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1 Show that n̂× ( ~H2 − ~H1) = ~K

~K is surface current density and n̂ is unit vector, normal to the surface and out
of the medium. Before solving, let's assume that H2 > H1

All vectors and the boundary are represented on the Figure 1 (additional page
of the document).

Basically, Maxwell equation ~∇× ~H = ~J states that curl of the magnetic �eld is
caused by the current. So we study the current at the boundary. It wouldn't
be wise to use di�erential form of Maxwell equation, because we are dealing
with boundary. Magnetic �elds are di�erent in both media. So we'd rather use
integral form of the Maxwell equation and we'll take path integral through the
points (0,0), (dx,0), (dx,dy), (0,dy), (0,0). So the equation would be:∮

C
~H · d~l =

∫
S
(~∇× ~H) · ~dA

We can write left side as: H2dx+Hxdy−H1dx−Hxdy = H2dx−H1dx We don't
really care about Hx because it zeroes out anyway. Right side of the equation is
basically the current per surface area. As we are considering only the boundary,
we can write the right side: K · dx because ~K ‖ ~dx
So alltogether we have: H2 − H2 = K But we want to show these as vectors.
Let's take vector n̂ = −ŷ and let's write the left side of the equation as:
n̂ × (H2x̂ −H1x̂) = ẑ(H2 −H1) and as H2 −H1 = K from Maxwell equation,
so we can write the result as:
n̂× ( ~H2 − ~H1) = ~K

2 Prove that ∆ ~A = −µ~J

We are using Maxwell equation ~∇ × ~B = µ ~J + ε0
∂ ~E
∂t . As we are dealing only

with steady currents, the term ε0
∂ ~E
∂t = 0
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Magnetic induction vector can be written using magnetic vector potential:
~B = ~∇× ~A Using results from the last task of this assignment, we can write the
left side of the Maxwell equation as follows:
~∇× (~∇× ~A) = ~∇(~∇ · ~A)−∆ ~A

And we know that ~∇ · ~A = 0 , so the left side of the equation will be:
~∇× (~∇× ~A) = −∆ ~A
And considering fact that we are dealing with steady currents, we can write:

∆ ~A = µ ~J

3 Show that

a)~∇ · [~r · f(r)] = 3f(r) + r · df(r)
dr

The solution:
~∇ · [~r · f(r)] = ∂

∂x1
(x1f(r)) + ∂

∂x2
(x2f(r)) + ∂

∂x3
(x3f(r)) =

= f(r) + x1
∂

∂x1
f(r) + f(r) + x2

∂
∂x2

f(r) + f(r) + x3
∂

∂x3
f(r) =

= 3f(r) + x1
∂f
∂r

∂r
∂x1

+ x2
∂f
∂r

∂r
∂x2

+ x3
∂f
∂r

∂r
∂x3

= 3f(r) + df
dr (xi

∂r
∂xi

) =

= 3f(r) + df
dr (x2

1
r + x2

2
r + x2

3
r ) = 3f(r) + rdf

dr

b)~∇ · (~r · rn−1)

At �rst we'd we can expand the contents in brackets and the result would be:
~∇ · [(x1, x2, x3) · (x2

1 + x2
2 + x3

3)
n−1

2 ]

So now we have divergence of vector with all components explicitly written
down. We can take partial derivatives from each component now:

∂
∂x1

(x1 · (x2
1 + x2

2 + x3
3)

n−1
2 ) + ∂

∂x2
(x2 · (x2

1 + x2
2 + x3

3)
n−1

2 ) + ∂
∂x3

(x3 · (x2
1 + x2

2 +

x3
3)

n−1
2 ) =

= 3rn−1 + ∂
∂x1

((x2
1 +x2

2 +x3
3)

n−1
2 ) ·x1 + ∂

∂x2
((x2

1 +x2
2 + x3

3)
n−1

2 ) ·x2 + ∂
∂x3

((x2
1 +

x2
2 + x3

3)
n−1

2 ) · x3

Now we have to take partial derivatives of those componenents and the result
is:
3rn−1 + n−1

2 · r n−3
2 · 2x1 · x1 + n−1

2 · r n−3
2 · 2x2 · x2 + n−1

2 · r n−3
2 · 2x3 · x3 =

= 3rn−1+(n−1)·r n−3
2 (x2

1+x2
2+x2

3)] = 3rn−1+(n−1)·r n−3
2 r2 = rn−1[3 + (n− 1) · r−2]

4 Vector identities:
1. Simplify [ ~A× ( ~B × ~C)]iand compare to [( ~A× ~B)× ~C]i
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(a) [ ~A× ( ~B × ~C)]i = εijkAjεklmBlCm = εkjiεklmAjBlCm =
= (δilδjm − δjmδjl)AjBlCm = AjBiCj − AjBjCi = (A · C)Bi − (A ·
B)Ci

(b) [( ~A× ~B)× ~C]i = εijkεjlmAlBmCk = −εjikεjlmAlBmCk =
And as we did previously, we can write result:
= (A · C)Bi − (B · C)Ai

As we can see, the results are not equal and the second identity can
be written as:
[−~C × ( ~A× ~B)]

2. Express ( ~A× ~B) · (~C × ~D) using only scalar products of the vectors:
( ~A× ~B) · (~C × ~D) = ( ~A× ~B)i · ( ~C × ~D)i = εijkεilmAjBkClDm =
= (δjlδkm − δjmδkl)AjBkClDm =
= AjBkCjDk −AjBkCkDj = (A · C)(B ·D)− (A ·D)(B · C)

