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The rapidly growing fields of soft robotics and flexible electronics are in demand of compatible soft stimulus-responsive materials [1,2]. The shift from conventional, rigid robotics and semiconductor-based electronics, which both engage electron transport and magnetic fields in their working principle, towards fully or partially soft devices also implies fundamentally different device configurations and their underlying physical working principles. Soft devices often mimic sensation and actuation mechanisms commonly found in the nature – they engage ionic currents and rely on the counteraction between electronically and ionically conductive materials [3,4]. The constitutive units in soft robotics and flexible electronics are often multifunctional; i.e. , the same subsystem can perform simultaneously or intermittently multiple tasks in a system. For example, a structural member of a soft robot’s body can also act as a sensor, an actuator, or even an energy-storage unit.
The thesis at hand explores the electroactive properties of one specific class of materials, targeted for use in soft robotics and flexible electronics applications. The This material is referred to as an ionic electroactive polymer (IEAP). An IEAP is a soft, thin, symmetrical laminate, which consists of a microporous polymeric membrane in-between two microporous electrodes with a high specific surface area. The membrane and the electrodes are swollen by an appropriate electrolyte. The electrodes are both electronically and ionically conductive, whereas the membrane conducts only ions. 
The definition for the IEAP given above applies for a A number of different devices in the soft robotics and flexible electronics domains.from separate fields of application share the definition given for the IEAPs above. The applications fields of particular interest for the IEAPs are:
· Flexible supercapacitors
· Electromechanical actuators
· Motion sensors
· Energy harvesters
Similar materials are used in construction of devices for any of the applications listed above. These devices are distinguished mainly by their particular geometric configuration and optimization of the materials. As an example, if a particular IEAP, regardless of its function, is expected to be exposed to ambient air and to be operable at room temperature, then the electrolyte for this IEAP is prospectively selected from the class of room-temperature ionic liquids (ILs). On the contrary, a solvent-based electrolyte is, as a rule, a more reasonable choice for a hermetically sealed IEAP. 
The electrode materials considered for the IEAPs can be generally divided into two major categories: the materials undergoing Faradaic charge-transfer reactions during operation, or non-Faradaic materials, which do not undergo charge-transfer reactions. The work at hand focuses on the IEAPs with non-Faradaic, carbonaceous electrodes. Microporous carbon is one of the most widely used electrode material for the IEAPs due to its electrochemical inertness and a wide diversity of available forms, ranging from powders to fibers, cloths, monoliths, nanoscale structures, etc. [5]. 
In all of the abovementioned applications for the IEAPs, the ion transport properties between the electrodes [6] and the interaction between the ionic species and the electronically conductive electrodes are of particular importance. A good match between the porosity distribution of the electrode material and the effective sizes of the ions in the electrolyte must be made to achieve a device with tailored properties. The properties of the IEAPs can be tuned by the proper choice of  electrolyte and by changing the precursors or synthesis process parameters of the carbonaceous electrode materials [5,7]. In addition, the choice of polymeric separator and binder also influences the ionic conduction properties and, in turn, the electroactive properties of the IEAP [6,8].
Up to the present, the research on IEAPs has been primarily distinguished by the expected role – either as a supercapacitor, an actuator, or a sensor – of the particular type of IEAP in a mechatronic system. The state-of-the-art of the research on IEAPs, categorized by their projected primary application, is reviewed in the next subsection.
[bookmark: _Toc396045826]State-of-the-art applications for the IEAP
[bookmark: _Toc396045827]IEAP as a supercapacitor
Supercapacitors store electric energy by reversible electrostatic accumulation of mobile ions on the surface of the electrodes with high specific surface area. Supercapacitors are commonly characterized by their high current and power density, but their energy density is lower compared to batteries [5]. A supercapacitor was first constructed by Becker et al. from General Electric Co. in 1957 [9] and commercialized already in 1978 by NEC [10]. Conventional supercapacitors are sealed systems, which use involve volatile organic electrolytes. The commonly used electrolytes for the supercapacitors are acetonitrile and propylene carbonate, containing tetraethylammonium tetrafluoroborate salt. ILs are promising electrolytes for the supercapacitors especially due to their high electrochemical window (>4 V); however, only in water-free conditions [11]. What is more, supercapacitors with IL as an electrolyte typically yield lower energy density and higher relaxation times compared to the supercapacitors with organic solvents as an electrolyte [12].
Starting from the year 2008 (based on the number of published papers according to the ISI Web of Knowledge), the development of flexible, creasable, and stretchable supercapacitors has been an accelerating trend. The stimulus for making the supercapacitors more flexible is the demand for power storage elements that are compatible with flexible and wearable electronic devices [13-15]. Unlike the conventional, sealed supercapacitors, which serve only as monofunctional energy storage units, the flexible supercapacitors can also perform as structural components, therefore reducing the weight and volume of portable electronics [16-19]. Flexible supercapacitors are often constructed as thin laminates sheets, but supercapacitors in the form of weavable fibers have recently become increasingly popular [14,20]. 
The state-of-the-art flexible supercapacitor prototypes are, as a rule, characterized, and hence expected to operate in a totally water-free environment. Complete sealing of these devices against water absorption is presumed, by default, in a real-world device. Complete sealing becomes increasingly difficult to achieve, especially in consideration of some recent reports on supercapacitors capable of undergoing strain exceeding 100% [21]. A large number of prospective fields of application for the flexible supercapacitors presume their ability for long-term operation in air, possibly being directly exposed to air. ILs have also been considered as electrolytes for the flexible supercapacitors also due to their nonvolatility [22,23]. However, the research on in-air-operable supercapacitors, or even general characterization of supercapacitors exposed to ambient air, has not yet found significant interest in the scientific literature.
The supercapacitors are attractive also for their use in micro-scale devices; therefore, methods for integrating supercapacitors with the manufacturing processes used in fabrication of contemporary microelectronics and microelectromechanical systems (MEMS) are sought. Contrarily to the conventional supercapacitors, which are typically characterized by their gravimetric specific capacitance in respect to the mass of their electrode material, the most relevant criterion for the micro-supercapacitors is their areal energy and power density, as the mass of their active electrode material, compared to the total mass of the device, is often negligibly small. Another reason is that the capacitance of a single electrode does not always scale up with its thickness [24].  
[bookmark: _Ref385845827][bookmark: _Toc396045828]IEAP as an actuator
In 1992, Oguro et al., Shahinpoor et al., and Sadeghipour et al. almost simultaneously constructed an electromechanical actuator that had fluoropolymer-copolymer with covalently bonded anionic moieties as a membrane [25]. The ionic polymer membrane was coated with compliant, electronically conductive, noble metal electrodes; thus, the resulting IEAP material is often called as an ionic polymer-metal composite (IPMC). The working principle of an IPMC is straightforward – the mobile cations in the ionic polymer membrane, together with their water solvation shells, are drawn towards negatively charged electrode by applying electric potential difference between the metal electrodes. The resulting pressure difference between the opposite sides of the ionic polymer membrane emerges volumetric effects and causes bending of the IPMC [25,26]. The large dependence on its hydration level makes in-air use of the solvent-based IEAPs complicated. 
Conjugated polymers – polymers with electronically conductive backbone due to π‑conjugation – are perspective alternative electrode materials for ionic actuators, which have been developed since the early 1990s [27]. Volumetric changes in the conductive polymer electrodes are obtained by entrance or expulsion of mobile counter-ions, driven by reversible electrochemical oxidation or reduction (that is, Faradaic charge-transfer reactions) of the conjugated polymer [28].
Carbon was conceived as a perspective electrode material for the IEAP actuators one decade later – in 1999, despite of the fact that carbon-based supercapacitors were already commercially available even before the 1990s. In 1999, Baughman et al. demonstrated electrically induced actuation of a three-layered laminate with single-walled carbon nanotube electrodes in an aqueous electrolyte [29]. The bending phenomenon was explained by quantum chemical effects in the carbon, resulting in elongation of the single-walled nanotubes. In the beginning of the 2000s, IL was conceived as a promising electrolyte to construct electrochemical devices operable directly in air. Lu et al. demonstrated IL as a suitable electrolyte for conductive polymer-based IEAP actuators in 2002 [30]. The next breakthrough in the world of IEAPs was the discovery of ‘bucky gel’ – a highly viscous composite of carbon nanotubes and IL – by Fukushima et al. in 2003 [31]. Soon after that, Fukushima et al. presented dry actuators with ‘bucky gel’ electrodes [32]. The mechanical properties of the ‘bucky gel’ electrodes enable construction of electrodes without any additional polymer as a binder [33]. Additionally, high electric conductivity of the single-walled carbon nanotubes in the electrodes was sufficient to omit metal current collectors. Subsequently, electrically induced volumetric effects were demonstrated on various forms of activated carbons, such as carbide-derived carbon [34], carbon aerogel [35], and graphene [36]. In 2013, electrically induced anisotropic linear strain as much as 56% was demonstrated on an IEAP with aligned nanoporous microwave-exfoliated graphite oxide electrodes [37].
The IEAP actuators with carbonaceous electrodes are characterized by large value of electric capacitance; this is not surprising, concerning their apparent intrinsic similarity to the supercapacitors. The gravimetric capacitance per carbon content of the an IEAP actuator with IL electrolyte – up to 120 F g-1 [38,39] – is in the same order of magnitude with supercapacitors. As a comparison, the commercial supercapacitors with activated carbon electrodes yield 100 100 F F g-1 in organic, 200 F g-1 in aqueous [40], and 125 F g-1 in IL electrolytes [12]. Generally, the IEAPs that are, optimized for actuation, have significantly lower cyclic energy-storage efficiency (84% [39]). 
The IEAP actuators are often constructed as cantilevers undergoing bending motion [29,32], but the linear length change of individual electrodes [37] or the change in the thickness of the whole laminate [34] has also been employed.
The response speed of the IEAP actuators is limited by diffusion of the ions and solvents within the IEAP laminate; therefore, the IEAP actuators reveal their unique capability especially at the lower end of the size scale. IEAP micro-actuators as small as under 50 µm in length [41] and 6 µm in thickness [42] have been fabricated. The conventional, electromagnetic induction-based actuators become increasingly difficult to fabricate in sub-centimeter size scale. Instead, the IEAP actuators can be prepared in small size scale, possibly using existing printing technologies. 
Simple control over bipolar actuation by only controlling the electric potential or current applied between the electrodes, large displacement amplitudes in the cantilevered mode, low elastic modulus, metal-free construction, and, most importantly, drastically lower working voltages compared to the piezoelectric or dielectric elastomer actuators, have motivated an extensive development of the IEAP actuators.
[bookmark: _Ref380080508][bookmark: _Toc396045829]IEAP as a motion sensor
It is known that many types of energy conversion devices work in either direction. For example, a piezoelectric pressure sensor that generates voltage in response to a mechanical input can be operated as well as an actuator by applying voltage from an external power source. There exists also a counter-effect in the IEAP actuators – electric potential difference, or electric current, can be formed between its electrodes as a result of mechanical stimulusi. 
The shape of an IEAP in a cantilever configuration changes when electric charge is injected to it from an external power source, and the same IEAP generates electric charge, when the cantilever is bent with an external force. Mechanoelectrical transduction has been previously comprehensively studied in case ofon the IEAPs with inert metal electrodes (i.e. IPMCs) [43]. Mechanoelectrical transduction of the IEAPs with carbonaceous electrodes has previously attracted only occasional interest. A variety of proposed IEAP motion sensor configurations, as well as the status of the research on motion-sensing parameters of different types of IEAPs, is covered in the next sections.
a. Motion sensor configurations
The IEAP motion sensors often share construction and optimization principles with the IEAP actuators. In a number of possible applications for the IEAPs, both actuation and sensing property is required. It can be advantageous, if the same IEAP laminate is operable, either intermittently or simultaneously, as an actuator or a motion sensor, as currently required. From the perspective of manufacturing of the IEAP-based devices, it is definitely more convenient to fabricate the actuators and sensors in a single process. It has been demonstrated on different types of IEAPs that an IEAP, optimized for actuation, also functions well as a motion sensor [44,45].
An actuator that can sense mechanical perturbations during actuation via the same wires the actuator is driven through, without any additional sensors, has been demonstrated on the IEAPs driven by Faradaic reactions [46]. Self-sensing of the IEAPs with non-Faradaic, carbon-based electrodes is possible by measuring the impedance of the individual electrodes [47]. Another approach is patterning of the electrodes of an IEAP laminate into separate parts that are responsible either for actuation or for sensing [45,48]. However, the most common and potentially the most practical configuration for an IEAP as a motion sensor involves measurement of voltage or electric current between the IEAP electrodes. 
b. [bookmark: _Ref385845718]IPMCs as motion sensors
Mechanoelectrical transduction of the IPMCs was conceived almost simultaneously with its actuation property [49]. However, the actual mechanism governing the sensing phenomenon of the IPMCs is still under debate [50,51]. Consequently, as its working mechanism is not fully understood, optimization of the IPMC motion sensors is currently done by trial-and-error. 
The major competing fundamental explanations for the charge-generation phenomenon are as follows. (a) The pressure-driven flow of diluent in the ionic polymer membrane because of mechanical bending creates an effective dipole in the pressure gradient direction due to orientation of the cations and anions in the ionic polymer clusters [52]. (b) The pressure difference, exerted by mechanical bending, causes a flow of solvent together with the mobile cations, therefore creating a net charge imbalance [53]. (c) More recently, it has been suggested that the electric double-layer at the electrode-electrolyte boundary is disrupted by a flow of electrolyte and solvent, giving a rise to the streaming potential [50,51,54]. 
Two of the abovementioned theories – (a) and (b) – explain the charge-generation phenomenon with the specific morphology and ionic structure of the ionic polymer membrane, while the role of the electrodes is of secondary matter. These theories apply on an ionic system, where one ionic species (SO3- anions in the case of Nafion as the ionic polymer membrane) is fixed to the polymeric backbone and the counter-ion (Li+, Na+, etc.) associates to the fixed ionic groups. The explanation (c) underlines the importance of the electrode material and predicts a stronger sensorial response from a laminate with higher specific surface area electrodes.
The charge-generation phenomenon is well characterized for the IPMCs with a single mobile ionic group. Simultaneously, ILs have been used as an alternative solvent and electrolyte for the IPMC sensors and actuators [55], while the use of IL is primarily motivated by its stable in-air operation capability. In the case of an ionic polymer membrane that is swollen in an IL, both cations and anions are the mobile ionic species. Mechanoelectrical transduction of the IPMCs with IL electrolyte has been investigated with the purpose of verification of the streaming potential hypothesis [51,56]. 
It has been underlined that somethe types of IEAPs are capable of sensing also deformations other than bending, such as shear or compression [50,56]. Streaming potential or current, emerging in the electrodes, has been proposed as one of the underlying physical mechanisms for sensorial response in a wide range of configurations. However, tThe mechanism for the sensorial response is currently still under debate.. HHowever, it can be concluded that the choice of the most appropriate electrode material, and as well as the choice of the membrane material, have both significantare of equal importance. 
c. Conducting polymer-based IEAPs as motion sensors
In addition to the inert noble metal electrodes, (such as platinum), also faradaic Faradaic conductive polymer [44,57-61] and (likewise Faradaic) ruthenium dioxide [51,56] electrodes have been suggested forused in the construction of motion sensors. The earlier understanding of the generation formation of  sensorial current was narrowing of the band gap of the conducting polymer due to stretching of the polymer backbone, in turn changing the density of states, and inducing redox current [57]. A more recent interpretation for the formation of the sensor signal involvesis deformation-induced ion flux – exerted mechanical strain induces a flux of mobile ions and causes a shift in the balance of ions between the polymer phase and the electrolyte [44]. Additionally, the change in the value of equivalent capacitance between the conductive polymer and electrolyte phase may also contribute to the sensor signal [61].
d. [bookmark: _Ref378761262]Carbonaceous IEAPs as motion sensors
The sensorial response of the IEAPs with carbonaceous electrodes has previously been reported only in few papers. Baughman et al. predicted in 1999, without experimental verification at that time, mechanoelectrical effect in an IEAP with carbon nanotube electrodes [29]. Kamamichi et al. have fabricated carbon nanotube-based IEAPs, which yield ‘up to 0.1 mV’ sensor voltage in response to motion, by printing the electrode material on a cast PVdF‑IL membrane [62]. Ghamsari et al. [63] have also mentioned, without experimental investigation, sensorial property of the IEAPs with bucky-gel electrodes. Otsuki et al. have constructed a bending speed-independent deformation sensor based on a non-specified solid polymer membrane and non-specified carbon electrodes, yielding output voltages of up to 350 mV [64]. Per contra, Akle et al. stated in 2012 that the IEAPs with high-surface-area (such as activated carbon- or carbon nanotube-based) electrodes ‘do not operate properly as sensors’ due to predicable complications in the signal-conditioning circuitry [56]. Otsuki et al. have constructed a bending speed-independent deformation sensor based on a non-specified solid polymer membrane and non-specified carbon electrodes, yielding output voltages of up to 350 mV [64]. 
Carbon-based ionic sensors have also been constructed in other forms than laminates. Mirfakhrai, Baughman, et al. have used carbon nanotube yarns for measurement of tensile stresses [65]. However, this sensor works by measuring electric current between a biased yarn and a reference electrode. The sensorial effect is explained by an increase in the surface area of the yarns due to tensile force. Formally, this kind of sensor does not belong to the class of IEAPs, also because no polymer is involved in its construction, but its supercapacitor-like structure suggests a similarity to the IEAPs in its working principle.
[bookmark: _Toc380081075][bookmark: _Ref380081259][bookmark: _Ref380081460][bookmark: _Toc396045830]IEAP for sensing stimuli other than mechanical
There are only few attempts found in the literature on using the IEAP technology for measuring stimuli other than mechanical. In 2012, Bakhoum et al. proposed a miniature supercapacitor for measuring humidity level inside electronic component packages, or inside composite materials. The supercapacitor, constructed from activated carbon electrodes and having potassium hydroxide electrolyte, was claimed to have the highest sensitivity with respect to its size among all known types of moisture sensors [66]. However, the proposed humidity-sensing mechanism proposed by Bakhoum et al. does not incorporate any generation of electric charge.
[bookmark: _Ref380081301][bookmark: _Toc396045831]IEAP as an energy harvester
IEAPs isare  characterized as a mechanoelectrical sensors in Section 1.2.3. As an IEAP is a passive type of sensor, i.e., it senses motion by formation of electric current, it is obvious that it could, in principle, be also used as an energy harvester unit to convert mechanical energy into electrical. From the viewpoint of IEAP composition, there is no fundamental difference between the sensors and the energy harvesters, as both devices are generally optimized for the largest mechanoelectrical effect.
From the class of IEAPss, energy-harvesting capability from mechanical vibrations has been most widely explored in the case of IPMCs. An IPMC is applicable as a mechanoelectrical energy harvester in the frequency range of <50 Hz, has an efficiency of less than 2%, and generates instantaneous power of up to 45 µW cm-3 [67]. The IPMCs with water as a solvent are especially advantageous in underwater energy harvesting; that is, harvesting electric energy from water flow or vibrations [68-70]. This is due to the intrinsic water-compatibility of the IPMCs. Although the IL-based IEAPs (or IPMCs) are operable in air [71], in-air energy harvesting using these IEAPss has attracted incomparably lower level of interest. This can be due to the availability of more efficient alternative mechanoelectrical energy-harvesting materials – for example, polymer piezoelectrics yield is generally due to roughly two times higher energy conversion efficiency of polymer piezoelectrics, compared to the IPMCs [67]. For example, a solution for harvesting wind energy by fluttering motion of leaf-shaped cantilevers has been realized using polymer piezoelectrics [72]. 
[bookmark: _Ref380081675][bookmark: _Toc396045832]Humidity-sensitivity of the IEAP
A number of potential applications for the IEAPs, irrespective of the particular function of the an IEAPs in a device, require the ability for operation at a wide range of relative humidity (RH) levels. Ambient humidity is an important parameter that determines the performance of the IPMC actuators in air [73]. This is also expected, as its working mechanism is based on electro-osmosis of the water-solvated ions. The iIn-air use of the IPMC motion sensors has been demonstrated; however, the sensing signal is severely dependent on the their hydration level [74]. 
Space, which is one of the promising fields of use for the IEAPs [75], is an exceptional environment due to its inconsiderable ambient humidity content. The IEAPss with IL as an electrolyte have a stable performance even in high vacuum [76]; therefore, the IEAP actuators, but presumably also IEAPs as motion sensors, are compatible to the space environment. On the contrary, a number of other potential fields of application for the IEAP actuators, such as compliant gripping and haptic feedback devices, presume reliable operation at the full range of RH levels. To date, the IEAPs as energy-storage elements are often characterized in an inert gas atmosphere, e.g. in a glovebox, which excludes any effect from the ambient humidity, but makes it difficult to predict the behavior of the IEAPs in real-world applications. Encapsulation is one of the frequently proposed solutions to overcome the possible problems arising from the humidity-sensitivity, although, it encapsulation does not offer provide long-term protection for the IEAPss undergoing high levels of strain [77,78]. 
In the existing papers, the IEAP actuators and sensors are, as a rule, characterized in ambient air and at constant temperature, but the RH level is often not even specified. The knowledge on the behavior of the IL-based electrochemical systems, working in air at the full range of RH, is of crucial importance, irrespective of their field of application – actuation, sensing, energy storage, or energy harvesting. The effect of ambient humidity on the performance of the IEAP actuators or sensors with IL as the electrolyte is seldom discussed, as ILs is are considered being fully stable in ambient conditions. However, in a real electrochemical device working in air, IL cannot be considered as a solvent-free electrolyte. Recently, the investigation of  physicochemical properties of the water-IL mixtures has attracted an extensive interest [79-82], primarily from the viewpoint of using the ILs as non-volatile solvents in chemical synthesis or in purification technologies. A change in the RH level also causes a drift in the electromechanical parameters of the IEAP actuators and sensors., whichThis, in turn, gives rise toraises the need for considering the RH level as an important input parameter for actuator control algorithms and as a correction parameter for sensors. Consequently, the characterization and modelling of the effect of RH level on the properties of the IEAPs is justified. 

