
Midterm takehome exam, Fluid Dynamics

Deivid Pugal

March 30, 2007



Figure 1: Two dimensional �ow.

0.1 Problem #1

A steady two dimensional �ow, as shown in Figure 1, enters and leaves a rect-
angular space, 2a×2b, through identical openings. The �ow is contained by the
walls of the rectangular space. Choose w to be a fraction of 2b, w = Q2b.

0.1.1 Find the velocity potential for this �ow

For this problem there is an axial symmetry. So we do not use any radial
equations but we write for the �ow

∆φ = 0,

∂2φ

∂x2
+

∂2φ

∂y2
= 0.

Lets assume that solution for X component does not depend on solution for
the Y component. Therefore we can write φ = X(x) · Y (y), and the equation
becomes

1
X

∂2X

∂x2
+

1
Y

∂2Y

∂y2
= 0.

So the terms of this equations must be equal and with opposite sign. As it
ise reasonable to assume that cos term is describing the Y component of the
equation and sinh term is describing the X component of the equation, we can
construct two equations

∂2X

∂x2
= Xk2,

∂2Y

∂y2
= −Y k2.

By solving those, we get

X(x) = AX · sinh(kx),
Y (y) = B · cos(ky) + C · sin(ky).
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It is reasonable (and by rules) that we start with a boundary condtion, which has
a value of zero. As the �ow cannot enter to the horizontal walls, the derivative
dY
dy at the points y = b, y = −b equals to zero. Also the �ow in the upper half
of the plane is antisymmetric to the �ow in the lower half of the plane. So the
sin function must describe the velocity of the �ow. From that we can write

Y (y) = B · cos(ky),

From the boundary conditions we'll get that

−Bk · sin(kb) = 0,

so k must be k = nπ
b . So now we can write φ in the form

φ(x, y) = A · sinh
(πx

b

)
cos
(nπy

b

)
. (1)

As we know the velocity of the �ow at vertical boundaries, we must �nd the
derivative of the potential, to match boundary conditions to the Eq. 1. At
�rst, lets �nd the boundary condition. As the velocity is in the x direction and
symmetrical with respect to x axis, we can describe the boundary velocity x
component by using cosine series:

v(a, y) = v(−a, y) =
∞∑

n=1

Ancos
(nπy

b

)
+ A0.

For Anand A0we can write:

An =
2
b

∫ b

0

f(y)cos
(nπy

b

)
dy

=
2
b

∫ w/2

0

v0cos
(nπy

b

)
dy

=
2v0

nπ
sin (nπQ)

A0 =
1
b

∫ b

0

f(y)dy

=
1
b
v0

w

2
= Q · v0

So the x directional �ow on the boundaries is

v(a, y) = v(−a, y) =
∞∑

n=1

2v0

nπ
sin (nπQ) cos

(nπy

b

)
+ Qv0. (2)

Now we have Eq. (1) and Eq. (2) with one unknown variable A. To �nd that, we
have to �nd derivative of φ on the vertical boundaries, where x = a or x = −a.

∂φ

∂x
=

Aπ

b
cosh

(πx

b

)
cos
(nπy

b

)
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Next we'll �nd cosine series of the term cosh
(

πx
b

)
= g(x):

g(x) = b0 +
∞∑

n=1

bncos
(nπx

a

)
For bn and b0we'll get

b0 =
1
a

∫ a

0

cosh
(πx

b

)
dx

=
b

πa
sinh

(πa

b

)
bn =

2
a

∫ a

0

cosh
(πx

b

)
cos
(nπx

a

)
dx

=
2
a

(
ab

(a2 + b2n2) π

)(
a · cos

(nπx

a

)
sinh

(πx

b

))
|a0

=
2ab · cos (nπ) sinh

(
πa
b

)
(a2 + b2n2) π

(3)

So for ∂φ
∂x we can write now

∂φ

∂x
=

Aπ

b

[
b

πa
sinh

(πa

b

)
+

∞∑
n=1

bncos
(nπx

a

)]
cos
(nπy

b

)
,

=
∞∑

n=1

Aπ

b
bncos

(nπx

a

)
cos
(nπy

b

)
+

A

a
sinh

(πa

b

)
cos
(nπy

b

)
.

