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Elasticity

2.1 Deformation modes

If a material is loaded with a force, the atoms within the material are dis-
placed – the material responds with a deformation. This deformation deter-
mines the mechanical behaviour of the material. Different types of deforma-
tion exist which are not only caused by different physical mechanisms, but are
also used in different engineering applications. In particular, we distinguish
reversible deformations, with the deformation disappearing after unloading,
and irreversible deformations that preserve the deformation after unloading.
Reversible deformations are used in springs and vibrating chords; irreversible
deformations are employed to produce components, e. g. by forging, or to ab-
sorb energy in crash elements. Generally, reversible deformations are called
elastic, irreversible deformations are called plastic.

Different types of deformation can also be distinguished in another way,
for they can be either time-dependent or time-independent. A deformation
is time-dependent if the material responds with a delay to changes of the
load. If – in contrast – the deformation coincides with the change of the
load, the deformation is time-independent. Time-dependent deformations are
denoted by the prefix visco-. Altogether, four different deformation types exist
since elastic as well as plastic deformations can be time-dependent or time-
independent.

In this chapter, we will start by discussing how external forces and the
resulting material deformations can be described. Subsequently, the time-
independent elastic behaviour of materials will be described. Often, it is simply
called ‘the elastic behaviour’, although this is not completely correct.

Time-independent plastic deformation will be described in chapters 3, 6,
and 8, the time-dependent plastic behaviour is subject of chapters 8 and 11.
Time-dependent elastic behaviour is mainly observed in polymers, described
in chapter 8.
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Fig. 2.1. Different stress measures

2.2 Stress and strain

Components used in engineering have strongly varying dimensions and often
also a complicated geometry, resulting in loads that vary strongly throughout
the component. To dimension components, characteristic parameters for each
material are required that describe its mechanical behaviour. These parame-
ters have to be independent of the geometry and dimension of the components
so that they can be determined in experiments using standardised specimens.
This can be achieved by normalising the load and the deformation on the
dimension (area and length, respectively). To describe the varying conditions
within a component, the load and deformation measures are specified for small
volume elements. Usually, a continuum mechanical approach is used: The in-
vestigated scale is large in comparison to the atomic distance. The matter is
considered to be distributed continuously, which results in all variables being
continuous.

2.2.1 Stress

Components are usually loaded with certain forces or moments. How strong
the material is stressed depends on the area loaded. If the area is increased, the
stress decreases. The stress σ is thus defined as the force divided by the area
the force is acting on. Stresses can be distinguished by the relative orientation
of the force and the area. If the force F is perpendicular to the area A, the
stress

σ =
F⊥
A

(2.1)

is called a normal stress (sometimes also direct stress, see figure 2.1(a)). If the
force is parallel to the area (figure 2.1(b)), the stress is a shear stress

τ =
F‖

A
. (2.2)

In all other cases, the force can be decomposed into a normal and a parallel
component and normal and shear stresses act simultaneously (figure 2.1(c)).

To describe the loading in a certain point of a material, we imagine it to be
cut apart at this point along a cutting plane. The stress that was transferred



2.2 Stress and strain 33

x1 x2

x3

¾11

¾22

¾33

¾12 ¾21

¾13 ¾23

¾32
¾31

Fig. 2.2. Numbering of the components of the
stress tensor σ

through this plane by the material cut away now has to be replaced by an
external stress vector, the so-called surface traction, to retain the equilibrium
of force in the material. The value of the surface traction depends on the
orientation of the cutting plane. If, for example, we cut a rod loaded with a
uniaxial stress σ along a plane perpendicular to the applied force, the surface
traction is a vector in the direction of the force with magnitude σ. If the
cutting plane is parallel to the force vector, the surface traction vanishes i. e.,
we don’t need to apply a surface traction vector to preserve the equilibrium.
The stress state in three dimensions can be determined by cutting along three
cutting planes that are preferentially chosen parallel to the coordinate axes.
The nomenclature of the stresses is chosen as follows: The first index denotes
the normal vector of the cutting plane considered (figure 2.2), the second index
denotes the direction of the stress: σij = Fj/Ai.1 The shear stress on each of
the three cutting planes is decomposed into its two components parallel to the
coordinate axes. These 9 components of the stress are collected in a component
matrix (σij) that forms the stress tensor of second order σ.

In a so-called classical continuum, an infinitesimal small material element
cannot transfer moments.2 From this, it can be shown that

σij = σji for i, j = 1 . . . 3 (2.3)

holds i. e., the stress tensor is symmetric [67]. It has only 6 independent com-
ponents, 3 on the diagonal and 3 off-diagonal ones.

If we change the coordinate system, the components of the stress tensor σ
(its matrix representation) change, but it still describes the same state of
stress. The transformation rules are detailed in appendix A.5.

For any stress tensor σ, there is a coordinate system where only the diago-
nal components of the tensor are non-vanishing, whereas all off-diagonal parts
are zero. In this coordinate system, all stresses are thus normal stresses. These
stresses are called principal stresses of the stress tensor (see appendix A.7); the
axes of the coordinate system are called the principal axes. Principal stresses
are denoted with Roman numerals when they are sorted: σI ≥ σII ≥ σIII;
1 For shear stresses, τij (with i 6= j) is frequently used instead.
2 This assumption can be relinquished, resulting in the theory of a Cosserat contin-

uum. In this case, infinitesimal material elements can transfer moments, resulting
in an asymmetric stress tensor.
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if they are unsorted, Arabic numerals are used: σ1, σ2, σ3. In its principal
coordinate system, the stress tensor is thus simply

σ =

 σ1 0 0
0 σ2 0
0 0 σ3

 .

In many cases (for example when we consider plastic yielding of materials,
see section 3.3.2), it is necessary to calculate the shear stresses that can occur
in arbitrarily oriented coordinate systems from the known principal stresses.
This can be done geometrically with a construction known as Mohr’s circle [58,
81], see figure 2.3. We draw a diagram with the normal stresses on the abscissa
and the shear stresses on the ordinate. The three principal stresses are marked
in the diagram and three circles are drawn, each of them bounded by two of
the principal stresses. If we cut the material at the point considered, each
cutting plane has a certain surface traction which can be decomposed into a
pair of a normal (σ) and a shear (τ) component. If we mark all such pairs
of σ-τ values for all possible orientations of the cutting plane in the diagram,
they form the shaded area in figure 2.3. For instance, there is a cutting plane
of maximum shear stress, with a shear stress value of τmax = (σI − σIII)/2
and a normal stress given by the average of the largest and smallest principal
stress, (σI + σIII)/2.

