Mathematical model

Concentration and potential in the electrolyte
To estimate the concentration development in the electrolyte, Nernst-Planck’s equation is used to calculate flux of species j [22]:
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In eq. (1), ci is concentration, Di the diffusion coefficients of respective ion type, zi their charge, F is Faraday’s constant, R the universal gas constant and φ the potential in electrolyte. According to [22], the concentration variation in time is given by:
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Taking into account that only Li+ ions can travel through the electrode-electrolyte interface, and that the electrode kinetics in Li-ion battery is comparably fast, the Li+ ion flux can be described by 
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 [22], where j is the current density. Then, by combining eqs. (1) and (2) we can formulate the following equations for the diffusion-migration processes in the electrolyte for both Li+ and PF6- ions:
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Since electro-neutrality in the electrolyte is assumed, i.e., 
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, eqs. (3)-(5) can be written as:
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When eqs. (6) and (7) are combined and multiplied by DPF6 and DLi, respectively, the following expression for calculating the concentration distribution in the electrolyte is achieved:
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(10)
The initial value of the concentration (c0) is specified in Table 1. Suitable boundary conditions for eq. (10) can be derived similarly by combining eqs. (8) and (9) and multiplying the result by the unit normal vector n, leading to: 
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To calculate the potential in the electrolyte (φ), eqs. (7) and (6) can be subtracted and multiplied with F. Taking into account the assumption that the diffusion coefficient is constant, the electrolyte potential can be calculated according to:
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(12)
To find boundary condition for eq. (12), eqs. (9) and (8) are subtracted and multiplied with both F and unit normal vector:
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Eqs. (12) and (13) can then be simplified by noticing that 
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 according to Nernst-Einstein’s equation for ionic conductivity and the so called external current density
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When comparing eqs. (14) and (16), first one describing potential in the electrolyte and second potential in the electrodes, it can be seen that the only difference between these is the additional “external” current density applied to the electrolyte, originating from concentration polarization. 

2.1.2 Potential in the electrodes

To calculate the potential distribution in the current collectors and in the active material of the electrodes, Ohm’s law is used. The anode, cathode and current collectors all have constant electronic conductivity (Table 1). The electrical current enters from current collector at the anode side and exits through the current collector at the cathode side. The current density in the battery is calculated by:
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where φ is the electrode potential, j0 is discharging current in the current collector of the positive electrode and σi is conductivity. Different i values represent the positive current collector (i=1), the positive active material (i=2), negative active material (i=4) and negative current collector (i=5). A current continuity boundary condition is used at the interfaces between the active material and the current collectors. Negative current collector is grounded, as specified by eq. (18).
2.1.3 Steady state simulations

To carry on steady state simulations, the term ∂c/∂t is set to 0. Unfortunately, there is under this condition no unique solution for eqs. (10) and (11). Therefore, the constant artificial reaction rate R is introduced:
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where Ω is the electrolyte region, V the volume of the electrolyte, c0 the initial concentration and c concentration. Eq. (19) will enforce electroneutrality in the system by ensuring that the total number of ions will always stay constant in the electrolyte. At steady state, eqs. (10) and (11) give the concentration profile while eq. (19) ensures correct concentration values.

Consequently, the steady state concentration distribution can be calculated from the following equations:
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It can be noted that the solution of the potential, calculated by equations (14) and (16)-(18), is unique, since the potential value is fixed as ground (φ=0) on the negative electrode.

Architecture optimization
To characterize ionic transport in the battery average diffusive flux x-,y- and z-components  of diffusive flux are calculated and normalized, so that sum of these normalized average flux values is 3:
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 These quantities are marked further as Jx, Jy, Jz, or shortened as vector J=( Jx, Jy, Jz) 
To describe ionic transport in the battery, we are searching a configuration where all components of J are equal to 1. Then, we postulate, that the advantages of 3D geometry are volumetrically used with maximum efficiency. To measure, how far away is current geometry from ideal one, we calculate distance between two following vectors Jideal and J. As Jideal=(1,1,1) and J=( Jx, Jy, Jz), resulting quantity is achieved from equation:
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Some results
Liquid electrolyte
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Figure 1 R values for interdigitated cubic and shifted geometries.
[image: image30.emf]
Figure 2 Concentration and concentration gradient in cubic and shifted geometries.
Polymer electrolyte
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Figure 3 R values for polymer electrolyte battery. At left, the distance between the pillars is 10µm, height is varied, at riht, height of the pillar is 40µm (minimum at left), distance between the pillars is varied.
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.Figure 4 Concentration gradients in liquid (top row) and polymer electrolyte (bottom row) for electrode distances of 5 µm (left), 10 µm (middle) and 15 µm (right). 
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Figure 5 Geometrical setup of the system.
New stuff

When we compare R values and concentration gradient plots, we see that current optimization function is fails to provide geometrical parameters to achieve most uniform concentration gradient. So, we have to find another, better optimization function. Two of them are plotted on figures below. Blue is old optimization function, red and green are new.

To calculate green function, similar operation to calculating weighted average is used. Quantities Ji  are divided by weights obtained from the following derivation:
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As a result, optimization function for the green line is 
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Weights are multiplied by 3, as values of Ji are normalized to 3.

Optimization function for the red line is defined as
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Now, average flux values for the ideal 3D-MB are chosen to be Jideal=(1.08, 1.08, 0.8), instead of Jideal=(1,1,1).
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We can see, that green function provides Rgreen values, coinciding well with concentration gradient distributions for distance between the pillars. Unfortunately, it fails in pillar height simulations (or maybe it is just proposing higher pillar heights than used in simulations).
Red function provides similar minimum Rred close to green functions and it is working well also in pillar height simulations. There, it is suggesting a bit higher pillars than calculated with blue, original function. Corresponding concentration gradient distributions are presented below.

[image: image40.png]A 2.129%10°8

%108

v 9.749x10°




[image: image41.png]< AN 0O N
—~HHOO0O0O

A 1.479x10°
x108
v 6.557x10°





Left, CG at pillar height 40 µm and right CG at pillar height 60 µm. Distance between the pillars is 10 µm.
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