[bookmark: _Toc396045833]From sensors to energy harvesters
Vibration, humidity, and pressure, which are common by-products of anthropogenic activity (such as thermal power stations or motor traffic) and accompany with various natural phenomena, offer virtually unlimited source for harvestable energy. The energy harvested from the surrounding environment is considered as green and renewable. Today, many of these ambient power sources are often not widely utilized, due to the lack of efficient energy-harvesting materials. Due to the high cost of the energy-harvesting materials and due to their comparably low power density, the energy harvested from the ambient environment is currently not considered as a potential replacement for nuclear or thermal energy. However, the energy harvesters in micro-scale are of particular interest for portable devices.
[bookmark: _Toc396045834]Energy harvesting in micro-scale
Energy harvesting in micro-scale (power consumption below one milliwatt per device) offers increasing interest especially due to the following issues:
1. It is expected that trillions of wireless sensor network (WSN) nodes with computational and memory capability are to be deployed in the environment around us and on our bodies in next five years’ time [83]. Although the energy consumption per one device is small, the large number of devices leads to a significant total power consumption. Luckily, the state-of-the-art electronic components have become more energy-efficient. Microprocessors with a power consumption of only 7 µW MHz-1 have been developed for use in WSN nodes [84]. A large number of WSN nodes operate in a low-duty duty-cycle regimemode, which decreases the total power consumption even further [85]; therefore, even low-grade sources, previously considered as unprofitable or unavailable, can be used to harvest energy. The low power-consumption level of the WSN nodes suggests that the amount of energy required to power the WSN nodes could be drawn directly from the ambient environment [85].
2. There are a large number of different sources of energy in the environment; most of them are irregular in time. A more reliable and efficient energy harvesting can be achieved by collecting energy from all available sources, therefore increasing the total amount of harvested power and minimizing the time with no harvestable energy available.
3. Implantable (or wearable) medical electronic devices, which are oftencan be combined with lab-on-chip technology, are expected to be capable of autonomous operation during several years. The ability of harvesting energy in vivo is a considerable improvement in the field of medical electronics. Previously, Li et al. have demonstrated energy harvesting from the energy of a heartbeat using ZnO thin films [86].
4. In terms of cost per unit of power, the energy-harvesting units are today, as a rule, not comparable to the conventional (thermal) power stations. Instead, the advantages of the energy harvesters emerge in the small-scale power-generation units. For example, despite the the thermoelectric energy harvesting units have intrinsically low efficiency (<10 %), they retain this level of efficiency even down at the microwatt-level, where the conventional generators are already impractical [87].
[bookmark: _Toc396045835]The current role of supercapacitors in energy-harvesting
In the state-of-the-art device set-ups that incorporate supercapacitors or IEAP actuators, it is prevalent that they are either actuated or charged using electric power, supplied from some external source. An IEAP actuator can be brought towards its initial position by consuming the stored charge by short-circuiting the electrodes, or by changing the polarity of the charging current. A supercapacitor is discharged in a similar fashion, yet the stored electric charge is consumed by some electronic device to perform useful work. Despite a large amount of electric energy stored in an IEAP actuator, this energy is, in the device prototypes constructed to date, not recycled and therefore wasted after every actuation cycle. This is partially due to the lack of appropriate electronics available for recycling of the energy. However, the capacitive actuator technology holds an essential advantage in front of, for example, actuators based on Joule heating – a large amount of the applied electric charge can, in principle, be recycled.
Previously, The supercapacitors have beenare considered for use in energy harvesting applications essentially as the intermediary or, less often, even as the main energy storage units [88]. The transient electric energy output of the energy-harvesting materials, especially in the case of piezoelectric materials, is of irregular nature. The high-voltage output spikes from a piezoelectric material are first rectified using semiconductor-based electronics, and the energy is consequently stored in a supercapacitor. After the terminal voltage of the supercapacitor has exceeded a threshold value, the harvested energy is available for consuming. The recent work by Sun et al. [89] is a representative example of the role of a supercapacitors in a piezoelectric energy harvesting systems. 
The transient output of the thermoelectric generators is changing slowly in time, compared to the irregular transient signal of the piezoelectrics, but their output voltage level is extremely low (in tens to hundreds of mV) and their internal resistance is in orders of magnitudes lower than that of piezoelectric crystals. In such case, an external charge-pumping unit is used to boost the voltage to a suitable level for charging a supercapacitor, which acts as an intermediary storage unit. The state-of-the-art, commercially available step-up converters, such as LTC3108 by Linear Technology, can boost voltages up from levels as low as 20 mV and therefore allow harvesting energy from thermal gradients as low as 1ºC [90]; however, at a comparably low (<50%) efficiency. 
[bookmark: _Toc380081082][bookmark: _Toc396045836]Ambient humidity as an energy source
Water holds a significant amount of energetic potential, in addition to its employment in conventional hydroelectric generators. Salinity gradient between brine and fresh water has been considered as a power source already in 1979 [91]. More recently, supercapacitor-like structures with nanoporous carbon electrodes and ion-selective membranes have been employed for the same purpose [92]. Yet, this system requires full immersion in the liquids and pumping of water with different salinities consumes considerable amounts of energy as well. The maximum extractable energy by this method is, however, only moderate – up to 192 Wh per cubic meter of mixed solution, even without taking into account the loss of energy in pumping into account [93]. Thus, operation in gas atmospheres would be much more desirable.
Ambient humidity is rarely considered as a source of electric energy in the engineering solutions. On the contrary, reversible sorption of ambient water by a non-homogeneous material is a common actuation mechanism in the Naturenature. For example, a pinecone opens because of dehydration of a layered structure (a cone scale) with a non-homogeneous fiber orientation in different layers [94]. Therefore, ambient humidity holds a significant energetic potential. 
It is well known that asymmetric and reversible absorption of water by hygroscopic materials can be used for producing mechanical work. In its simplest expression, this effect can be observed as curling of a sheet of paper due to moistening of one of its sides [95]. Recently, the research on soft biomimetic artificial structures using sorption of water for actuation has gained a rising interest, with a perspective of developing shape-morphing structures for soft robotics applications [96-98]. A straightforward solution for turning sorption effects in a hygroscopic PEDOT:PSS film into mechanical rotary or linear motion has been proposed by Okuzaki et al. [99,100].
The conversion of ambient humidity absorption energy into electric energy is a very novel approach – it was first demonstrated in the scientific literature in 2013, but it has already attracted a significant interest in the engineering community. Inspired by the natural phenomena, water vapor has been successfully employed in energy harvesting by Ma et al. in 2013 [101]. However, in the work by Ma et al., humidity gradient was not converted directly into electric energy, but a fast and reversible, hydrolysis- and hydrogen-bonding-based actuation of a polypyrrole–polyol-borate polymer composite was converted to electric energy through incorporation of a layer of piezoelectric PVdF polymer [101]. Biological materials have also attracted attention as hygroelectrical energy harvesters. In 2014, Chen et al. have demonstrated a fast and reversible mechanical response of Bacillus spores to water gradients [102]. The cortex region of the bacillus spores undergoes strain as much as up to 50% as a result of hydration. The density of mechanical energy generated in the hydration process is extremely high – up to 60 MJ m−3. In the hygrovoltaic cell constructed by Chen et al., the water sorption energy is first converted into mechanical motion and subsequently transformed into electrical energy via an electromagnetic generator.
Electrokinetic energy harvesters, which use streaming current as a power source, are perspective for small-scale energy harvesting [103], because, in their simple implementation, they do not require any special engineered materials. A working electrokinetic device can be fabricated straightforwardly as an integral part of microfluidic devices. The efficiency of a streaming current-based energy harvesting system is significantly increased (up to 3% have been measured) in the case when the electric double-layers on the opposite walls of a microfluidic channel overlap, which can be achieved at channel heights below 75 nm [104]. However, fabrication of the microchannels with nanoscale dimensions by lithographic methods is complicated. For that reason, the use of microporous materials, such as materials having ion-selective, 50-nm nanopores, has been suggested [105]. All electrokinetic energy harvesters presume a pressure-driven water flow for operation. To date, only a very few solutions, which use sorption or diffusion effects for flow generation, have been presented. Borno et al. have investigated water evaporation-driven energy harvester, inspired by the water transport in trees [106].