If two principal stresses take the same value, a simple circle without any
open area results; if all three principal stresses are identical, the circle degen-
erates to a point, and the stress state is isotropic.

2.2.2 Strain

If a component is stressed, points within it are displaced. There are different
kinds of displacements: The component can be displaced as a whole in a rigid-
body displacement or it can be rotated rigidly (rigid-body rotation). In these
cases, distances and angles between points in the material remain unchanged;
the component itself is thus still undeformed. To describe the deformation of
a component, considering the displacements only is therefore not too helpful.
Instead, changes of distances and angles between points have to be looked at.
This can be done by calculating the change of the displacement with position.
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All deformations, also called strains, can be composed from changes in
lengths and angles (shearing of the material). To describe changes in length,
the normal or direct strain ε is defined as the difference ∆l between the final
length l1 and the initial length l0 (figure 2.4(a)):

ε =
l1 − l0

l0
=

∆l

l0
. (2.4)

Changes in the angles are described by the shear γ, corresponding to the
change in an initially right angle. For small deformations ∆x (see figure 2.4(b)),
it is defined as

γ =
∆x

y
, (2.5)

with ∆x and y being perpendicular.
An arbitrary deformation with small strains3 of a material element can be

described – analogous to the stress – by a tensor, the strain tensor of second
order ε. To calculate the strain tensor, we chose a coordinate system that is
fixed in space and consider the displacement of material points in this system
as sketched in figure 2.5. This position-dependent displacement is described
by a vector field u(x). To understand how the strain is calculated from the
displacement, we first consider some special cases.

A pure strain in normal direction, for example in the x1 direction, causes
the displacement u1 to increase with increasing x1. If we consider two neigh-
bouring points x

(1)
1 and x

(2)
1 , with an initial, infinitesimal distance ∆x1 → 0,

that are displaced by u
(1)
1 and u

(2)
1 , respectively, the resulting strain is

ε11 = lim
∆x1→0

u
(2)
1 − u

(1)
1

∆x1
=

∂u1

∂x1
.

Transferring this result to the other spatial directions, we get for the normal
strains

εii =
∂ui

∂xi
. (2.6)

3 Arbitrary deformations with large strains will be discussed in section 3.1.
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Fig. 2.5. Two-dimensional displacement field in a material. The coordinate system
xi remains fixed in space; the displacements u(j) of material elements with the
original coordinates x(j) refer to the original position

The indices are underscored to denote that the Einstein summation convention
is not to be used for the repeated index (see appendix A) i. e., they are not
summed over.

If the material is sheared, the region considered is distorted and initially
right angles are made obtuse or acute. The rotation of the edge parallel to
the x1 axis and of the other edge both contribute to this angular change (cf.
figure 2.5). For small rotations and in the limit ∆x1 → 0 and ∆x2 → 0, the
resulting shear is

γ12 = lim
∆x1→0

u
(2)
2 − u

(1)
2

∆x1
+ lim

∆x2→0

u
(3)
1 − u

(1)
1

∆x2
=

∂u2

∂x1
+

∂u1

∂x2
.

Generalising to all coordinate axes yields

γij =
∂ui

∂xj
+

∂uj

∂xi
for i 6= j . (2.7)

This definition implies γji = γij .
Using equations (2.6) and (2.7), all strains can be calculated if they are

assumed to be small. However, they cannot be used as components of a tensor,
for they do not transform correctly as tensors should. A correct transforma-
tion behaviour can be achieved when the shear strain γij is replaced by half of
its value: εij = γij/2. An additional advantage of this formulation is that equa-
tions (2.6) and (2.7) do not have to be written separately for the components,
but can be collected in one equation:

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (2.8)

This definition ensures εij = εji, rendering the strain tensor symmetric. Simi-
lar to the stress tensor, only 6 of its components are independent.
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If the material is displaced relative to the coordinate system in a rigid-
body translation, the displacement vectors are the same at any material point,
u(x) = const. This yields ∂ui/∂xj = 0 and thus εij = 0 as should be expected.
This result is intuitively obvious, for a rigid-body translation does not cause
strains.

A rigid-body rotation is more problematic. For small rotations around
the x3 axis with an angle α, we find ∂u1/∂x1 = cos α − 1 ≈ 0, ∂u2/∂x2 =
cos α − 1 ≈ 0, ∂u1/∂x2 = − sinα ≈ −α and ∂u2/∂x1 = sin α ≈ α. If we
insert this into equation (2.8), the mixed terms ∂u1/∂x2 and ∂u2/∂x1 cancel,
resulting in εij = 0. However, for large rotations, the approximations are not
valid and definition (2.8) is not applicable anymore. Suitable definitions of the
strain need more involved tensor calculations and will be discussed in more
detail in section 3.1.

2.3 Atomic interactions

In the previous chapter, we saw that different material classes have different
types of chemical bonds. The atoms in the materials attract each other by
different physical mechanisms. If there were only an attractive force between
the atoms, their distance would quickly reduce to zero. However, in addition
to the attractive interaction of the atoms, there also is a repulsive one. The
repulsive interaction is – in a slightly simplified picture – based on the repul-
sion of the electron orbitals that cannot penetrate each other. The repulsive
interaction is short-ranged i. e., it is only relevant if the distances are small,
but for very small distances it becomes much larger than the attractive force.

The distance r between neighbouring atoms (e. g., in a solid) takes a value
that minimises the potential energy of the total interaction between the atoms.
If we superimpose the repulsive potential UR(r) and the attractive potential
UA(r), the total potential is

U(r) = UA(r) + UR(r) . (2.9)

It is minimised at a stable atomic distance r0 as sketched in figure 2.6. Usually,
atomic distances are between 0.1 nm and 0.5 nm [17]. Due to the shape of the
potential, the term potential well is frequently used to describe it.

The interaction force (or binding force) Fi(r) between the atoms can be
calculated by differentiating the potential:

Fi(r) = −dU(r)
dr

. (2.10)

In equilibrium, Fi(r0) = 0. If an external force is added to the interaction
forces, the stable atomic distance changes and the material deforms.

Because the first derivative of the potential (the negative force) vanishes
in equilibrium, the potential energy can be approximated by a spring model



38 2 Elasticity

 0

r

U

attraction
repulsion

superposition
spring model

Fmin

0

r

Fi

 0
0 r0 rD

r

C
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(a harmonic law) with a spring stiffness k if we are sufficiently close to the
equilibrium position r0:4

U(r) ≈ U0 +
1
2
k(r − r0)2 ,

Fi(r) ≈ −k(r − r0) . (2.11)

The external load on a single bond is equal to the negative internal (binding)
force:

F ≈ k(r − r0) . (2.12)

Thus, for small displacements, the force is proportional to the displacement.
If the external force is so large that the distance of the atoms attains the

value rD (‘D’ for ‘debonding’) shown in figure 2.6 where the restoring force is
4 Mathematically, this is a Taylor series cut off at the second-order term.