By taking n = 0 in the second term, we can simplify the equation a bit:

∂φ

∂x
=

∞∑
n=1

Aπ

b
bncos

(nπx

a

)
cos
(nπy

b

)
+

A

a
sinh

(πa

b

)
.

where bnis given by equation (3). For boundary layers we can write:

∂φ

∂x
|x=−a,a =

∞∑
n=1

bnAπ

b
cos (nπ) cos

(nπy

b

)
+

A

a
sinh

(πa

b

)
. (4)

By comparing this result to the Eq. (2), we can get the value of A (using x = a):

∞∑
n=1

bnAπ

b
cos (nπ) cos

(nπy

b

)
=

∞∑
n=1

2v0

nπ
sin (nπQ) cos

(nπy

b

)
bnAπ

b
cos (nπ) =

2v0

nπ
sin (nπQ)

2a · cos2 (nπ) sinh
(

πa
b

)
A

(a2 + b2n2)
=

2v0

nπ
sin (nπQ)
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By using the fact that cos2(nπ) = 1, we can write for A:

A =
v0

anπ · sinh
(

πa
b

)sin (nπQ)
(
a2 + b2n2

)
. (5)

Lets test the result. If A is really as shown by the Eq. (5), then the second
terms in Eq. (4) and (2) must be equal!

A

a
sinh

(πa

b

)
= Qv0

v0

a2nπ
sin (nπQ)

(
a2 + b2n2

)
= Qv0.

To show that, let's assume that n = 0 for the term A:

v0

a2nπ
sin (nπQ)

(
a2 + b2n2

)
→ v0Q

sin (nπQ)
nπQ

= v0Q.

So that's really the case. So we can write for A instead:

A =
Qv0a

sinh
(

πa
b

) . (6)

We could have done this at �rst place, but now the validity of the result has
also been proven. By replacing this result, Eq. (6), to the Eq. (1), and also
considering the second term in ∂φ

∂x equation, we'll get the equation for φ:

φ(x, y) =
Qv0a

sinh
(

πa
b

) · sinh
(πx

b

)
cos
(πy

b

)
+ Qv0x. (7)

0.1.2 Make study of vx(0, 0)/v0as function of a

The b value is �xed.

vx =
∂φ

∂x
=

Qv0aπ

sinh
(
π a

b

)
b
cosh

(πx

b

)
cos
(πy

b

)
+ Qv0, (8)

Considering only values x = 0 and y = 0

vx (0, 0)
v0

=
Qaπ

sinh
(
π a

b

)
b

+ Q. (9)

Physically should be reasonable to assume that when the a is really big in
comparsion to b, the �ow must be Q · v0 and if Q = 1, the �ow is v0everywhere.
Also when a is really small compared to b, the �ow should be equal to v0because
streamlines do not bend with a really small a. As we can see, it really is true
for Eq. (9). in Figure 2
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Figure 2: X directional velocity of the �ow at the point (0, 0) for b = 5 and
Q = 0.5 is denoted by red (thin) line. X axis is a for this case. Dark (bold) line
shows vx(0, 0)/v0 dependence on r for same Q value. X axis is r for this case.

0.1.3 Show that vx(0, 0)/v0 is a function of Q and r

r is de�ned as r = a
b . From the Eq. (9) it is easy to see that the claim in the

title of the subsection is really the case:

vx (0, 0)
v0

= Q

(
πr

sinh (πr)
+ 1
)

.

The result is shown in Figure 2, denoted by the bold line.

0.1.4 Pressure in the �uid along y = 0.

Lets calculate the pressure in the �uid as a function of x along y=0 line. It is
obvious to estimate that pressure follows the shape of cosh function, because
this describes the velocity magnitude in x direction. Also we can assume that
there exists a streamline, which follows the x axis (at y=0). That's because of
the symmetry of the problem. Considering that and Eq. (8), the vx(x, 0) is:

vx(x, 0) =
Qv0rπ

sinh (πr)
cosh

(πx

b

)
+ Qv0.
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Figure 3: The shape of the pressure in the tube, where a = 2b = 10 and P0 = 0.