[bookmark: _Toc396045837]Research motivation
As similar IEAP laminates are used for different applications, could an IEAP also be turned into a multifunctional device? In the emerging field of soft robotics, a perspective field of application for the IEAPs, multifunctional qualities are often required from its components. The fundamentally distinctive approach in soft robotics is the use of morphological computation – a soft robot is not composed of a large number of individual actuators and sensors. Instead, Tthe whole robot’s body is morphed, and the robot must be conscious of its current shape at all times [107]. The design principles employed in soft robotics are derived directly from the Naturenature. The reliable gripping and grip releasing mechanism of the caterpillar legs, regardless of the shape and texture of the substrate the caterpillar is crawling on, is a perfect example of morphological computation in the Nature nature [1]. From the perspective of developing new materials for soft robotics, the materials having concurrently the qualities of an actuator and sensor are sought. Today, the multifunctional properties of the IEAPs are currently only scarcely recognized [45,46,108]. This work focuses on the investigation of sensorial properties of the IEAP laminates that are concurrently operable as well as actuators and even energy-storage units.
It is known from the prior art that the conjugated polymer laminates undergoing Faradaic reactions [46] and the ionic polymer-based laminates with fractal-grown metal electrodes (i.e. IPMC) [43,67] respond to external mechanical stimuli by formation or variation of voltage and current between their electrodes. However, the working principle of the IPMC motion sensors is to date explained by more than one competing theory, as it is explained in Section 1.2.3. The previous research has been focused on modelling of the motion of ions and solvent in the ionic polymer cluster network. On the contrary, the significance of the surface area, porosity, and porosity distribution of the electrode material on the sensorial response has not been thoroughly investigated before. The aim of this thesis is to fill this gap.
This research is focused on the investigation of charge-generation properties of the IEAP laminates with non-Faradaic, high-surface-area activated carbon electrodes. In particular, the IEAP laminatess with carbons derived from metal carbides – that is, CDCs – as the active electrode materials are investigated. This is due to the high specific surface area and thea tailored porosity distribution of the CDCs. 
Sensorial response is investigated on the IEAP laminates with and without ionic polymer as the membrane and polymeric binder. Hydrophilic IL is selected as an electrolyte for all of the investigated IEAP laminates. 
At first, the CDCactivated carbon-based IEAP laminatess areare considered as motion sensorss, capable of determining the magnitude of an externally imposed curvature change. The mechanoelectrical measurements involve characterization of the IEAP’s response to different curvature change magnitudes, and characterization of the frequency-response of the IEAP motion sensors. 
IEAP technology has, to date, only occasionally used to sense stimuli other than mechanical, as it is underlined in Sections 1.2.4 and 1.2.5. The high hygroscopicity of the IEAPs, covered in Section 1.3, suggests that the IEAP laminates could have an electrically measurable response also in response to the level of ambient humidity. Therefore, a hypothesis is proposed that the sorption of ambient water vapor by an IEAP laminate can result in generation of a macroscopic electric charge. The humidity-sensitivity of the IEAPs would considerably broaden their its field of application towards new types of differential sensors. In addition, the knowledge on the humidity-sensitivity of the IEAPs also gives valuable information on the behavior of the IEAPs as an actuators and as an in-air-operable flexible supercapacitors. The charge-generation mechanism is expected to be similar in either case – mechanoelectrical or hygroelectrical transduction.
An IEAP laminate is a passive sensor that produces electric current and voltage in response to external stimuli. This suggests its outlook also as an energy harvester. The A humidity-responsive IEAPs would find use in humidity sensing and even micro-scale energy harvesting. In this work, for the first time, ambient humidity gradient is converted directly, without intermediary conversion into mechanical energy, into electric energy. Additionally, for the first time, storage of harvested electric energy into the same energy-harvesting material is demonstrated.