2.4 Hooke’s law 39

maximal, a further increase in the external load cannot be borne by the bond.
The bond, and thus the material, breaks.

This is also reflected in the stiffness. It decreases from its initial value k
at r0 to zero at rD and then becomes negative, rendering the bond unstable.
If we use the simplifying assumption of a harmonic law to describe the spring,
we assume a constant spring stiffness. This is a valid assumption for small
displacements, typical for the elastic deformation of metals and ceramics.

2.4 Hooke’s law

For small displacements from the equilibrium position, the force between the
atoms is proportional to the displacement (see equation (2.12)). This is true
not only for a single bond, but also for larger atomic compounds and thus for
macroscopic solids. This linear-elastic behaviour is described mathematically
by Hooke’s law. It is valid only for small strains. In metals and ceramics, this
is not an important constraint because the elastic part of any deformation is
small.

For uniaxial loads (figure 2.4(a)), Hooke’s law is

σ = Eε (2.13)

with Young’s modulus E, also sometimes called the elastic modulus. Young’s
modulus quantifies the stiffness of a material: the larger Young’s modulus is,
the smaller is the elastic deformation for a given load.

If a component is strained by a strain ε, strains in perpendicular directions
also develop. Usually, a positive strain causes a contraction in the transverse
direction, justifying the name transversal contraction for this phenomenon. It
is measured by Poisson’s ratio ν, defined as

εtrans = −νε . (2.14)

In many metals, Poisson’s ratio is approximately ν ≈ 0.33; if the material is
incompressible so its volume remains constant, ν = 0.5 holds.

For pure shear (figure 2.4(b)), Hooke’s law is

τ = Gγ ,

where G is the shear modulus. Similar to Young’s modulus, the shear modulus
quantifies the stiffness of the material in shear.

In elastically isotropic materials, the elastic properties are the same in all
spatial directions. In this case, the elastic constants are related as follows:

G =
E

2(1 + ν)
. (2.15)

This equation will be discussed in section 2.4.3.
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Table 2.1. Young’s modulus of selected materials [8]. For polymers, a more detailed
compilation is given in table 8.2

material E/GPa

metals ≈ 15 . . . 500

tungsten 411
nickel alloys 180 . . . 234
ferritic steels 200 . . . 207
austenitic steels 190 . . . 200
cast iron 170 . . . 190
copper alloys 120 . . . 150
titanium alloys 80 . . . 130
brasses and bronzes 103 . . . 124
aluminium alloys 69 . . . 79
magnesium alloys 41 . . . 45

ceramics ≈ 40 . . . 1000

diamond 1000
tungsten carbide, WC 450 . . . 650
silicon carbide, SiC 450
aluminium oxide, Al2O3 390
titanium carbide, TiC 379
magnesium oxide, MgO 250
zirconium monoxide, ZrO 160 . . . 241
zirconium dioxide, ZrO2 145
concrete 45 . . . 50
silicon 107
silica glass, SiO2 94
window glass 69

polymers ≈ 0.1 . . . 5.0

polyester 1.0 . . . 5.0
nylon 2.0 . . . 4.0
polymethylmethacrylate 3.0 . . . 3.4
epoxy resins 3.0
polypropylene 0.9
polyethylene 0.2 . . . 0.7

composites

carbon-fibre reinforced polymers 70 . . . 200
glass-fibre reinforced polymers 7 . . . 45
wood, ‖ to the fibres 9 . . . 16
wood, ⊥ to the fibres 0.6
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In table 2.1, a survey of the Young’s moduli of several engineering materials
is given. The elastic stiffness of ceramics slightly exceeds that of metals, but
is of the same order of magnitude. Young’s modulus of most polymers is
much smaller.5 This should be expected, for the stiffness is determined by
the strength of the atomic bonds, which is larger in ceramics than in metals.
In polymers, the weaker inter-molecular bonds determine the stiffness. How
Young’s modulus can be measured will be described in section 3.2.

From table 2.1, it can also be seen that alloying does not significantly
change the stiffness of materials. For example, Young’s modulus of different
aluminium alloys varies only by about 10%, whereas their strength (see chap-
ter 6) can be raised considerably by alloying.

If two different metals are alloyed, the resulting Young’s modulus is
not necessarily the weighted average of their two moduli because the
binding energy UAB between the atoms A and B is usually not the
average of the single-type energies UAA and UBB. Depending on the
alloying elements, Young’s modulus may even be larger than those of
both constituent elements. A rule of thumb is that adding a material
with a high melting point (e. g., tungsten to nickel) increases the elastic
modulus.

There are a few alloy systems where Young’s modulus can be in-
creased considerably. This is the case when both the solubility of the
elements and the difference in Young’s modulus are large. For exam-
ple, nickel (ENi = 207GPa) and copper (ECu = 121GPa) are com-
pletely soluble, and their Young’s moduli differ almost by a factor of
two. Therefore, Young’s modulus of copper-nickel alloys (nickel bronze)
can be strongly increased by raising the nickel content (figure 2.7).

Usually, though, these effects are small because the solubility of al-
loying elements is usually small (< 10%) in technical alloys. Therefore,

5 Polymer fibres are an exception, see section 8.5.2.
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Young’s modulus of most engineering alloys differs only by less than
±10% from that of the un-alloyed matrix. In contrast, the strength, a
measure of the maximum load the material can bear, can be strongly
increased by alloying and may widely exceed the strength of all alloying
elements (see section 6.4).

A particularly efficient way of increasing Young’s modulus is to use compos-
ites, containing, for example, fibres with large stiffness in a matrix of another
material. Composites are the subject of chapter 9.

So far, Hooke’s law has only been stated for loads that were either normal
or shear loads. In real-world applications, components are usually loaded in a
multiaxial state where normal and shear stresses are combined. This case will
be considered in section 2.4.2. Afterwards, different cases of special symmetries
are considered that allow simplifications of Hooke’s law. Prior to this, we will
discuss the energy stored in elastic deformations.

2.4.1 Elastic strain energy

Any elastic deformation of a material stores energy as can be easily understood
by considering the spring model from section 2.3. To calculate this energy, we
consider an (infinitesimal) brick-shaped volume element of length l and cross
section A to which a load F is applied. The resulting stress is σ = F/A. If
we increase the stress by an amount dσ, the external force must increase by
dF = dσA. The material lengthens by an amount dl.