Using Bernoull'i equation for the streamline, we the following result:

1
2
v2
0 +

P0

ρ
=

1
2
v2

x(x, 0) +
P (x)

ρ

P (x) =
ρv2

0

2
+ P0 −

ρv2
x(x, 0)
2

= C − ρ

2

(
Qv0rπ

sinh (πr)
cosh

(πx

b

)
+ Qv0

)2

.

By replacing constants with some numbers, we'll get the result as shown in
Figure 3.

0.1.5 Streamline sketch

For Q = 1/3 and a = 3b, the streamlines in 2D could be seen in Figure 4 and
streamlines, potential lines and velocity magnitude could be seen in Figure 5.

0.2 Problem #2

Description: An ocean is bounded near the shore by a bottom, that fals o� with
x. Thus h0(x) = h0x/a, where a is a length. Consider the shallow water waves
on this ocean.

6



Figure 4: Streamlines in 2D. Flow enters from the right side and leaves from
the left side.

Figure 5: On the bottom, there are potential lines and streamlines. 3D part
shows the magnitude of the velocity, i.e. |gradφ|.
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0.2.1 What wave equation describes δh(x, t).

δh(x, t) denotes surface �uctuations from h0, where h0(x) = h0x/a. To get a
wave equation, we have to write down 2 equations - �uctuations in time and in
space. Let's begin with time dependence. Lets consider a region of �uid, which
is really small in x direction. Equation of continuity states that the amount of
�uid �owing into the region must be equal to the amount of �uid �owing out of
the region. So if from the left side �ows in more �uid than �ows out from the
right side, there must occur the change of the height of the �uid, as the �uid is
incompressible. So for that situation we can write down the equation:

ρ0h0

(
x− dx

2

)
Lv

(
x− dx

2

)
− ρ0h0

(
x +

dx

2

)
Lv

(
x +

dx

2

)
= ρ0dxL

∂δh

∂t
,

∂δh

∂t
+ h0

∂

∂x

(x

a
v (x)

)
= 0,

∂δh

∂t
+ h0

v (x)
a

+ h0
x

a

∂v (x)
∂x

= 0. (10)

The next equation could be found from Euler equation for incompressible �uids:

∂v

∂t
= − 1

ρ0
∇P.

We are interested in wave movement in x direction only, because ∂vz

∂t ≈ 0. So
for z component of the gradient we can write

∂P

∂z
= ρ0g → P = P0 + ρ0g (δh (x)− z) .

For the vx the equation

∂vx

∂t
= − 1

ρ0
ρ0g

∂δh (x)
∂x

⇒ ∂vx

∂t
+ g

∂δh (x)
∂x

= 0 (11)

must hold. So, by multiplying Eq. (10) by ∂
∂t and Eq. (11) by ∂

∂x , we are able
to obtain a wave equation for δh:

∂2δh

∂t2
+

h0

a

[
∂v (x)

∂t
+ x

∂2v (x)
∂t∂x

]
= 0, (12)

∂v2
x

∂x∂t
+ g

∂2δh (x)
∂x2

= 0. (13)

By substituting �rst term of Eq. (13) and Eq. (11) into the Eq. (12), the wave
equation gets the form:

∂2δh

∂t2
− gh0

a

[
∂δh

∂x
+ x

∂2δh

∂x2

]
= 0. (14)
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0.2.2 Find the steady state solution to the equation (14).

Find the steady state solution to the Eq. (14), i.e. solution δh of the form
δh(x, t) = H(x)cosωt. The ODE could be sanitized by using z = x/a, k2 =
ω2a2/c2

0 and c2
0 = gh0.

What we are trying to do next is to manipulate the equation to get it to
some common form which could be solved rather easily. At �rst the equation is
multiplied by x2, which results in the form of

x2 ∂2δh

∂t2
− gh0

a
x3 ∂2δh

∂x2
− gh0

a
x2 ∂δh

∂x
= 0.