This work is organized as follows. Section 4 generalizes the IEAP’s charge-generation property from various external stimuli: in addition to mechanical stress, also ambient humidity is considered as an input stimulus. The design considerations for the IEAP sensors are discussed in Section 4.2 and the choice of materials for the IEAP construction is discussed in Section 4.3. 
Manufacturing of the IEAPs is not in the scope of this work; two different existing types of IEAP laminates were selected for the investigation of sensorial properties. Section 4.4 gives the main characteristics for the chosen particular IEAP laminates. 
The motion-sensing properties of the investigated IEAP laminates with carbide-derived carbon electrodes are covered in Section 5. The mechanoelectrical properties of carbonaceous IEAPs with carbide-derived carbon electrodes with tailored porosity distribution are investigated experimentally in Sections 5.1- 5.3. The results are given in Sections 5.4-5.5. 
Before the investigation of the humidity-induced charge-generation properties, it is necessary to characterize the changes in the electrical properties of the IEAPs under different RH levels. This is done in Section 6. Humidity-sensitivity of  the used IEAP is investigated experimentally in Sections 6.2-6.3. An equivalent circuit for the IEAP is proposed in Section 6.4 and the changes in the equivalent circuit parameters, as a result of humidity absorption, are analyzed by impedance spectroscopy in Section 6.5. 
[bookmark: _Ref378761144][bookmark: _Ref373842376]The IEAP’s response to a humidity gradient is investigated experimentally in Section 7. The revealed extensive response of thean IEAP to ambient humidity gradient suggested that the IEAP could be employed even in energy harvesting. Section 8 characterizes the IEAP as a hygroelectrical energy harvester. 

