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A. The Boltzmann Equation. The Boltzmann equation in the relaxation time approxi-

mation to the collision term is

gfw.vaF-vpf:—f_fo, (1)
t T

where f = f(x,p,t) is the density of particles at (x,p) at time t and
1. fo = fo(x,p) is the equilibrium distribution function at (x, p),
2. Vx =0/0x and V,, = 0/0p,

3. 7 is the relaxation time, a characteristic time for departures from equilibrium to return

to equilibrium.

This equation is space-time local, i.e., the equilibrium distribution function can vary from
place to place, can vary slowly in time. The variations in space are on a scale large compared
to the mean free path, the variations in time are slow compared to 7.

The proper venue for deriving the Boltzmann equation from a more fundamen-
tal description is non-equilibrium statistical physics, where one starts with the
Liouville equation for the density in classical phase space. If you are interested

http://denali.phys.uniromal.it/ puglisi/thesis/node20.html.

B. Uses for f(x,p,t).

1. Calculate local averages

_ Jdx[dp A(x,p)f(%,p,t)

<A == T R T f(x, i)

2. Find an equation of motion for the average of A, e.g.,

0< A>
74_...7 (3)

see below.



C. Examples of fy(x,p).

1. ideal gas of N particles, in a uniform space of volume V', in contact with a temperature

reservoir at T
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2. ideal gas of N particles, each particle confined by the single particle potential U(x),

in contact with a temperature reservoir at 71"
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3. ideal gas of N particles, with average z-momentum P, in a uniform space of volume

V', in contact with a temperature reservoir at 7"
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(c) the symmetry p — —p is broken by the @ term, consequently < p, > is non-zero.

How is @ related to < p, >= P?



D. An equation of motion for < A >. Define

n=n(x.t) = [dp f(x.p,0) (16)
Jdp Af(x,p,1)
<A>=< A(x,t) > = : 17
Ge.®) Jdp f(x p,1) ()
Note. In this section < --- > is an average over p only!!!

For A independent of ¢ multiply Eq. (1) by A and integrate on p:

1. first term in Eq. (1)

of 0n<A>) 0J<nA>
/dpAE_ a0 ot (18)
2. second term in Eq. (1)
/dpA(v~Vx)f:Vx'<nAV>—<nV‘VXA>, (19)

[use V- (Avf)=fv-VA+Av-Vf]

3. third term in Eq. (1)

/dpA(F-Vp)f - /dep-(AFf)—/dpApr-F)—<nF-VpA>, (20)
= —<nF-V,A>, (21)

where the simplification occurs because the first integral goes to a surface in p-space
that can be arbitrarily far away (where f = 0) and we assume the applied forces are

independent of p (re-think this if velocity dependent forces are involved).

4. assume that A is a quantity that is conserved by the collision process so that the term

on the RHS of Eq. (1) is dropped.

Assemble the pieces

8 41 V ;; A ; ‘1 ?

where the second line is a possibly convenient re-arrangement. The quantity < nA > is a

density and < nAv > the corresponding current.



E. Conservation laws. Make 5 choices for A, A = m, mv; (i = x,y, z), kinetic energy.

1. A=m, p=mn, J, =< pv >= p < VvV >= pu,

dp
— = 24
8t+v J,=0. (24)
2. A=mu,
0 < pv; > 0 < pvjvg > 1
= —pF;. 2
ot 2 o m” (25)

k
massage. Use < pv; >= pu; and

vive = (v — ) (Ve — k) + vk + vpw; — iy, (26)
< puivg >=p < vvp > = p < (v; — ) (vg — ug) > +puiug, (27)
to write
(Opuy;) d(pujug) 1 0
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Define the pressure tensor
Py = p < (v; —ui)(vp — ug) > (29)
and find
-Vu; = F 30
ot eV Z p @:Ek (30)

[To get here from Eq. (27) we used Eq. (23) to get rid of the derivatives of p.]

3. A = m|v — u|?/2, this is the kinetic energy in the motion of the particles in the
gas relative to the local average velocity, an energy that will be identified with the

temperature.
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massage. Define (think E = (3/2)kgT, 0 < kgT')

1

0 = 3Mm < v —ul* >, (32)
1
Q:§p<(v—u)|v—u|2>. (33)



Then

1 1 1
5P < i v—u?>> = 5P < (v» — ;) |[v—ul* > +5pUi < lv—ul*>, (34
= Q;+ (p 0 u;) — conduct + convect, (35)

and using p < v 0(|v —u|?)/0x) >= —p < v >;(vs — u;) > Ou;/Oxy, and

p<vp (v;—u) > = p<(vp—up)(v; —uy) > +pup < v; —u; >, (36)
= Py, (37)
find
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A final definition
My = (D O (39)
L 2 8xk 8%1 ’
use of Eq. (23) again and we have
0
Plog TV 9_—fv Q—fZZPk] M = 0. (40)
F. Collect and Interpret.
dp
helld . =0. 41
LT (o) =0 (11)
0 1 1 0P
V) = —F -3 290k 42
<(‘3t T ) m — p Oy, (42)
= external force + internal force. (43)
0
PlogtuV ez—fv Q——ZZP;W M), =0, (44)
= conduction + mternal work. (45)



Definitions:

n(x,t) = /dp f(x,p, 1),

1
<-'-(X,t)> = E/dp f(xvpvt)a
mn,

p(x,t) =
U(X7t) = <V>7
1
0(x,t) = gm < v —uf* >,
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Pi(x,t) = p < (v —u)(v; —uj) >,

m [ Ou; Ou
Mis(x.1) = 2( k)
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