Next we replace δh by H(x)cosωt and also divide by −cosωt:

x2ω2H(x) +
gh0

a
x3 ∂2H(x)

∂x2
+

gh0

a
x2 ∂H(x)

∂x
= 0.

Now we have an ordinary di�erential equation. By replacing z and c0 into the
equation, we will get little bit nicer form:

c2
0zx2 ∂2H(x)

∂x2
+ c2

0zx
∂H(x)

∂x
+ x2ω2H(x) = 0,

x2 ∂2H(x)
∂x2

+ x
∂H(x)

∂x
+

ω2a

c2
0

xH(x) = 0. (15)

According toWolframMathworld (http://mathworld.wolfram.com/BesselDi�erentialEquation.html),
the obtained Eq. (15) is a transformed form of the Bessel di�erential equation
in the form:

x2 d2H

dx2
+ (2p + 1) x

dH

dx
+
(
α2x2r + β2

)
H = 0,

with a solution

H = x−p
[
C1Jq/r

(α

r
xr
)

+ C2Yq/r

(α

r
xr
)]

,

where q ≡
√

p2 − β2. It is easy to see, that for Eq. (15), p = 0, β = 0, r = 1
2

and α = ω
√

a
c0

= k√
a
. So a solution for the equation would be

H(x) = C1J0

(
2k√

a

√
x

)
+ C2Y0

(
2k√

a

√
x

)
, (16)

which is a steady state solution for the Eq. (14).

0.2.3 Fix ω and make a plot of H(x).

If we assume, that wavelength of a shallow water wave is quite big... lets say
about 100m, then k is about 0.01. But we can assume also that a is not really
large number, rather less than 1. So I would think that we could get quite
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Figure 6: Two solutions for the Bessel Eq. (15)

realistic results assuming that 2k√
a
≈ 1. By �xing that, we should also consider

values of C1and C2. As known, Y0 gets to minus in�nity around zero. So it would
be rather unphysical, because wave amplitude cannot get �into the ground� near
the shore. So, if Y0is to be considered at all, then the C2 should be much less
than C1. Then the Y0 would be a term, which decreases the height of the wave
near the shore. Physically, it could mean for instance dispersion factor for the
big amplitude. The both solution could be seen in Figure 6 and they are both
physically valid. It means that by approaching the shore, the amplitude of the
tsunami increases and the wavelength decreases.

0.3 Problem #3

There is a small circular hole, cross sectional area A0, in the bottom of the tank
in Figure (7), �lled to height of h with water. What is the cross section of the
�uid �ow at points z > 0 below bottom of the tank, i.e., A(z).

We can use Bernoulli equation for the problem - Bernoulli equation could be
solved on a streamline beginning on the top of the water level and continuing
through the hole in the bottom of the tank. We can assume that the tank is
large enough that water level at the height h does not change with the �ow. So
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Figure 7: The tank of �uid.

the Bernoulli equation for the given system could be written as

P0

ρ
+ Hg =

1
2
v2 +

P0

ρ
+ g (H − h− z) . (17)

On the both side of the equation, there is a term P0
ρ . We could write this,

because pressure on the �uid is P0, when z > 0 or z = −h. So Eq. (17) is good
for z > 0. The variable H is a distance from the ground and H � z. It means H
is somewhere far away from the tank. This variable must be considered because
of the change of the potential energy along the the streamline in the �owing
�uid. After manipulating the given equation, we can get v(z):

1
2
v(z)2 = g (h + z) ,

v(z) =
√

2g (h + z). (18)

So now we have �uid velocity dependence on z, whereas z > 0. By assuming,
that the �ow is continuous, we can claim that �ux of �uid �ow during some
time period ∆t must be constant throughout the �ow. Mathematically it would
look like

A0v(0)∆t = A(z)v(z)∆t.

