P740.HW2.1.sol.tex

Supplement to: P740.HW2.sol.tex.
Mostly about judicious treatment of integrals.

Example 1.

Find $\langle y\rangle$ defined by

$$
\begin{equation*}
<y>=\frac{\int_{-\infty}^{+\infty} d y y f(y)}{\int_{-\infty}^{+\infty} d y f(y)}=\frac{I_{1}}{I_{0}} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
f(y)=A \exp -B\left(y^{2}-a y\right) \tag{2}
\end{equation*}
$$

and A is a constant fixed by norming $f(y)$ to 1 , i.e., $I_{0}=1$. A formal expression that seemingly reduces your work is

$$
\begin{equation*}
<y>=\frac{1}{B} \frac{d}{d a} \ln \left(I_{0}\right) \tag{3}
\end{equation*}
$$

There is still one integral to be done. Whether you choose Eq. (1) or Eq. (3) proceed something like this. Define $\kappa^{2}=B$, replace y by $x=\kappa y$, Bay by $\kappa a x=2 c x$ and $d y=d x / \kappa$. The idea is to sterilize the equation, have as few things lying around a possible. Then

$$
\begin{align*}
I_{0} & =\int_{-\infty}^{+\infty} d x A \exp -\left(x^{2}-2 c x\right), \tag{4}\\
I_{1} & =\frac{1}{\kappa} \int_{-\infty}^{+\infty} d x A x \exp -\left(x^{2}-2 c x\right)=\frac{1}{2 \kappa} \frac{d}{d c} I_{0}, \tag{5}\\
<y> & =\frac{1}{2 \kappa} \frac{d}{d c} \ln \left(I_{0}\right) . \tag{6}
\end{align*}
$$

The integrals have been deliberately arranged to suggest completing the square. For example

$$
\begin{equation*}
I_{0}=e^{c^{2}} \int_{-\infty}^{+\infty} d x A \exp -\left(x^{2}-2 c x+c^{2}\right)=\exp c^{2} \times \int_{-\infty}^{+\infty} d x A \exp -(x-c)^{2} \tag{7}
\end{equation*}
$$

The integral here is a Gaussian integral centered at $x=c$. If you shift the origin to $x=c$ the integral, which cannot be done by hand, is independent of $c, I_{0}=\exp c^{2} \times D$, where D is a number. From Eq. (6) you want the \log of I_{0}, string it out, $\ln \left(I_{0}\right)=c^{2}+\ln (D)$, you don't need D,

$$
\begin{equation*}
<y>=\frac{c}{\kappa}=a . \tag{8}
\end{equation*}
$$

Example 2.

Suppose that for

$$
\begin{equation*}
f(y)=A \exp -B y^{2}, \tag{9}
\end{equation*}
$$

where A is a constant fixed by norming $f(y)$ to 1 , you want the probability that $y>b$, i.e.,

$$
\begin{equation*}
P(y>b)=\frac{\int_{b}^{+\infty} d y f(y)}{\int_{-\infty}^{+\infty} d y f(y)} \tag{10}
\end{equation*}
$$

Use x as above. Because you have the ratio of two integrals with same integrand and differential ($d y$) you can drop A, replace $d y$ by $d x$ and dress up the limit at $b, b \rightarrow \kappa b=q$,

$$
\begin{equation*}
P(y>b)=\frac{\int_{q}^{+\infty} d x g(x)}{\int_{-\infty}^{+\infty} d x g(x)}=\frac{J(q)}{2 J(0)}, \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
g(x)=\exp -x^{2} \tag{12}
\end{equation*}
$$

The integral $J(0)$ is $\sqrt{\pi} / 2$. The error function, $\operatorname{erf} f(z)$, is defined to be

$$
\begin{equation*}
\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} d x \exp -x^{2} \tag{13}
\end{equation*}
$$

$\operatorname{er} f(+\infty)=1$. Thus

$$
\begin{equation*}
P(y>b)=\frac{1}{2}(1-\operatorname{erf}(q)) . \tag{14}
\end{equation*}
$$

$\operatorname{erf}(x)$ is known to MATLAB.