[bookmark: _Ref385844530][bookmark: _Toc396045838]Sensorial properties of the IEAP
[bookmark: _Toc396045839]Working principle
This work investigates the IEAP laminates as a sensors for detecting either motion or ambient humidity. As explained in Sections 1.2.3 and 1.3, an IEAP can be used in a variety of configurations to sense motion or humidity. This work explores the IEAP sensors in one specific configuration – a transducer converting bending motion (Section 5) or humidity absorption (Section 7) directly into electric current and voltage. Conversion of both stimuli into an electrical signal is explained, in this thesis, by a similar underlying physical process; therefore, the underlying mechanism for sensing both stimuli is provided jointly in this section. 
Voltage or electric current could not be registered between the IEAP electrodes if completely symmetrical physical processes take place in both of the opposing electrodes. Nevertheless, charge-generation by applying equal mechanical strain on both electrodes of an apparently symmetrical IEAP has been reported in the literature [50,56]. For generation of electric current and voltage as a response to various stimuli, IEAPs could be engaged in at least two configurations – (a) an asymmetric IEAP laminate being exposed to homogeneous stimuli, or (b) a symmetrical IEAP laminate being exposed to non-homogeneous stimuli. The current work is concerned on the latter approach: electric charge is generated because ofas a result of mechanical strain or humidity gradient, applied across a virtually symmetrical IEAP laminate. 
The carbonaceous electrodes of the IEAPs used in this work are assumed to be ideally polarizable, i.e. there is no charge transfer across the electrode-electrolyte interface. Whenever an electrode is brought into contact with an electrolyte, two accompanying phenomena occur: (a) reorientation of electrolyte ions, which can also cause reorientation of solvent molecules; and (b) redistribution of electrons in the electrode surface for balancing of the total charge [109]. As a result, the charges accumulate on the boundary, forming a so-called electrical double-layer. 
It is important to identify the difference between charging of an IEAP externally, using an external power source, and internally, which occurs in the case of an IEAP employed as a sensor. In caseWhen an IEAP is used as a supercapacitor or an actuator, electrons are injected to or drawn away from its electrodes. The charge is balanced in the electric double-layer region by reorientation and dislocation of the electrolyte ions, as illustrated in Figure 1A – the electrode that has negative electric potential attracts cations. An IEAP, operating as a sensor, is illustrated in Figure 1B. If an IEAP is used as a sensor, the electrolyte ions are dislocated and reoriented due to some adventitious phenomena. The originally symmetrical electric double-layers at the opposite electrodes undergo unsymmetrical processes, and they are rearranged in an unequal fashion. Therefore, the difference in the charge distribution is also induced in the electrodes. 
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[bookmark: _Ref386370350]Figure 1. Motion of the electrolyte ions in the electrolyte, redistribution of electric charge in the electrodes, and the corresponding polarity of electric potential between the electrodes when an IEAP is charged (A) using an external current source in the case of supercapacitors and actuators; or (B) by directional motion of the electrolyte ions in the case of motion or humidity sensor.
A shift in the charge distribution in at least one electrode can be registered asinduces  electric current across an external electric circuit that is connected between the electrodes (Figure 1B). An external workload and a current-measurement resistor are examples of external electric circuits. If the generated electric charge is not consumed by an external circuit, the total number of electrons in either electrode is not changed, and. T the charge balance is achieved by shifting the electron density within a single electrode (Figure 1B). The electrode with an excess of cations in its electric double layer region balances the total charge by involving more electrons; a measurement circuitry connected between the opposite electrodes indicates this electrode as having positive potential (Figure 1B). 
[bookmark: _Toc396045840]Mechanoelectrical transduction
Externally induced bending of an IEAP laminate causes compressive stress in the electrode at the concave side and tensile stress in the electrode at the convex side of the IEAP laminate. Consequently, dissimilar conditions for the opposite electrodes are straightforwardly achieved. The bending motion induces an unidirectional pressure-driven flux of electrolyte within the microporous electrode and within the polymer matrix, swollen by the electrolyte. Formation of electric current or potential between the electrodes can be achieved, when the mobilities of the differently charged ions in the given porous structure are not equaldissimilar. Different cation and anion mobilities can be induced by (a) appropriately matching the porosity distribution of the electrode material with the sizes of the ions of the particular electrolyte; or (b) by tailoring the interaction between the electrolyte ions and the polymer matrix. In this work, the mechanoelectrical effect was enhanced by the use of the carbonaceous electrode materials with appropriately chosen specific porosity distribution. This, in turn, results in unequal mobilities of the electrolyte ions that have different lateral dimensions. 
[bookmark: _Toc396045841]Hygroelectrical transduction 
As a hypothesis, reorientation and/or dislocation of the mobile ions could also be achieved merely by hydration of the hygroscopic constituents of the laminate. The Hhygroscopic ions can collect water molecules into their solvation shell; therefore, their effective volume increases. The change in the effective volume of ions can alter the structure of electric double-layer at the electrode-electrolyte interface. Therefore, the high hygroscopicity of the constituents of the IEAPs is the primary concern in their its employment as a hygroelectrical transducers. 
A hygroelectrical transducer requires a particular match between the porosity distribution of the electrode material and the electrolyte. Therefore, the optimization criteria for the design of hygroelectrical transducers are in a good agreement with the criteria for the design of mechanoelectrical transducers. Consequently, it is expected that an IEAP, that has strong mechanoelectrical response and consists of hygroscopic materials, also performs well as a hygroelectrical transducer.
An important qualitative difference between the hygroelectrical and mechanoelectrical transduction and mechanical bending is the possibility for long-term conservation of perturbations in the double-layer in the case of hygroelectrical transducers. It is obvious that an IEAP laminate can be bent only up to its finite maximum curvature (numerically equal to the reciprocal of the laminate’s thickness); therefore, the maximum amount of generated charge in one bending cycle is strictly limited. After a sufficient time of waiting, the perturbations in the double-layer are leveled off and the bent position then corresponds to a newly achieved stable state. In contrast, an uniformconstant humidity gradient can be maintained across an IEAP during a virtually unlimited time. Long-term conservation of a humidity gradient can give rise to continuous diffusion of water and water-solvated ions in the IEAP’s thickness direction. Consequently, a considerably higher amount of electric charge per one cycle can be generated by applying humidity gradient rather than strain gradient between the IEAP’s electrodes.
[bookmark: _Ref376955534][bookmark: _Toc396045842]Considerations for design ofthe IEAP sensor designs
In the selection of materials for the an IEAP, working solely as a supercapacitor, it is beyond doubt that the surface of the carbonaceous electrode material must be easily accessible for both anions and cations [40]. For the an IEAPs intended to be employed as an actuators, it is generally accepted that higher ionic conductivity of the electrolyte-containing polymeric membrane increases the actuator’s response speed, while the generated strain depends (a) on the interaction between the ionic moieties and (b) the specific surface area of the electrodes, which, in turn, determines the amount of transported charge [8,110-114]. The actuation property is related to the different sizes of the oppositely-charged ions [113].
As a hypothesis, the sensorial response of an IEAP can be enhanced by selecting such combination of IL and a porous matrix, where the mobilities of cations and anions are purposely dissimilar. Unequal mobilities can be achieved by (a) tailoring the relation between the porosity distribution of the microporous electrode and the sizes of the IL ions, (b) tailoring the interaction between the electrolyte ions and the ionic polymer membrane, and (c) by selective hydration of the hydrophilic ionic groups. These optimization criteria are expected to slow down the charge-transfer kinetics of an IEAP significantly, therefore making it less favorable to be used as an energy-storage unit. 
It is demonstrated in this thesis that the an IEAPs with eminent actuation capability operates equally well as a sensors. Therefore, the the investigation of the sensorial response of the IEAPs may lead to a conclusion that unequal mobilities of the electrolyte ions in the an IEAP can result in a higher strain-generation capability. As it is underlined in Sections 1.2.2 and 1.2.3b, the actuation and sensing mechanism can be easily explained in a system with anions permanently fixed to the ionic polymer backbone. In the IEAP laminates used in this work, both ionic and non-ionic polymers are used as a separator and binder. This enables to identify the role of the electrodes on the sensorial response of the carbonaceous IEAPs. It is expected that the porosity distribution of the activated carbon-based electrodes has a strong influence on the laminate’s sensorial properties. Therefore, special attention is paid on the choice of electrode material and the congruence between the electrode material and the electrolyte.
[bookmark: _Ref373842411][bookmark: _Toc396045843]The sSelection of materials
In this work, the IEAP laminates with activated carbon (in particular, CDC) electrodes, IL electrolyte, and different polymeric separators are considered. The selection of the particular materials for the IEAPs is explained as follows.
[bookmark: _Toc396045844]CDC as an electrode material
CDC is obtained by chlorination of metal carbide (SiC, TiC, B4C, Mo2C, VC, etc.) precursors at high temperature (400–1200ºC) in an oxygen-free atmosphere [7,115,116]. During the chlorination process, the metal atoms are selectively extracted from the crystalline precursors, preserving its the precursor’s original structure, shape and volume. The properties of the CDCs are highly dependent on the chlorination temperature and the choice of precursor, as the distribution of carbon atoms in the carbide precursor lattice is different. Furthermore, the CDC is subject to post-synthesis annealing, typically with H2 or NH3, which is necessary for the removal of chloride residues, but the surface area and structure of the CDC can also be affected during the annealing process [117]. The unique possibility of tuning the porosity in sub-angstrom accuracy in the nanometer-range, its high specific surface area (1000-2000 m2 g-1), and its chemical inertness make CDCs attractive for use as supercapacitor or lithium battery electrodes [118], in capacitive desalination [119], and even as gas storage medium [120]. CDC is formed on the surface of the precursors and it is therefore possible to control the thickness of the resulting CDC layer; however, structural variations can arise in its thickness direction [121]. In fact, the CDC can contain a variety of different carbon nanostructures from planar graphite to carbon nanotubes, onion-like structures, and nanodiamonds [122]. The particular composition of a particular CDC is dependent on its synthesis parameters. 
Bulk CDC is usually produced from carbides that are in the form of fine powders; therefore, the resulting CDC is also a fine-grained powder by its consistency. As a rule, the IEAP electrodes are fabricated from a CDC powder that has been fully chlorinated, i.e., it is supposed not to contain its precursors – metal carbides. It has been demonstrated that CDC, unlike the majority of activated carbons, is fabricable by lithographic methods [123,124]. This makes CDC distinctive in the field of high-surface area carbons, as it opens a possibility to produce electrochemical devices with CDC electrodes in micro- or nanoscale. 
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[bookmark: _Ref373928382]Figure 2. The porosity distributions of the CDCs used in this work. 
CDCs can be considered as hydrophilic materials. The CDC synthesis method produces a carbon material with a low amount of carboxyl, carbonyl, or hydroxyl functional groups [116]. However, upon the first exposure to air or in the process of post-activation, the dangling carbon bonds formed in the synthesis procedure are quickly functionalized [125]. This determines the hydrophilicity of CDC.
As also mentioned in section Section 1.2.3d, the motion-sensing properties of the IEAPs that havewith carbonaceous electrodes have not been comprehensively characterized previously. The advantages of CDC compared to other types of activated carbons, listed in the paragraph above, motivate the selection of CDC as an electrode material for the IEAP sensors. Two different CDCs, derived from boron carbide (with rhombohedral crystal structure) or titanium carbide (with cubic crystal structure), were considered in this work. The corresponding CDC is referred to as B4C-CDC or TiC-CDC, accordingly to the precursor for the CDC synthesis. This nomenclature has been suggested by Presser eat al. [7]. B4C-CDC is produced by Y-Carbon Inc. and TiC-CDC by Skeleton Technologies. The porosity distributions of the CDCs, given in Figure 2, were measured in the Institute of Chemistry, University of Tartu. Nitrogen adsorption method at the boiling temperature of nitrogen was used. The size distribution of pores below 2 nm is rather similar between B4C-CDC and TiC-CDC, with the exception of a more pronounced peak at 0.54 nm in the case of TiC-CDC. The peak located at 0.54-nm pore size is clearly distinguished in the case of both CDCs. The pore distribution of B4C-CDC is considerably wider – the amount of pores in the range of 2–8 nm is demonstrably higher than in the case of TiC-CDC. A wider porosity distribution can be advantageous, as it enables faster ion transport between the bulk electrolyte and the smaller range of micropores. It has been experimentally confirmed on ethyl-3-methylimidazolium bis-((trifluoromethyl)sulfonyl)imide (EMITFSI) IL that both anions and cations of the ethyl-3-methylimidazolium bis-((trifluoromethyl)sulfonyl)imide (EMITFSI) IL enter and exit the pores of TiC-CDC during charging and discharging [126].
[bookmark: _Ref387831465][bookmark: _Toc396045845]IL as an electrolyte
Negligible vapor pressure has attracted IL to be used as a favorable electrolyte for the electrochemical devices that are operated in air [127]. ILs are often classified as hydrophilic or hydrophobic [80]. In this work, the IEAPs containing two hydrophilic ILs – EMITFS and EMIBF4 – are considered.  
In the case of majority of the ILs currently available, the cations are larger than the anions. The ILs used in this study – EMIBF4 and EMITFS – also follow this trend. Both of the ILs have 1‑ethyl‑3‑methylimidazolium cations, which are slightly oblong-shaped with lateral Van der Waals dimensions between 0.53–0.95 nm, based on quantum chemical calculations. The Van der Waals dimensions of spherical tetrafluoroborate and almost spherical trifluoromethanesulfonate anions are 0.47 and 0.58 nm, respectively. Therefore, by comparing the effective sizes of the ions with the porosity distribution of the CDC in Figure 3, it can be expected that the mobility of cations and anions of these ILs is unequal in the CDC porous network.
Water sorption changes almost all physicochemical parameters of ILs. As a rule of thumb, water content increases its conductivity (up to a water content level of 3-10 moles of water per a mole of IL [128]) and decreases its viscosity [82,128-130]. The high affinity towards sorption of vapors and a low vapor pressure enables the use of ILs as active elements in amperometric [131] or quartz crystal microbalance-based [132] sensors.
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[bookmark: _Ref389811787]Figure 3. Comparison between the lateral sizes of the IL ions used in this work and the porosity distribution of the CDCs.
Although pure ILs consist entirely of ions, it is not correct to assume that all the ions contribute to its electric conductivity. For a reference, the effective ionic concentration of pure BMIBF4 and BMITFS ILs are only 0.64 and 0.57, respectively, of their respective molar concentrations [133]. Therefore, a pure IL could be considered as a system, where some of the IL ion pairs act merely as a solvent. What is more, in a real electrochemical system operating in air, the absorbed water acts as an additional solvent [128]. Increase in the molar fraction of water in the IL-water mixture increases its conductivity, in part due to increase in the effective ion concentration. Table 1 compares the conductivities of the ILs used in this work in their pure form and in mixture with water. It is seen that the IL:water molar concentration corresponding to the highest conductivity is below 0.2, and the conductivity of an IL:water mixture can be as much as 6 times higher than that of corresponding pure IL.
The hydrophilicity of ILs is determined, as a rule, by its anions, especially if the anions have a high charge-per-volume ratio [82]. The TFS- anion is highly hydrophilic due to its sulfonate group. The imidazolium-based cations are considered hydrophobic; thereby, the hydrophobicity increases with the length of its hydrocarbon chains. Therefore, the EMI+ cation is the least hydrophobic cation from the group of imidazolium-based cations [79]. In addition, the positive charge on the EMI+ cation is specifically located on the imidazolium ring, which makes the total charge distribution over the EMI+ cation anisotropic and causes its specific orientation on adsorption [137]. Therefore, it can be assumed that (a) also the EMI+ cations can also bind water molecules and (b) the equilibrium orientation of the EMI+ cations can be different at various sorption degrees. 
[bookmark: _Ref390520354]Table 1. Conductivities of IL-water mixtures
	