So from this relation, we can get the cross section of the �uid:

A(z) =
A0v(0)
v(z)

=
A0

√
2gh√

2g (h + z)
=

A0

√
h√

h + z
. (19)

0.4 Problem #4

A point source of �uid, with strength µ, is located at (a,b) near two perpendic-
ular walls. Nearby the source the �ow is radially outward with velocity v0. To
solve the problem, we introduce 3 image charges which should guarantee, that
there is no �ux across any boundary of the system. See Figure 8.
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Figure 8: A charge and corresponding image charges. Also empirically estimated
�ow.

0.4.1 Find ~v for this �ow

So as potential of a velocity of a �ow is described by real part of the F (z) and if
F (z) = ln(z), the �ow is radially �owing out of point (0, 0). So for four charges,
which has been shifted to di�erent positions in the plane, we can write equation
for φ

φ(x, y) = µ

(
ln

√
(x− a)2 + (y − b)2 + ln

√
(x + a)2 + (y − b)2

)
+

+ µ

(
ln

√
(x + a)2 + (y + b)2 + ln

√
(x− a)2 + (y + b)2

)
(20)

The equation is quite ugly actually. But due to the 2 dimensions and 4 charges,
it seems to be only possible way to describe the system. Other way would be
to use the Green function, but it could turn out to be much more di�cult. So
let's �nd velocity vector components:

vx = µ

[
(x− a)

(x− a)2 + (y − b)2
+

(x + a)
(x + a)2 + (y − b)2

]
+

+ µ

[
(x + a)

(x + a)2 + (y + b)2
+

(x− a)
(x− a)2 + (y + b)2

]
(21)

vy = µ

[
(y − b)

(x− a)2 + (y − b)2
+

(y − b)
(x + a)2 + (y − b)2

]
+

+ µ

[
(y + b)

(x + a)2 + (y + b)2
+

(y + b)
(x− a)2 + (y + b)2

]
(22)
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It is easy to see, that boundary condition are satis�ed for those equations. If
x = 0, vx must be also 0:

vx(x = 0, y) = µ

[
−2a

a2 + (y − b)2
+

2a

a2 + (y − b)2

]
= 0

Similarly is for vy. If y = 0, the vy must be also 0. So we have found ~v for the
�ow, with compoents described in equations (21) and (22).

0.4.2 Find vxalong the wall at y = 0.

How does the velocity vary with large x also? I y = 0, there is only x component
of ~v. Using Eq. (21). we can write for vx

vx(x, y = 0) = µ

[
2 (x− a)

(x− a)2 + b2
+

2 (x + a)
(x + a)2 + b2

]
(23)

If x = 0, the vx is also zero. If x is very big, the vx → 0 also. The shape of the
graph for values µ = 0, a = 4 and b = 5 could be seen in Figure 9. If x is big,
we can neglet the term b2 and a, then

vx(x� 0, y = 0) = 4µ

(
1
x

)
So vx is inversely proportional to x for large values of x.

0.4.3 Now, a=b

0.4.3.1 Pressure variation along y = 0 wall.

We can use Eq. (23), to calculate velocity along the wall y = 0:

vx(x, y = 0) = µ

[
2 (x− a)

(x− a)2 + a2
+

2 (x + a)
(x + a)2 + a2

]
As there is no y component of velocity along the wall, we could use Bernoull'i
equation, which is constant along a streamline. At (0, 0), the velocity is 0.
Correspondingly, we can write the equation

P0

ρ
=

1
2
v2

x(x) +
P (x)

ρ

P (x) = P0 −
1
2
ρv2

x(x)

P (x) = P0 − 2ρµ2

[
2 (x− a)

(x− a)2 + a2
+

2 (x + a)
(x + a)2 + a2

]2

(24)

The shape of the P (x) could also be seen in Figure 9 (red line). The pressure
is maximum at the point (0, 0), because vxis zero there. Everywhere else the
pressure is lower and it is lowest at the point where the velocity is maximum.
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Figure 9: Blue line: vxat y=0 and for values µ = 0, a = 4 and b = 5. The red
line is pressure variation for the case a = b = 4 with other parameters P0 = 0.5
and ρ = 1. Notice that these graphs are for di�erent sources. Blue is for the
source, locating asymmetrically. Red is for the �uid source located at (a, a).
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Figure 10: The uniform density streamlines caused by a point source.