The work done is dW = Fdl.6 If we insert σ = F/A and the definition of
strain, dε = dl/l, we find for the work done

dW = Fdl = σAdε l = σdε V , (2.16)

where V = Al is the volume of the brick. If we normalise the work to the
volume, thus switching to the energy density dw = dW/V , we find dw = σdε.

The total work done per unit volume in a material strained up to εmax is
the integral over dw:

w =
∫ εmax

0

σdε . (2.17)

This equation is valid for arbitrary uniaxial deformations. If the deformation
is irreversible, part of the work is transformed to heat and cannot be recov-
ered on unloading. In elastic (reversible) deformations, the energy is stored in
6 Here we use the force at the beginning of the strain increment. As we can ne-

glect second-order terms in this infinitesimal calculation, this does not make a
difference: dW = (F + dF )dl = Fdl + dFdl = Fdl.
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the strained atomic bonds and can be recovered.7 Because the work done is
stored as potential energy of the atomic bonds, the name elastic potential is
frequently used to describe the stored energy (cf. section 2.3).

This calculation was valid for uniaxial stresses and strains only. For arbi-
trary stresses and strains, we have to generalise by switching to tensors:

w =
∫ εmax

0

σ ·· dε . (2.18)

The product of the stress and the strain increment in this equation is the
so-called double contraction explained in appendix A.4.

In a linear-elastic material under uniaxial loads, stress and strain are re-
lated by Hooke’s law, σ = Eε. In this case, the integral in equation (2.17) can
easily be solved:

w(el) =
∫ εmax

0

Eεdε =
1
2
Eε2

max =
1

2E
σ2

max . (2.19)

The elastic strain energy increases quadratically with the stress or the strain
(see also exercise 6).

∗ 2.4.2 Elastic deformation under multiaxial loads8

We already saw in section 2.2.2 that a load that causes a normal strain in
its direction also causes transversal normal strains. For example, a stress in
x1 direction, σ11, causes the following strains, according to equations (2.13)
and (2.14): ε11 = σ11/E, ε22 = ε33 = −νσ11/E. One component of the stress
tensor σ thus acts on several components of the strain tensor ε. Similarly, a
prescribed strain in one direction may change the stresses in other directions.
If we restrict ourselves to small deformations, the relation between stress and
strain is linear. Mathematically, an arbitrary linear relation between two ten-
sors of second order can be described using a double contraction:

σij = Cijkl εkl or σ = C∼4
·· ε (2.20)

The elasticity tensor C∼4
is a tensor of fourth order. It can be considered as a

four-dimensional ‘matrix’ with three components in each of its 4 directions.
Its 34 = 81 components Cijkl are the material parameters that completely
describe the (linear) elastic behaviour.

Because the stress and the strain tensor contain only 6 independent compo-
nents each, due to their symmetry, the elasticity tensor C∼4

needs only 62 = 36
independent parameters.
7 The storage and dissipation of energy is also discussed in exercise 26.
8 Sections with a title marked by a ∗ contain advanced information which can be

skipped without impairing the understanding of subsequent topics.
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That not all 81 components of the elasticity tensor are needed can
be most easily understood using an example. For σ12, we find from
equation (2.20)

σ12 = C1211 ε11 + C1212 ε12 + C1213 ε13

+ C1221 ε21 + C1222 ε22 + C1223 ε23

+ C1231 ε31 + C1232 ε32 + C1233 ε33 .

Using the symmetry condition εij = εji, we can collect terms as follows:

σ12 = C1211 ε11 + C1222 ε22 + C1233 ε33

+ (C1212 + C1221) ε12

+ (C1213 + C1231) ε13

+ (C1223 + C1232) ε23 .

The components Cijkl and Cijlk always appear together and thus rep-
resent only one independent parameter. This can be implemented by
using the condition Cijkl = Cijlk. Thus, the 9 components C12kl reduce
to only 6 independent components C1211, C1222, C1233, C1212, C1213,
and C1223.

Furthermore, because σ12 = σ21, we can also set Cijkl = Cjikl. The
two symmetry conditions Cijkl = Cjikl and Cijkl = Cijlk reduce the
number of independent components of the elasticity tensor to 36.

The reduced number of components enables us to use a simplified matrix
notation (Voigt notation), rewriting the tensors of second order as column
matrices and the tensor of fourth order as a quadratic matrix: (σij) −→ (σα),
(εij) −→ (εα), and (Cijkl) −→ (Cαβ). The new Greek indices α and β take
values from 1 to 6. Writing down the components explicitly, we have

(σα) =
(

σ11 σ22 σ33 σ23 σ13 σ12

)T
,

(εα) =
(

ε11 ε22 ε33 γ23 γ13 γ12

)T

with γij = 2εij . The factors of 2 for the mixed components are due to the
re-writing of the tensor components.

This can again be understood most easily using an example. The stress
component σ11 is, according to equation (2.20),

σ11 = C1111ε11 + C1112ε12 + C1113ε13

+ C1121ε21 + C1122ε22 + C1123ε23

+ C1131ε31 + C1132ε32 + C1133ε33 .
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With help of the symmetry conditions ε21 = ε12, ε31 = ε13, ε32 = ε23,
C1121 = C1112, C1131 = C1113, and C1132 = C1123, we find

σ11 = C1111ε11 + C1122ε22 + C1133ε33

+ 2C1123ε23 + 2C1113ε13 + 2C1112ε12 .

The sequence of the mixed terms is not universally agreed upon, but a consis-
tent convention has to be used in any calculation.9

The elasticity tensor possesses further symmetries due to the existence of
an elastic potential [108]. The elasticity matrix (Cαβ) is symmetric because
of this and the number of independent components reduces further to 21 (6
diagonal and 15 off-diagonal ones).

The elastic potential was already introduced in equation (2.18). Writing
it in differential form yields dw = σ ·· dε, or, after re-writing,

σij =
dw

dεij
or σ =

dw

dε
.

Thus, the stress tensor can be calculated by differentiating the elastic
potential with respect to the strains.

Hooke’s law, equation (2.20), can also be written in differential
form:

Cijkl =
∂σij

∂εkl
or C∼

4
=

∂σ

∂ε
.

The elasticity tensor is thus the derivative of the stress with respect to
the strain.

Inserting the stress from the previous equation, we find

Cijkl =
∂2w

∂εij∂εkl
or C∼

4
=

∂2w

∂ε∂ε
.

