag{53}
\end{align*}
$$