0.4.3.2 Find vx along the y=x

How does vxchange for large x. For this problem, we can use Eq. (21):

vx(y = x)b=a = µ

[
1

2 (x− a)
+

(x + a)
(x + a)2 + (x− a)2

+
1

2 (x + a)
+

(x− a)
(x− a)2 + (x + a)2

]

= µ

[
x

x2 − a2
+

x

x2 + a2

]
(25)

Again, for large x, the velocity is inversely proportional to x. vx(x � a) ≈
2µ
(

1
x

)
It is similar to the result found for the wall y = 0. Only di�erence is in

the constant coe�cient.

0.4.3.3 Plot of streamlines

The plot of streamlines is in Figure 10.
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0.5 Problem #5

Problem description: A plane with very long wing span (U2) is designed to
create a constant amout of circulation Γ regardless of the forward speed. This
airplane is approximated as a cylinder of radius a, length L and mass M around
which there is a constant circulation.

0.5.1 The vertical force F

What is the vertical force F on the plane when it is moving at a horizontal speed
of U (relative to the ground) in unbounded �uid, i.e., far from any surfaces?
The radial velocity compoent is 0 on the surface of the cylinder. The angular
component is (as derived in the class):

vθ = − u

a2

(
1 +

a2

r2

)
sin (θ)− Γa

2πr
= −u

(
2
a2

sin (θ) +
Γ

2πu

)
.

Along a streamline around the cylinder the Bernoulli equations holds true:

1
2
v2 (θ) +

P0

ρ
= const.

The pressure exerts force on to the each point of the cylinder surface F = −P ·dS
(- causes force to point out of the surface). As we are only interested in lift forces
(and there are now other forces due to the symmetry), the y direction of the
force is Fy = −P · dS · sin (θ). From Bernoulli equations the pressure is

P (θ) = Cρ0 −
ρ0

2
v2 (θ)

So di�erential component of the vertical force could be written as

dFy = −L · a · dθ · P (θ) · sin (θ) .

Replacing P (θ) and v2, we'll get for dF y

dFy = −La

(
Cρ0sin (θ)− ρ0

2
u2

(
4
a2
· sin3 (θ) +

4
a2

sin2 (θ)
Γ

2πu
+ sin (θ)

(
Γ

2πu

)2
))

dθ

It is easy to see that sin terms with an odd power are subject to disappear
in integration (they cancel out in opposite sides of the cylinder).Only term to
consider while integrating is the term with sin2 (θ) . So the vertical net force is

Fy =
ΓaLρ0u

2

πua2

∫ 2π

0

sin2 (θ) dθ

=
ΓLρ0u

2πa
[θ − cos (θ) sin (θ)]2π

0

=
ΓLρ0u

a
(26)
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0.5.2 Support against gravity

For what value of U is the plane supported against gravity? The gravity force
on the plane is Fg = −Mg. So we'll have to solve the equation

−Mg + Γ
L

a
ρ0u = 0

and the plane is supported on velocity of at least with the value:

u =
Mga

ΓLρ0
.

0.5.3 Distance h from the ground

When the plane �ies at horizontal velocity u (relative to the ground) at a dis-
tance h above the ground, a� h, what vertical force F will the plane generate?
The basis for solving this problem is the following equation:

φ =
u

a

(a

r
+

r

a

)
cos (θ)− Γa

2π
θ.

This equation describes a �ow and circulation around a spherical object. To
model distance from the ground, we have to add some extra terms. For that
we use image �plane�. So in our con�guration one plane is located h above the
ground and other one is located distance h below the ground. The modi�ed
equation for φ for that case is

φ =
u

a

 a√
x2 + (y − h)2

+

√
x2 + (y − h)2

a

 x√
x2 + (y − h)2

+

+
u

a

 a√
x2 + (y + h)2

+

√
x2 + (y + h)2

a

 x√
x2 + (y + h)2

+

+
Γa

2π

(
−atan

(
y − h

x

)
+ atan

(
y + h

x

))
.