Because the sequence of taking the derivatives is arbitrary, we find the
symmetry condition Cijkl = Cklij for the elasticity tensor, or, for the
elasticity matrix, (Cαβ) = (Cβα).

Altogether, the three symmetry conditions Cijkl = Cjikl = Cijlk =

Cklij reduce the number of independent components to 21 even in an-
isotropic materials.

Writing out all components, Hooke’s law looks like this:
9 When working with material parameters, the convention in use has to be checked

carefully.
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σ11

σ22

σ33

σ23

σ13

σ12

 =


C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66




ε11

ε22

ε33

γ23

γ13

γ12

 . (2.21)

This notation is easier to handle than the tensor notation. Its disadvantage is
that coordinate transformations cannot be performed; in this case, the tensor
notation must be used.

The arrangement of atoms in a crystal lattice causes further symmetry
conditions that will be discussed in the next sections.

∗ 2.4.3 Isotropic material

A material is mechanically isotropic if all of its mechanical properties are
the same in all spatial directions. The elasticity tensor must thus remain
unchanged by arbitrary rotations of the material or the coordinate system.
Its components must be invariant with respect to rotations.

This invariance property can be used to show that the elasticity matrix
has the simple form:

(Cαβ) =


C11 C12 C12

C12 C11 C12

C12 C12 C11

C44

C44

C44

 (2.22)

with the additional relation

C44 =
C11 − C12

2
. (2.23)

All components not specified vanish, so there are only two independent pa-
rameters, C11 and C12.

The following relations between these parameters and the more familiar
Young’s modulus E, Poisson’s ratio ν, and shear modulus G hold:

C11 =
E(1− ν)

(1 + ν)(1− 2ν)
,

C12 =
Eν

(1 + ν)(1− 2ν)
,

C44 = G =
E

2(1 + ν)
.

(2.24)
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¾¾

¾

¾
x1

x2

(a) Initial coordinate system

x1'x2'

(b) Rotated coordinate system

Fig. 2.8. Example to demonstrate the isotropy equation (2.23): Illustration of the
loading and the resulting deformation. Both figures show the same deformation,
merely viewed in different coordinate systems

Thus, the σ11 component is

σ11 =
E

(1 + ν)(1− 2ν)

(
(1− ν)ε11 + ν(ε22 + ε33)

)
(2.25a)

and σ12 is given by

σ12 = Gγ12 . (2.25b)

Apart from E, G, and ν, the so-called Lamé’s elastic constants λ and
µ are sometimes used. Their relation to the other elastic constants is
as follows [16,112]:

λ = C12 =
Eν

(1 + ν)(1− 2ν)
,

µ = C44 =
E

2(1 + ν)
.

From equation (2.23), we find C11 = λ + 2µ.

The validity of the condition (2.23) can be illustrated using the follow-
ing example.10 A material is deformed in plane strain with the following
strain tensor

(εij) =

0@ −ε 0 0

0 ε 0

0 0 0

1A ,

written in the xi coordinate system (see figure 2.8(a)). Using Hooke’s
law (2.21) and the elasticity matrix from equation (2.22), we find for
the required stress

10 The calculation is further elaborated in exercise 5.
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(σij) =

0@ −ε(C11 − C12) 0 0

0 ε(C11 − C12) 0

0 0 0

1A . (2.26)

If we consider the same deformation in a coordinate system xi′ that
is rotated by 45° relative to the xi system, the coordinate transforma-
tion results in the following strain tensor:

(εi′j′) =

0@ 0 ε 0

ε 0 0

0 0 0

1A . (2.27)

This corresponds to pure shear with γ12 = 2ε, see figure 2.8(b). If we
ignore the isotropy of the elasticity tensor for a moment, we have to
assume that its components are different in different coordinate systems.
In the primed coordinate system, σα′ = Cα′β′ εβ′ leads to

(σi′j′) =

0@ 0 2εC4′4′ 0

2εC4′4′ 0 0

0 0 0

1A . (2.28)

The stresses (σij) and (σi′j′) describe the same state of stress, There-
fore, a coordinate transformation must transform (σij) to (σi′j′):

(σi′j′) =

0@ 0 2ε(C11 − C12) 0

2ε(C11 − C12) 0 0

0 0 0

1A . (2.29)

Comparing the components in equation (2.28) and (2.29), we find

C4′4′ =
C11 − C12

2
. (2.30)

Because the material is isotropic, Cα′β′ = Cαβ and, especially, C4′4′ =

C44. Thus, equation (2.30) is the same as (2.23).

Frequently, Hooke’s law is not needed to calculate the stress components from
a given strain, as in equation (2.20), but to determine the strains from the
stresses. We can rearrange equation (2.20) as follows:

εij = Sijkl σkl . (2.31)

S∼4
is the compliance tensor, the inverse of the elasticity tensor C∼4

.11 Because in-
verting a matrix is an awkward calculation, the components of the compliance
matrix are written explicitly here:
11 We can also invert the elasticity matrix in the Voigt notation instead: (Sαβ) =

(Cαβ)−1.
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(Sαβ) =



1/E − ν/E − ν/E

− ν/E 1/E − ν/E

− ν/E − ν/E 1/E

1/G

1/G

1/G

 . (2.32)

Again, there is an additional condition, S44 = 2(S11 − S12), from which we
can derive equation (2.15), G = E/2(1 + ν). Inserting equation (2.32) into
Hooke’s law, we find for the ε11 component, for instance,

ε11 =
1
E

(
σ11 − ν(σ22 + σ33)

)
(2.33a)

and for the γ12 component

γ12 =
1
G

σ12 . (2.33b)

The other components are analogous.

If we take a closer look at the elasticity matrix (Cαβ), equation (2.22), and
the compliance matrix (Sαβ), equation (2.32), we realise the following pattern:
Both are of the form

• • •
• • •
• • •

•
•
•

 ,

where a •marks a number and unoccupied spaces mark zero values. The upper
right and lower left sub-matrices describe the relation between shear stresses
and normal strains and between normal stresses and shear strains. As they
are vanishing, there is no coupling between those components. Therefore, in a
fixed coordinate system, normal stresses cannot cause shear strains and shear
stresses cannot cause normal strains in an isotropic material.

The lower right sub-matrix, relating shear stresses and shear strains, is
diagonal. Shear stresses thus can only cause shear strains of the same orienta-
tion.

The upper left sub-matrix, which relates normal stresses and normal
strains, is fully occupied. Therefore, a normal stress induces not only a strain
in the same direction, but also transverse normal strains, the transverse con-
traction. Similarly, a normal strain causes stresses in transverse directions.