	EMIBF4
	EMITFS

	Conductivity in pure (water-free) form, S m-1 at 298 K 
	1.55 [134]
	0.98 [135]

	IL:water molar fraction corresponding to the highest conductivity
	0.12 [134]
	Below 0.2 [136], exact value is not found in the available literature 

	Highest conductivity in mixture with water, S m-1 at 298 K
	9.2 [134]
	3.93 (at IL:water molar fraction of 0.2) [136]



[bookmark: _Toc396045846]Polymeric separator and binder
The IL-incorporated polymeric membrane has a strong influence on the performance of the IEAPs, as the morphology and ionic moieties in the polymer determine its ion-transport characteristics [3,8,138].
Extensive swelling of ionic polymers in hydrophilic ILs [71] and the resulting higher ionic conductivity [139] has led to a wide use of the IL-integrated ionic polymer electrolytes as membranes in various electrochemical devices [6,140]. Nafion – a polymer with tetrafluoroethylene backbone with random inclusions of perfluorovinyl ether groups terminated with sulfonate groups – is widely employed as separator material for IEAP actuators and sensors. 
The anionic sulfonic acid groups are highly hydrophilic – Nafion can absorb as much as 22 wt% of water [141]. Each sulfonate group in Nafion can coordinate up to 23 water molecules [142]. The hydration of Nafion changes both its physical and electrical properties. The performance of the IPMC actuators in air is directly related to the water desorption kinetics [77] – dehydration of Nafion decreases the performance of IPMCs at low RH due to a decrease in the ionic mobility. In turn, an IPMC-like electrochemical system has been applied as a humidity sensor, where the ambient relative humidity value is extracted by measuring electrical impedance between the electrodes [143]. There exist also other approaches for applying Nafion for sensing humidity – e.g. measuring its weight change by the use of quartz crystal microbalance method [144].
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[bookmark: _Ref378675923]Figure 4. Cluster network in Nafion incorporated with IL (A) in dry and (B) in hydrated state. IL-incorporated PVdF-HFP polymer (C) in dry and (D) in hydrated state.
Nafion also swells extensively in hydrophilic ILs – it can absorb EMITFS IL as much as 60% of the dry weight of the membrane [145]. Incorporation of a large amount of water or hydrophilic IL creates a cluster channel network into Nafion, thus providing a path for the mobile ions to be dislocated. A Nafion network, highly swollen in an IL, contains and conducts both cations and anions [146]. As illustrated in Figure 4A, the cluster network in Nafion that is swollen only in an EMITFS IL consists of EMI+ cations that are bound with the sulfonic acid groups of Nafion, and free IL that is acting as a solvent. The aAddition of water (Figure 4B) causes hydration of strongly hydrophilic functional groups – the sulfonic acid groups in Nafion, and the TFS- anions. Consequently, the IL ions become more mobile in the cluster channels in Nafion. The diffusion coefficient for the cations and anions of an IL in a hydrated ionic polymer matrix is a complex topic – it has been demonstrated that the conductivity of cations is higher in low water content due to formation of triple-ion complexes with two anions and one cation. Instead, the mobility of cations is constrained by their interactions with the ionic moieties of ionic polymer at high water content [146].
The choice of polymers is not limited with ionic polymers – ILs have been successfully incorporated into non-ionic polymers such as PVdF-HFP (Figure 4C) [32,33,38]. The PVdF-HFP matrix is hydrophobic; therefore, the change in the RH level can influence the mobility of ions in the PVdF-HFP matrix only as a result of hydration of the ions themselves (Figure 4D).
A more recent approach in the development of polymer electrolytes for IEAPs is the synthesis of self-assembled, nanostructured, sulfonated block copolymers with well-connected ionic channels, which allow fast and organized motion of IL [8]. Another approach in obtaining solid (structural) electrolytes, suitable for the IEAPs, is the synthesis of polymerized ILs [147].
[bookmark: _Ref387842659][bookmark: _Toc396045847]The IEAP laminates investigated in this work
In this work, two different types of IEAPs with tailored properties were chosen for the investigation of mechanoelectrical and hygroelectrical properties. These IEAPs, referred to as Type I and Type II, differ from each other in the selection of materials and the manufacturing method.
IEAP Type I is prepared using direct assembly process. This process was first used to fabricate IEAPs by Akle et al. in 2007 [148] and it was further developed by Palmre et al. [149]. This type of laminate has a  good performance as an actuator -  it undergoes peak-to-peak strain of 2.3% at 2 V input signal, and a 8-mm-wide strip can exert 3.6 mN blocking force at a distance of 40 mm from its fixing point [149]. 
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[bookmark: _Ref390523389]Figure 5. (A) Flexibility of the IEAP laminate Type I. (B) Residual deformation of the IEAP after bending. (C) Optical micrograph of an IEAP Type I cut slantwise. (D) Scanning electron micrograph of the cross-section of the an IEAP Type I. (1: electrode; 2: membrane; 3: gold current collector.)
The finished laminate is highly flexible – it can be easily bent to radii below 3 mm without delamination, cracking of the electrodes, or discontinuation of the gold current collector, as shown in Figure 5A. The material is, however, slightly viscous – the neutral position shifts after bending it to high curvatures, as seen in Figure 5B. The cross-section of the prepared IEAP is shown using an optical microscope in Figure 5C and using a scanning electron microscope in Figure 5D.
IEAP Type II is prepared by Layer-by-layer casting. This method was developed for fabrication of ionic IEAPs by Fukushima et al. in 2005 [32] and it was further developed by Torop et al. [38,150].This type of IEAP functions as an actuator – an actuator, 7 mm in width, can exert 79 mN force at 2.8 V [150]. However, it’s time response is considerably slower than in the case of IEAP Type I.
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[bookmark: _Ref390524329]Figure 6. Photographs of an IEAP Type II in (A) straight and (b) bent state. Scanning electron micrographs of (C) the cross-section of the IEAP; (D) the electrode-membrane interface. C-D are adapted from [151].
The finished laminate is highly flexible, as shown in Figure 6A and B. Scanning electron micrograph given in Figure 6C shows that the finished laminate has 220-µm electrodes and a 30-µm membrane. Figure 6D gives a close-up to the electrode-membrane interface.
The main characteristics, relevant to this work, of IEAP types I and II are compared in Table 2. 
This work considers the IEAP’s response to motion and RH. Long-term use of EMIBF4 is not recommended, however, for applications that require operation in high-humidity conditions due to hydrolysis of BF4 ions [152]. Therefore, only the IEAP with EMITFS, one of the most hydrophilic ILs, as the electrolyte (that is, IEAP Type I) is selected for the investigation of the humidity-related effects in this work. 
Table 3 summarizes the use of different types of IEAPs in the experiments conducted in this work.