This equation describes both planes and circulation. As we know there is now
radial component around the wings of the planes, so what we want to do is
manipulate this equation to get it dependent on θ and r only, where r = a. For
the �rst two, noncircular terms we get, by replacing

√
x2 + y2 = r = a and

x = r · cos(θ) and y = r · sin(θ):

φu =
u

a

(
2x

a
+

ax

x2 + (y − h)2
+

ax

x2 + (y + h)2

)

= u · cos (θ)
(

2
a

+
a

r2 + h2 − 2hr · sin (θ)
+

a

r2 + h2 + 2hr · sin (θ)

)
≈ u · cos (θ)

(
2
a

+
2a

h2 − 4a2sin2(θ)

)
≈ u · cos (θ)

(
2
a

+
2

ah2

)
.
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We got this result by getting rid of r2in the sum
(
r2 + h2

)
, because h2 is much

bigger. Also we can see that if h get really large, the second term vanishes and
we would have exactly the same result as for unbounded �ow. Now let's �nd
φΓ:

φΓ =
Γa

2π

(
−atan

(
y − h

x

)
+ atan

(
y + h

x

))
=

Γa

2π

(
atan

(
r · sin (θ) + h

r · cos (θ)

)
− atan

(
r · sin (θ)− h

r · cos (θ)

))
.

Now let's take derivatives with respect to θ. For φuwe'll get:

∂φu

∂θ
≈ −2

u

a2
sin (θ)

(
1
h2

+ 1
)

.

For φΓ:

∂φΓ

∂θ
=

Γ
2π

r2cos2 (θ) + r2 · sin2 (θ) + hr · sin (θ)[
1 +

(
r·sin(θ)+h

r·cos(θ)

)2
]

r2cos2 (θ)

−

− Γ
2πr

r2cos2 (θ) + r2 · sin2 (θ)− hr · sin (θ)[
1 +

(
r·sin(θ)−h

r·cos(θ)

)2
]

r2cos2 (θ)

 =

=
Γ
2π

(
r2 + hr · sin (θ)

h2
− r2 − hr · sin (θ)

h2

)
≈ Γ

π

a · sin (θ)
h

Because we left out some of the r2terms due to the fact that they are much
smaller than h2terms. Still this equation does not seem to correspond reality.
There might be an error in it. However, let's still try to get some result. So the
velocity square could be written as:

v2
θ =

(
−2

u

a2
sin (θ)

(
1
h2

+ 1
)

+
Γ
π

a · sin (θ)
h

)2

= 4
u2

a4
sin2 (θ)

(
1
h2

+ 1
)2

− 4
u

a

Γ
π

(
1
h2

+ 1
)

sin (θ) +
Γ2

π2

a · sin2 (θ)
h2

=

= −4
u

a2

Γ
π

(
1
h2

+ 1
)

sin (θ)

We are interested only about those terms which do not vanish in integral. So

dFy = −L · a · dθ · P (θ) · sin (θ)
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Figure 11: Velocity dependence on proximity of the surface. X axis is the h and
Y is the velocity.

and the integral is:

Fy = 2L · ρ0
u

a

Γ
π

(
1
h2

+ 1
)∫ 2π

0

sin2(θ)dθ

= L · ρ0
u

a
Γ
(

1
h2

+ 1
)

0.5.4 Support against gravity

We use the same formula as in previous section:

−Mg + L · ρ0
u

a
Γ
(

1
h2

+ 1
)

= 0

u =
Mga

Lρ0Γ
(

1
h2 + 1

)
The shape of the graph for the velocity is shown in Figure 11. It seems that
necessary velocity to keep the plane in the air decreases with approaching to
the surface. This theory is supported also by some articles I was able to found
and it also seems locigal - ground decreases the �ow, making the �ow on the
top of the plane even more faster relative to the �ow at the bootom.
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