The consequences of these couplings between the different components
can be illustrated using an example. We want to calculate the stiffness in
x1 direction of a component for two different cases. In the first case, the
component can deform freely in the x2 and x3 direction, so the resulting
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x1

x2

¾11

(a) Uniaxial stress

¾11

x1

x2

(b) Uniaxial strain

Fig. 2.9. Two different constraints on the same component

stress state is uniaxial and σ22 = σ33 = 0 (figure 2.9(a)). In the second case,
transversal contractions are suppressed, ε22 = ε33 = 0, and the state is one of
uniaxial strain (figure 2.9(b)).

For uniaxial stresses, it is easiest to calculate the strains with equa-
tion (2.31). This yields

(εij) =

 σ11/E 0 0
0 − σ11ν/E 0
0 0 − σ11ν/E

 .

In x1 direction, we thus find the uniaxial Hooke’s law (2.13), σ11 = Eε11.
In the case of uniaxial strain, equation (2.20) can be employed, resulting

in

(σij) =

 C11ε11 0 0
0 C12ε11 0
0 0 C12ε11

 .

In x1 direction, we find by using equation (2.24)

σ11 =
E(1− ν)

(1 + ν)(1− 2ν)
ε11 .

If we assume a Poisson’s ratio of ν = 1/3, we get

σ11 =
3
2
Eε11 .

By suppressing transverse contractions, the stiffness of the component in-
creases by 50% compared to the uniaxial stress state. This example also illus-
trates that the simple relation σ = Eε must not be used inconsiderately, even
if only the stresses and strains in one direction are of interest.

∗ 2.4.4 Cubic lattice

In a cubic crystal, the material properties are anisotropic, but there are a
number of rotational symmetries. For example, rotations by multiples of 90°
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around the 〈100〉 axes12 do not change the crystal relative to the coordinate
system. Further symmetries are rotations by multiples of 120° around the
〈111〉 axes and by multiples of 180° around the 〈110〉 axes. All these rotations
must leave the elasticity tensor and the compliance tensor invariant. Using
tensor algebra, the elasticity matrix can be shown to have the following form
in a coordinate system parallel to the edges of the unit cell:

(Sαβ) =


S11 S12 S12

S12 S11 S12

S12 S12 S11

S44

S44

S44

 . (2.34)

Unspecified components vanish. Thus, the three independent constants S11,
S12, and S44 remain. If the coordinate system is not parallel to the edges of
the unit cell, a coordinate transformation of the elasticity tensor has to be
used to find the components. In this case, the elasticity matrix takes a shape
different from that in equation (2.34).

Because the material properties are direction-dependent in a cubic crystal,
they have to be stated together with the corresponding direction. According
to the definition, the load direction has to be stated for Young’s modulus:
Ei. Because the shear stress τij and shear strain γij have two indices, two
indices are needed for the shear modulus Gij . Poisson’s ratio relates strains
in two directions. Here the second index ‘j’ denotes the direction of the strain
that causes the transversal contraction in the direction marked by the first
index ‘i’: εii = −νijεjj .13 If the coordinate system is aligned with the axes
of the unit cell, the directions can be characterised using Miller indices, for
example E〈100〉. The following relations between the components Sij and E,
G, and ν hold:

S11 =
1

E〈100〉
,

S12 = −
ν〈010〉〈100〉

E〈100〉
= −

ν〈001〉〈100〉

E〈100〉
,

S44 =
1

G〈010〉〈100〉
=

1
G〈001〉〈100〉

.

(2.35)

〈100〉 is the set of all directions that are parallel to the edges of the unit cell.
In cubic crystals, it is rather unusual to work with E, G, and ν. Instead, the
components S11, S12, and S44 of the compliance matrix or C11, C12, and C44

of the elasticity matrix are used.
12 Directions and planes in crystals are described using Miller indices, explained in

appendix B.
13 As before, underscoring the indices indicates that no summation over this re-

peated index is done, see appendix A.4.
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There is no equation similar to (2.23) in a cubic crystal; S11, S12, and S44

(or C11, C12, and C44) are not related. This can be seen from the example
from section 2.4.3 on page 47. Up to equation (2.30), C4′4′ = (C11 − C12)/2,
the calculation remains unchanged. If the material is anisotropic, as in the
case of a cubic crystal, C4′4′ 6= C44, so

C44 6=
C11 − C12

2
.

It is sufficient to know the elastic constants in one coordinate system (for
example, S11, S12, and S44) to calculate the properties in any other coordinate
system.

To do this, we have to transform C∼
4

or S∼
4

to the desired coordinate

system. The transformation has to be done using the tensors, not the
matrices C or S in the simplified Voigt notation, because these matrices
do not transform correctly.

Young’s modulus in arbitrary directions [hkl], for instance, follows the relation

1
E[hkl]

= S11 −
[
2(S11 − S12)− S44

](
α2β2 + α2γ2 + β2γ2

)
(2.36)

with α = cos
(
[hkl], [100]

)
, β = cos

(
[hkl], [010]

)
, and γ = cos

(
[hkl], [001]

)
.

The anisotropy factor A quantifies the difference of the mechanical be-
haviour relative to an isotropic material. It is defined as

A =
2(S11 − S12)

S44
. (2.37)

If A = 1, the material is isotropic, otherwise it is anisotropic.
In the elasticity matrix (Cαβ), the same components are occupied as in

the compliance matrix (Sαβ).14 Both matrices can be converted using the
following equations which are also valid for an isotropic material:

C11 =
S11 + S12

(S11 − S12)(S11 + 2S12)
, (2.38a)

C12 = − S12

(S11 − S12)(S11 + 2S12)
, (2.38b)

C44 =
1

S44
(2.38c)

and

S11 =
C11 + C12

(C11 − C12)(C11 + 2C12)
, (2.39a)

14 As long as the coordinate system is parallel to the edges of the unit cell.
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S12 = − C12

(C11 − C12)(C11 + 2C12)
, (2.39b)

S44 =
1

C44
. (2.39c)

The considerations concerning the coupling between different stress and
strain components from the end of section 2.4.3 apply also to cubic crystals.