[bookmark: _Ref390523130]Table 2. The comparison between the laminates Type I and II.
	Characteristic
	IEAP Type I
	IEAP Type II

	Electrode material
	TiC-CDC
	B4C-CDC

	Separator and binder polymer
	Nafion
	PVdF-HFP

	Electrolyte
	EMITFS
	EMIBF4

	Manufacturing method
	Direct assembly process
	Layer-by-layer casting and hot-pressing

	Current collector
	130-nm Au
	-

	Electrode thickness (each)
	30 µm 
	220 µm 

	Separator layer thickness
	190 µm 
	30 µm 

	Relative thickness of the electrodes to the total thickness
	24%
	94%

	Carbon:polymer ratio in the electrodes, wt%
	41:59
	68:32

	Electrode resistance
	<1 Ω square-1 (with current collector)
	28 Ω square-1

	Cross-electrode impedance module at 1 Hz
	28 Ω cm2 (at 53% RH)
	66 Ω cm2



[bookmark: _Ref387832019]
Table 3. The use of different types of IEAPs in this work.
	Stimulus
	Sensorial properties
	Energy harvesting

	Motion
	IEAP Type I and II
	IEAP Type I and II

	Humidity
	IEAP Type I
	IEAP Type I




[bookmark: _Toc376969386][bookmark: _Toc376972895][bookmark: _Ref373152490][bookmark: _Ref374521217][bookmark: _Toc396045848]IEAP laminate as a motion sensor
[bookmark: _Ref373841899][bookmark: _Toc396045849]Characterization of the IEAP motion sensors by homogeneous bending 
The motion-sensing properties of the IEAPs are, by default, measured in a cantilever configuration, because it also corresponds to their usage and measurement configuration in actuation mode. In this way, a multifunctional device simultaneously having sensorial and actuation capability is achieved. 
An unloaded, cantilevered actuator can bend homogeneously, if it has inconsiderable voltage drop along its electrodes. The electronic conductivity of the electrodes can be enhanced by using current collectors on top of the electrodes. In this work, IEAP Type I, which has current collectors made of gold, stands out for its low surface resistance of <1  square-1. Therefore, the free part (the part which can freely bend without obstructions, i.e. it is not clamped between the electric terminals) of the IEAP actuator always has a homogeneous curvature. 
The cCharacterization of the sensorial properties of the IEAPs is more complicated, as it is difficult to bend the IEAP homogeneously and continuously in time. Homogeneous bending of an the IEAP motion sensor is advisable for two reasons:
1) When the an IEAP is bent homogeneously, the measured data represents essentially the material properties, not the peculiarities of a particular device configuration. The mechanoelectrical parameters measured by homogeneous bending can be afterwards used to predict the output of sensors in other, non-homogeneous bending configurations.
2) This configuration corresponds to a potentialthe use of IEAP motion sensors in potential real applications; e.g. by coupling the motion-sensing IEAP to an IEAP acting as an actuator. In this way, the IEAP operating as a sensor can give feedback corresponding to the actuation speed and magnitude to a controller that drives the IEAP operating as an actuator [153,154]. 
From a contrasting point of view, there are also a number of perspective biomimetic applications for the IEAP sensors in non-homogeneous bending configurations – e.g. hair flow sensors [155,156] or tactile sensors [154]. Airflow has also been previously used to induce actuation in characterization of IPMC sensors [157].
A large number of scientific papers describe measurement characterization of IEAP motion sensors by applying external force on the free end of the cantilevered actuator in a direction that is perpendicular to the initial (unbent) position of the IEAP [44,53,60,74,158-160]. In this way, the material under investigation can be bent in a virtually unlimited frequency range, but the maximum achievable bending deflection is limited. Biddiss et al. [161] have used a measurement configuration, where one end of the cantilever was fixed to a rotating platform. By doing so, the deflection amplitude is increased at the cost of decreased frequency range. In addition, the bending curvature is still nonhomogeneous at high bending angles. 
To date, several techniques have been developed for measurement of bending motion sensors at constant curvatures. The most straightforward solution is fitting thean IEAP sheet to the surfaces of cylindrical objects with different diameters [162,163], or sliding thean IEAP on the surface of a test block between sections with different curvatures [64]. However, continuous and smooth change in the curvature could not be achieved using these two methods.
[bookmark: _Toc396045850]Rigs for homogeneous bending of the IEAPs
To overcome the limitations imposed by the previously existing measurement methods, two custom-made, previously unexampled bending rigs were constructed in this work. They are referred to as Test rig A and Test rig B in this thesis. These bending rigs are characterized by the capability of bending the IEAP motion sensors to large curvatures at high speed, while maintaining homogeneous bending curvature of the sensors at all times. The main parameters of the bending rigs are compared in Table 4. The construction and working principles of the rigs A and B are given in detail in papers I and II, respectively.
The usable frequency range for some types of IEAP motion sensors can reach over 33 Hz [164], yet at very small deformations. In this work, the IEAP’s ability of measuring extremely high bending deflections (up to ±121 m-1) at moderate frequency range (up to 3 Hz) is investigated. Such conditions correspond to the IEAPss applied in haptic feedback systems or as feedback sensors for the same material acting as an actuator. Additionally, there exist a variety of other actuator and sensor technologies (e.g. piezoelectric actuators and sensors) for generation and measurement of small strains (<<1%) at high frequencies (>100 Hz), but the capability for achievement and measurement of very high deformations (>1%) is one of the distinctive characteristics of the IEAPs.
[bookmark: _Ref390596966]Table 4. Parameters for the bending rigs used to investigate motion-sensing properties of the IEAPs.
	