3. [~∇× (φ ~A)]i = εijk
∂φAk

∂xj
=

∑

i

∑

k

εijk(Ak
∂φ
∂xj

+ φ∂Ak

∂xj
)

We can write this down explicitly for the case when i=1:
= A3

∂φ
∂x2

+ φ∂A3
∂x2

− A2
∂φ
∂x3

− φ∂A2
∂x3

and it's not hard to see that general
result is quite simple:
[~∇× (φ ~A)] = (~∇φ)× ~A + φ(~∇× ~A)

4. [~∇( ~A · ~B)]i = (~∇ · ~B)Ai − [(~∇ × ~A) × ~B]i This relation comes from 1.
identity written above. So we can write out second term in the sum and
the result is:
[~∇( ~A · ~B)]i = (~∇ · ~B)Ai − (~∇ ~B)Ai +∇i( ~A · ~B) = ∇i( ~A · ~B)

5. [~∇×( ~A× ~B)]i = εijk∇jεklmAlBm = εkijεklm∇jAlBm = ∇jAiBj−∇jAjBi

(Solved in 1st identity). And there still is the restriction that i 6= j

6. [~∇ × (~∇ × ~A)]i = ∇j∇iAj − ∇j∇jAi (according to previous identity...)
But we can also prove it by using Levi Civita notation:
[~∇×(~∇× ~A)]i = εijk∇jεklm

∂Am

∂xl
= εkijεklm

∂
∂xj

∂Am

∂xl
= (δilδjm−δimδjl) ∂

∂xj

∂Am

∂xl
=

= ∂
∂xj

∂Aj

∂xi
− ∂

∂xj

∂Ai

∂xj
= ∇j∇iAj −∇j∇jAi

5 Successive applications of ∇ : Evaluate

1. ~∇ · ~∇φ = ~∇ · (êi
xi

r
dφ
dr ) = ~∇ · (r̂ dφ

dr ) = dφ
dr

~∇r̂ + r̂ ~∇dφ
dr = 2

r
dφ
dr + d2φ

dr2

2. ~∇ × ~∇φ What we have here is curl of a gradient. And it is always zero.
It is quite easy to see from the expression: ~∇× (r̂ dφ(r)

dr ) and if we solved
the equation we would have to take derivatives with respect to θand Φbut
function φ(r) is not explicitly function of those coordinates.
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3. Let's solve the last problem (e) now:
~∇× (~∇× ~V ) = ~∇×

[(
∂Vz

∂y − ∂Vy

∂z

)
,
(

∂Vx

∂z − ∂Vz

∂x

)
,
(

∂Vy

∂x − ∂Vx

∂y

)]
=

=

∣∣∣∣∣∣∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

∂Vz

∂y − ∂Vy

∂z
∂Vx

∂z − ∂Vz

∂x
∂Vy

∂x − ∂Vx

∂y

∣∣∣∣∣∣∣
= x̂

[
∂
∂y

(
∂Vy

∂x − ∂Vx

∂y

)
− ∂

∂z

(
∂Vx

∂z − ∂Vz

∂x

)]
+

+ŷ
[

∂
∂z

(
∂Vz

∂y − ∂Vy

∂z

)
− ∂

∂x

(
∂Vy

∂x − ∂Vx

∂y

)]
+ẑ

[
∂
∂x

(
∂Vx

∂z − ∂Vz

∂x

)− ∂
∂y

(
∂Vz

∂y − ∂Vy

∂z

)]
=

= x̂
(

∂
∂y

∂
∂xVy + ∂

∂z
∂
∂xVz + ∂2

∂x2 Vx −∆Vx

)
+ŷ(...)+ẑ(...) We can write ∆Vx

because ∂2

∂x2 Vx was also added to the equation. Now we can simplify this
relatively long and ugly result:
... = x̂

[
∂
∂x

(
~∇~V

)
−∆Vx

]
+ ŷ

[
∂
∂y

(
~∇~V

)
−∆Vy

]
+ ẑ

[
∂
∂z

(
~∇~V

)
−∆Vz

]
=

~∇(~∇ · ~V )−∆~V

4. Now the problem (c): ~∇~∇~V = (~∇~∇)~V + ~∇(~∇ ~V ) = ∆~V + ~∇(~∇ ~V ) =
= ~∇ × (~∇ × ~V ) + 2∆~V = ~2∇(~∇ ~V ) − ~∇ × (~∇ × ~V ) Which ever of those
results are good to use for a problem...

5. ~∇ · ~∇ × ~V = ... Only way we can calculate this relation is when we �rst
calculate cross product of ~∇ × ~V and then take divergence of the result.
We cannot multiply nabla vectors at �rst because then we couldn't take
cross product (which is de�ned as product of two vectors). And as we see,
we take divergence of curl and it is always 0. Brief proof of it:
~∇ ·

[(
∂Vz

∂y − ∂Vy

∂z

)
,
(

∂Vx

∂z − ∂Vz

∂x

)
,
(

∂Vy

∂x − ∂Vx

∂y

)]
= ∂

∂x

(
∂Vz

∂y

)
− ∂

∂x

(
∂Vy

∂z

)
+

∂
∂y

(
∂Vx

∂z

)−
− ∂

∂y

(
∂Vz

∂x

)
+ ∂

∂z

(
∂Vy

∂x

)
− ∂

∂z

(
∂Vx

∂y

)
= 0 And as order of taking partial

derivatives is not important, it is easy to see that the result of this equation
is 0.
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