

UNIV. of NEVADA, RENO

Finite element simulations of the bending of an IPMC sheet

D. Pugal^{a,b}, H. Kasemägi^a, K.J. Kim^b, M. Kruusmaa^a, A. Aabloo^a

^aInstitute of Technology, Tartu University, Estonia ^bActive Materials and Processing Laboratory, Mechanical Engineering Department, University of Nevada, Reno, NV, U.S.A

03/20/2007

Mechanical Engineering

Background

- IPMC ionic polymer-metal composites are highly porous polymer materials, such as Nafion, filled with some kind of ionic conductive liquid.
- The sheet of polymer material is coated with a thin metal layer usually platinum or gold.
- In electric field, freely movable ions inside the polymer migrate towards an electrode, causing expansion of material at the one end and contraction at the other end.
- FEM Finite Element Method
 - Used as a technic of modeling in this work

Introduction

- The goal: a time dependent FEM model for an IPMC
- The designed model is 2D
- Domains to be considered:
 - Mechanical
 - Electrostatic
 - Mass transfer
- Adding more complexity electrochemical reactions

Mechanical Engineering

Simulations – cation migration

- Nernst-Planck equation:
 - Diffusion
 - Migration
 - Convection

$$\frac{\partial C_i}{\partial t} + \nabla \cdot \left(-D_i \nabla C_i - z_i \mu_i C_i \nabla \varphi \right) = -\vec{u}_i \cdot \nabla C_i$$

- Voltage causes migration of cations towards cathode
 - That's also the cause of the current in the circuit
- All anions are fixed to the polymer backbone

Simulations – cation migration (2)

- Charge imbalance inside the IPMC results in electric field
 opposite to the applied field
- Gauss' law:

$$\nabla \vec{E} = \frac{F \cdot \rho}{\varepsilon}$$

 Steady state of cations – when the generated field cancels out applied field.

Mechanical Engineering

Simulations – cation migration (3)

Mechanical Engineering

Actuation of an IPMC

- FEM model a bit different approach
 - Euler beam model is not used
 - Our model is dynamic, not static
 - Viscoelasticity is also considered
- Assumption charge imbalance creates longitudinal force inside the IPMC

$$\vec{F} = \left(A \cdot \rho + sgn(\rho) \cdot B \cdot \rho^2\right) \cdot \hat{x}$$

- We consider two terms charge density and square of the charge density
- Constants A and B are fitted using experimental results

Mechanical Engineering

Mathematics behind the bending

- Continuum mechanics equations are used in the model
- The stress is related to the force in each point of the polymer:

$$-\nabla \cdot \sigma = \vec{F}$$

The stress is related to strain:

$$\sigma = D\varepsilon$$

where ε and σ are column vectors with dimensions of 6

Finally, the strain is related to displacement:

$$\varepsilon_i = \frac{\partial u_i}{\partial x_i}, \varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right)$$

Mechanical Engineering

Simulations – cation migration, force

Mechanical Engineering

Active Materials and Processing Lab.

Simulations – generated stress

N

Mechanical Engineering

Transient analysis of bending

- Time dependent equations \rightarrow dynamic problem
- Motion of an IPMC sheet is described by:

$$\rho \frac{\partial^2 \vec{u}}{\partial t^2} - \nabla \cdot c \nabla \vec{u} = \vec{F}$$

Rayleigh damping model:

$$m\frac{d^{2}u}{dt^{2}} + \xi\frac{du}{dt} + ku = f(t) \qquad \qquad \xi = \underline{\alpha}m + \underline{\beta}k$$

• ξ is a damping parameter. m is a mass and k a is stiffness. By coupling those equations for the system of multiple degrees of freedom:

$$\rho \frac{\partial^2 \vec{u}}{\partial t^2} - \nabla \cdot \left[c \nabla \vec{u} + c \underline{\beta} \nabla \frac{\partial \vec{u}}{\partial t} \right] + \underline{\alpha} \rho \frac{\partial \vec{u}}{\partial t} = \vec{F}$$

Mechanical Engineering

Simulation results

Mechanical Engineering

Tip displacement in time

Mechanical Engineering

Active Materials and Processing Lab.

Conclusions

- We have a finite elment model, which...
 - describes the movement of ions inside the polymer
 - describes the electric field
 - describes the dynamic bending of an IPMC sheet

For next, we add some complexity – electrochemical oscillations

Self-oscillations

- Oscillations have also been experimentally studied
- Tests with IPMC:
 - immersed into acidic formaldehyde (HCHO) solution
 - applied constant voltage ~0.75V
 - result: current oscillations and oscillating bending
- Cause of the oscillations are electrochemical reactions on the Pt surface

Mechanical Engineering

Simulating self-oscillations

- A double layer were initialized near the platinum surface.
- On that suface, the following reaction is modeled:

 $HCHO + * \rightarrow Pt - CHO_{ads} + H^+ + e^-$

- 4 dynamic variables must be modeled on the platinum surface
 - time dependence of adsorption coverage of CO
 - time dependence of adsoprtion coverage of OH
 - HCHO concentration change in double layer
 - time dependence of potential on cathode
- These equations were coupled to the basic model...

Self-oscillations – model and experiment

Mechanical Engineering

Active Materials and Processing Lab.

Conclusions and future plans

- 2D, basic FEM model was developed to describe time dependent actuation of an IPMC muscle
- In addition, more complexity was added by coupling a problem of electrochemistry self oscillatory actuation
- Also experimental and simulatios results were compared and quite good agreement were found
- For future:
 - Adding 3rd dimension to the model
 - Considering fluid viscosity and corresponding equations inside the polymer
 - Work on the simulating the oscillation equations

Mechanical Engineering

Acknowledgments

- Authors of this work would like to acknowledge the financial support from
 - U.S Office of Naval Research
 - Archimedes Foundation in Estonia travel support of D. Pugal to University of Nevada Reno
 - Estonian Science Foundation, ETF grant #6763

Questions

Thank you for your attention!

Mechanical Engineering