∗ 2.4.5 Orthorhombic crystals and orthotropic elasticity

The unit cell of the orthorhombic crystal is brick-shaped. The elastic proper-
ties are therefore symmetric with respect to three perpendicular planes. In a
coordinate system that is parallel to the edges of the unit cell, the compliance
matrix (equation (2.31)) takes the form

(Sαβ) =


S11 S12 S13

S12 S22 S23

S13 S23 S33

S44

S55

S66



=



1/E1
− ν12/E2

− ν13/E3

− ν21/E1
1/E2

− ν23/E3

− ν31/E1
− ν32/E2

1/E3

1/G23

1/G13

1/G12

 . (2.40)

Again, the unspecified components vanish. Altogether, there are nine inde-
pendent elastic constants. It has to be noted that the compliance tensor is
symmetric, so some parameters are related, for example −ν21/E1 = −ν12/E2.
Nevertheless, it is useful to discriminate between ν12 and ν21, for they are
defined by transversal contraction.

In a coordinate system parallel to the edges of the unit cell, normal stresses
can only cause normal strains, and shear stresses only shear strains. This is
not valid anymore if the coordinate system is arbitrarily oriented, so normal
strain and shear are coupled.

The orthorhombic crystal lattice itself is not too important technically
because there are only a small number of materials crystallising in this struc-
ture. Composites (chapter 9), however, frequently have the same symmetry
because they may contain aligned fibres. Materials with the same symmetry
as an orthorhombic crystal are called orthotropic.
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Table 2.2. Number of independent elastic constants for different lattice types (cf.
table 1.2). Names specifying a symmetry rather than a lattice are printed in italics
(e. g., ‘isotropic’ )

lattice type number of
elastic constants

isotropic 2
cubic 3
hexagonal, transversally isotropic 5
tetragonal 6
orthorhombic / orthotropic 9
monoclinic 13
triclinic 21

∗ 2.4.6 Transversally isotropic elasticity

In a transversally isotropic material, there is a plane in which all properties
are isotropic. Perpendicular to this plane, the properties differ. One example
for such a material is a hexagonal crystal which is transversally isotropic with
respect to its mechanical properties.15 Other technically important materials
may also be transversally isotropic, for example directionally solidified met-
als in which the grains have a preferential orientation (see also section 2.5),
or composites (chapter 9) with fibres oriented in one direction, but aligned
arbitrarily (or hexagonally) in the perpendicular plane.

In a coordinate system where the 3 axis is the axis of symmetry, the
compliance matrix (equation (2.31)) looks like this:

(Sαβ) =


S11 S12 S13

S12 S11 S13

S13 S13 S33

S44

S44

2(S11 − S12)



=



1/E1
− ν21/E1

− ν13/E3

− ν21/E1
1/E1

− ν13/E3

− ν31/E1
− ν31/E1

1/E3

1/G13

1/G13

2(1 + ν21)/E1

 .

(2.41)

In this case, we have five independent elastic parameters since there is a
relation between the νij due to the symmetry of the compliance matrix, similar
to that for orthotropic materials: ν21 = ν12 and ν31/E1 = ν13/E3.
15 The crystal lattice itself, however, is only symmetric when rotated by multiples

of 60°.



2.4 Hooke’s law 55

Table 2.3. Elastic constants of different single crystals [35,98,105]. Eisotr. is Young’s
modulus of a nearly isotropic polycrystal

cubic materials

material Eisotr. E〈100〉 E〈111〉 A C11 C12 C44

GPa GPa GPa GPa GPa GPa

metals and semi-metals

Al 70 64 76 1.23 108 61 29
Au 78 43 117 1.89 186 157 42
Cu 121 67 192 3.22 168 121 75
α-Fe 209 129 276 2.13 233 124 117
Ni 207 137 305 2.50 247 147 125
Si − 130 188 1.57 166 64 80
W 411 411 411 1.00 501 198 151

ceramics

diamond − 1050 1200 1.20 1076 125 576
MgO 310 247 343 1.54 291 90 155
NaCl 37 44 32 0.72 49 13 13
TiC − 476 429 0.88 512 110 117

hexagonal materials

material Eisotr. C11 C33 C44 C12 C13

GPa GPa GPa GPa GPa GPa

Mg 44 60 62 16 26 22
Ti 112 162 181 47 92 69
Zn 103 164 64 39 36 53

∗ 2.4.7 Other crystal lattices

The number of independent elastic parameters can also be determined for the
other crystal lattices and is listed in table 2.2. Generally, couplings between
shear stresses and normal strains and normal stresses and shear strains can
occur when the number of independent parameters is larger than three. In
this case, a uniaxial stress can cause not only normal strains, but also shear
strains as we already saw for the example of the orthorhombic crystal.

∗ 2.4.8 Examples

Table 2.3 contains an overview of the elastic constants for some metals and
ceramics. As can be seen, the anisotropy factor of tungsten is 1.0, so it is
(almost) isotropic even as a single crystal. For most other materials, almost
isotropic properties can only be found in a polycrystalline state. The direction
dependence of Young’s modulus for selected materials is plotted in figure 2.10.
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(a) Titanium carbide,
A = 0.88

(b) Tungsten, A = 1.00 (c) Aluminium, A = 1.23

(d) Silicon, A = 1.57 (e) Gold, A = 1.89 (f) α iron, A = 2.13

(g) Nickel, A = 2.50 (h) Copper, A = 3.22 (i) Zinc,
E〈0001〉/E〈101̄0〉 ≈ 0.3

Fig. 2.10. Orientation dependence of Young’s modulus for some materials of ta-
ble 2.3. In each spatial direction, the distance of the surface from the origin is a
measure of Young’s modulus
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(a) 20℃ (b) 200℃ (c) 400℃

Fig. 2.11. Microstructure of technical pure aluminium for different mould tempera-
tures (cast temperature 900℃). The resulting preferential crystal orientation is the
more pronounced, the colder the mould is

∗ 2.5 Isotropy and anisotropy of macroscopic components

Single crystals are usually mechanically anisotropic as we saw in the preced-
ing sections. In a polycrystalline material, the grains are frequently oriented
randomly, and the mechanically anisotropic effects are evened out macroscop-
ically. The material is thus approximately isotropic.

However, there are some cases where a macroscopic component can be
anisotropic:

• The component consists of a single crystal. One example are turbine blades
used at extreme thermal loads (see also page 58).

• The grains are not small compared to the dimensions of the component
itself, so there is insufficient averaging.

• The material is a composite with preferred orientation of the reinforcing
phase. Fibre composites are the most important example (see chapter 9).

• During solidification or recrystallisation, a texture is formed in the mate-
rial i. e., the grains have a preferential orientation. This may be due to
thermal gradients during solidification of an alloy (see figure 2.11): Solidi-
fication starts at the coldest point with the formation of a large number of
small nuclei that grow in the direction of the temperature gradient. The
speed of crystal growth depends on the crystal orientation, resulting in
some grains overtaking the others. The final crystal structure is transver-
sally isotropic. This process can be exploited technically to manufacture
directionally solidified materials. One example are turbine blades contain-
ing very long grains oriented in the longitudinal direction of the blade (see
figure 2.12). Why this is done is explained in the next section.

• The grains have rotated due to large plastic deformations (> 50%), pro-
ducing a textured material. The reason for this orientation is that crystals
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Fig. 2.12. Directionally solidified gas turbine blade. The grains are made visible by
etching. Some grains extend over the total length of the blade (385mm). Courtesy
of Siemens ag, Power Generation, Mülheim, Germany

can only deform plastically in certain planes and directions.16 Deforma-
tions of this magnitude are frequently encountered in metal working, for
example drawing or rolling.

∗ How to exploit the elastic anisotropy: Gas turbine blades

Gas turbine blades (figure 2.13(a)) are facing extreme conditions: They have to
withstand large mechanical loads due to centrifugal forces at high temperature.
To at least partly protect the material from the extreme gas temperatures of
1200℃ or more, the blades are cooled from the inside with air of about 500℃.
If the wall of the turbine blade has a thickness of about 2 mm and is exposed
to the process gas with a temperature of 1200℃, its surface temperature
will be about Tout = 1000℃, whereas on the inside it is only Tin = 600℃
(figure 2.13(b)). Due to thermal expansion, the material would expand on
the outside, but is partly constrained by the cooler inside wall. Thus, large
compressive thermal stresses form on the outside and tensile stresses on the
inside. In the middle of the wall, there will be a neutral axis at about Tm =
16 We will discuss this in chapter 6.
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(a) Cut-away view. Courtesy of Lufthansa
Technik ag, Hamburg, Germany

x

600°C

1200°C

800°C

1000°C

500°C

insideoutside

blade wall

¾th(x)

(b) Temperature distribution in the
wall

Fig. 2.13. Gas turbine blade of a jet engine. Cooling channels inside the blade are
used to air-cool the blade

800℃ where thermal stresses vanish. The thermal stress σth at any point x
can be calculated approximately by

σth(x) = E εth = E α
(
Tm − T (x)

)
. (2.42)

Here T (x) is the local temperature. The thermal stress is thus proportional to
the coefficient of thermal expansion α and to Young’s modulus E. If we can
reduce Young’s modulus in the direction of the thermal stresses, the stresses
are reduced, thus either increasing the stress tolerance or allowing to raise
the temperature and thus the efficiency of the turbine. In this context, it is
irrelevant that the elastic deformations due to centrifugal loads increase when
E is reduced, for they are small enough not to compromise the component in
any case.

If we assume, as an example, a turbine blade made of a polycrystalline,
isotropic nickel-base superalloy with Young’s modulus Eisotr. = 200 000MPa
and a coefficient of thermal expansion of α = 15× 10−6 K−1, we can estimate
the stresses at the outside to σth,out = −600 MPa and those at the inside to
σth,in = 600MPa.

Now we manufacture the turbine blade from a single crystal or a direction-
ally solidified material oriented in the 〈100〉 direction with Young’s modulus
of E〈100〉 = 135 000MPa. The thermal stresses at the same temperature are
now σth,out,〈100〉 = −405 MPa, σth,in,〈100〉 = 405MPa. If we assume that the
maximum stress the material can bear is 600 MPa, we can raise the surface
temperature to almost 1100℃ without having to change the material.
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 0
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T2 > 0 K
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Fig. 2.14. Interaction potential between two atoms. When the temperature is in-
creased, additional thermal energy Uth is available. The asymmetry of the potential
well causes an increase of the average atomic distance
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Fig. 2.15. Temperature dependence of Young’s modulus for some metals [18]

2.6 Temperature dependence of Young’s modulus

In this section, we will discuss the temperature dependence of Young’s modu-
lus in metals and ceramics; polymer elasticity will be dealt with in chapter 8.

At typical service temperatures, which are usually smaller than half the
melting temperature Tm measured in kelvin (T < 0.5 Tm, [T ] = K), some rules-
of-thumb can be stated for the temperature dependence of Young’s modulus.
In metals, the temperature dependence of Young’s modulus EM is rather large:

EM(T ) ≈ EM(0K) ·
(

1− 0.5
T

Tm

)
. (2.43)

Here, EM(0 K) is Young’s modulus at 0 K. Some experimentally determined
values are shown in figure 2.15. The temperature dependence of Young’s mod-
ulus of ceramics is smaller [51]:
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Fig. 2.16. Young’s modulus versus melting temperature in some metals [18, 143]

EK(T ) ≈ EK(0 K) ·
(

1− 0.3
T

Tm

)
. (2.44)

We can understand the temperature dependence from the properties of
the atomic bond discussed in section 2.3. Raising the temperature increases
the energy of the atoms by a temperature-dependent amount Uth. The atoms
start to oscillate around their equilibrium position. The amplitude of the
oscillations can be estimated by adding the thermal energy to the energy in the
minimum of the potential well as sketched in figure 2.14. Because the repulsive
interaction is shorter-ranged than the attractive interaction, the slope is larger
on the left side of the well. The mean distance of the atoms thus grows when
the temperature is raised. This explains the phenomenon of thermal expansion.

Due to thermal expansion, the mean equilibrium position of the atom is
at a position in the potential well where the slope of the force curve and thus
the stiffness is smaller – Young’s modulus is reduced.

This simple model relates thermal expansion and the reduction of the elas-
tic modulus with increasing temperature. It is confirmed by the fact that met-
als have a larger temperature dependence of Young’s modulus than ceramics
and also a larger coefficient of thermal expansion.

The reason for this is the larger bond length of the metallic bond. Because
it is based on electrons in a widely spread electron gas, the interaction energy
does not decrease as strongly with increasing distance as in a covalent bond
that involves only two atoms. The range of the ionic bond is also rather small
because the electric field is shielded by the neighbouring ions of different
charges.

As a rule-of-thumb, we can state that within each class of materials,
Young’s modulus is roughly proportional to the melting temperature:
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E ∼ Tm . (2.45)

This relation can also be explained with the help of figure 2.14. The energy
needed to melt the material is roughly proportional to the depth of the po-
tential well because the bonds have to be sufficiently dissolved to allow free
movement of the atoms. The deeper the potential well is, the steeper are its
sides, for the range of the attractive and repulsive forces are roughly the same
for all materials within a certain class. As the second derivative of the energy
determines the elastic properties, materials with a larger bond energy have
to have a larger elastic modulus. In figure 2.16, the relation between melting
temperature and Young’s modulus is sketched.