	Test rig A
	Test rig B

	Homogeneous bending profile
	Yes
	Yes

	Smooth change of curvature in time
	Yes
	Yes

	Sinusoidal transient curvature
	(not implemented)
	Yes

	Bending speed
	Full bending cycle in <5 s
	3 Hz

	Achievable curvatures
	20 - 60 m-1
	±121 m-1



[bookmark: _Ref391376211][bookmark: _Toc396045851]Transient response of the IEAP Type II
[bookmark: _Toc396045852]Experimental set-up
The transient response of the IEAP Type II motion sensor to steep bending was characterized using Test rig A, which allows achievement of bending curvatures in the range of 20–60 m-1.
The experiments were performed in the following order:
1. holding the laminate in still position at a curvature of 20 m-1 (radius r0 in Figure 7A) for at least 500 s for achievement of equilibrium conditions;
2. steep bending of the laminate to a different curvature (radii r1–r3 in Figure 7A);
3. holding the laminate at its newly-achieved curvature for 500 s;
4. returning the laminate steeply to its initial curvature;
5. holding the laminate in still position for another 500 s.
During the whole experiment, electric current or voltage was registered. Open-circuit voltage was measured by connecting the measurement terminals to a National Instruments’ PCI-6036E analog input data acquisition (DAQ) device with an SCC-AI06 analog input module. Electric current was measured as a voltage drop over a 5-Ω resistor connected between the measurement terminals. The same DAQ set-up was used for the measurement of open-circuit voltage and electric current. Separate experiment sets were conducted for measurement of voltage and electric current.
[bookmark: _Ref371504640][bookmark: _Toc396045853]Results
Transient course of open-circuit voltage, depicted in Figure 7F, and short-circuit current, depicted on Figure 7G, weare both characterized by formation of a sharp peak immediately after steep bending (the transient bending profile is given in Figure 7E) and by slow diminishing of the signal to zero in 100 s. The electrode that was stretched out during bending obtaineds positive potential with respect to the electrode that was compressed. After 100 s, the course of voltage with opposite polarity was registered. The sign of the potential, however, switcheds always at approximately 100 s after bending, independent of the bending amplitude. After approximately 500 s, the potential returneds virtually to its initial value. The laminate generateds open-circuit voltage with a peak value of 7.6 µV m1 (normalized to the change in curvature only, as the open-circuit voltage is expected not to dependdoes not depend on the laminate’s area) and electric current with a peak value of 0.60 µA m1 cm-2 (normalized to the change in curvature and the area of the free part of the laminate).
Electric charge generated during each bending cycle was obtained by integrating the generated current with respect to time, as depicted in Figure 7H. The laminate wasis able to generate 1.8 µC m1 cm-2 (normalized to the change in curvature and the area of the free part of the laminate) of electric charge.
The peak voltage and electric current wearre nearly proportional to the change in laminate’s curvature, as depicted in Figure 7B and Figure 7C. Peak current registered at 10 times slower bending speed yielded s 30% lower peak value, as depicted in Figure 7C. The electric charge generated in each bending cycle, depicted in Figure 7D, wais independent of bending speed.
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[bookmark: _Ref371433280]Figure 7. (A) Set-up of voltage and current measurements. (B) Peak voltage value versus final curvature. (C) Peak current value at two bending velocities. (D) Calculated charge values of previous. Transient signals: (E) applied curvatures; (F) corresponding open-circuit voltages; (G) course of short-circuit current; and (H) calculated charge of previous.
[bookmark: _Ref373854718][bookmark: _Toc396045854]Motion-sensing properties of the IEAP Type I
[bookmark: _Ref386529261][bookmark: _Toc396045855]Experiment set-up
Dynamic motion-sensing properties of the IEAP Type I were investigated using the Test rig B, as this rig provides sinusoidal bending profile in time and a frequency range wider than that of Test rig A. The IEAP was bent at the maximum possible bending amplitude – from -121 to 121 m-1.
The output of the laminate material under test is registered using the National Instruments’ PCI-6036E DAQ board. Burr-Brown INA116 instrumentation amplifier was used as preamplifier.
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[bookmark: _Ref386612123]Figure 8. Schematic of the experiment set-up.
Electric current was measured as a voltage drop over a shunt resistor Rc connected between the electrodes, as depicted in Figure 8. The value of the shunt resistor was chosen accordingly to the series resistance of the particular investigated piece of IEAP. If the value of the current-measurement resistor matches the series resistance of the current source (i.e. the IEAP), the energy dissipated on the current-measuring resistor is the highest, and the measurements are done at the highest level of accuracy. The actual value of the shunt resistor was 10 or 5 , depending on the particular sample. The same amplifier set-up functions as an ammeter or voltmeter, depending on the state of the switch S, connecting the shunt resistor.
The peak-to-peak values and phase shifts of voltage (Upp) and electric current (Ipp) are determined by fitting the measured signal with the sine parameters using a differential evolution algorithm, implemented in National Instruments’ LabView enviroment.
A typical set of transient signals measured at 0.2 Hz bending frequency is shown in Figure 9. The input curvature follows a sinusoidal course. The transient profiles of open-circuit voltage and electric current are also sinusoidal, but their phases lag curvature by 30º at this specific bending frequency. The amount of generated electric charge is determined by integrating the measured electric current with respect to time, as illustrated by the gray area in Figure 9.
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[bookmark: _Ref378159090]Figure 9. A typical course of transient voltage and electric current of IEAP Type I measured at 0.2 Hz bending frequency. Average generated charge and peak-to-peak values of voltage (Upp) and electric current (Ipp) are extracted from the signals.
The size-dependence of the IEAP motion sensor output was investigated by measuring the IEAPs of constant length (42 mm), but of different widths (3, 6, 9, and 12 mm). In order to ensure the homogeneity of the parameters of the different samples, the same piece of laminate was cut narrower. The free part of the laminate (the distance between the terminals) was 33 mm; therefore, 21% of the IEAP sheet was rigidly fixed and was not bent. The fixed part acted solely as a supercapacitor.
The experiments were performed at room temperature and at 30±5% RH.
[bookmark: _Toc396045856]Frequency-response of the IEAP Type I
The transient course of open-circuit voltage after steep bending of IEAP Type I wais, in similar to the IEAP type Type II, discussed in Section 5.2.2, characterized by formation of a sharp peak immediately after bending, as depicted in Figure 10A. The subsequent course of open-circuit voltage was notably different – the voltage decreased rapidly, but did not cross its initial (zero) value in the investigated time span.
The significant attenuation of the transient voltage wasis also expressed in the frequency-dependence of the peak-to-peak voltage value, as depicted in Figure 10B. One order-of-magnitude decrease in the bending frequency resulteds in a roughly 12% decrease in the peak-to-peak voltage. 
More importantly, the peak-to-peak voltage showeds a considerable and irregular dependence on the laminate surface area. This wais especially pronounced in the case of the narrowest (3 mm in width) measured sample. This dependence wais most likely caused by non-homogeneous surface conductivity due to random discontinuities in the gold current collector. Figure 10C illustrates that a twice-larger laminate sheet resulteds in by an approximately 6.0% higher peak-to-peak voltage.
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[bookmark: _Ref371506252]Figure 10. (A) Transient courses of voltage after a change of curvature from -121 to 121 m-1 in 0.5 and 5 s. (B) The frequency response of peak-to-peak voltage in the case of IEAPs of different widths. (C) The peak-to-peak voltages as a function of sensor area. (D) The phase shift of voltage.
The phase angle between curvature and open-circuit voltage didoes not have a pronounced dependence on the laminate area. Open-circuit voltage leadeds curvature change by approximately 25º at 1 mHz and it decreaseds towards zero with increased frequency, as illustrated in Figure 10D.
The generated electric currentwa is registered as a voltage drop over a 10- or 5- resistor; therefore, the measured current does not fully correspond to the ‘real’ short-circuit condition. However, the value of the resistance is in the same range with the internal resistance of the particular laminate.
Similarly to the materialIEAP Type II, the transient course of current in the case of the IEAP Type I wais characterized by a decay to zero, as depicted in Figure 11A. The gold current collector on the IEAP Type I reduceds the time needed to discharge the electric charge generated by bending by a factor of 10 – from 100 to 10 s.
Figure 11B demonstrates that the frequency response of peak-to-peak electric current is strongly dependent on frequency, as expected. Theoretically, all parts of the laminate undergoing homogeneous bending motion should give a proportional increase to the total current. Figure 11C confirms that the peak-to-peak current is proportional to the laminate area especially at lower frequencies. 
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[bookmark: _Ref371514055]Figure 11. (A) Transient courses of electric current after change of curvature from -121 to 121 m-1 in 0.5 and 5 s. (B) Frequency-response of peak-to-peak voltage. (C) Peak-to-peak voltages as a function of sensor area. (D) The phase shift of electric current.
At the frequency <10 mHz, the phase of electric current depicted in Figure 11D leadeds input curvature by nearly 90º, which corresponds to a capacitor-like behavior. The phase shift droppeds drastically at higher frequencies.
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[bookmark: _Ref371518240]Figure 12. (A) Generated charge per full bending cycle. (B) The generated time-averaged charge. (C) The values for charge at different frequencies as a function of the laminate area.
In the transient analysis provided in Section 5.2.2, it was confirmed that the electric charge generated in each bending cycle is independent of the bending speed. In the case of continuous cyclic bending, the electric charge generated in each cycle generally decreaseds with increased frequency, as illustrated in Figure 12A. Figure 12B proves that more intensive bending (bending at a higher curvature change rate) generateds more charge per time. At 3 Hz, the laminate can generate up to 12 µC s-1 cm-2, as demonstrated in Figure 12C.
[bookmark: _Ref376972705][bookmark: _Ref373841913][bookmark: _Toc396045857]Working principle of an IEAP motion sensor
Evolution of the measured open-circuit voltage (Figure 13A) is explained as follows. Initially (Figure 13B), the an IEAP is in equilibrium condition, i.e., the electric double-layers on the opposite electrodes are equally charged and the voltage between the electrodes is correspondingly equal to zero. After steep formations of strain difference between the electrodes also hydraulic pressure gradient is formed – the electrolyte is pushed from the compressed electrode towards the stretched-out electrode. In this process, the electrolyte ions in the double-layer are quickly reoriented (Figure 13C). As significant amounts of anions are fixed in the CDC pores, negative potential is formed on the compressed electrode. During reorientation and dislocation of the ions, the double-layer is charged. After diminishing of the hydraulic pressure gradient, the ions in the double-layer reorientate again towards minimum energy. The subsequent behavior of open-circuit voltage is considerably different in the case of the investigated IEAPs of Type I and of Type II. In the case of IEAP of Type II, the voltage diminished to zero after 100 s (Figure 13D). This point corresponds to the state where the double-layer is the most disturbed from its initial structure. Subsequently, the relaxation becomes the prevalent process and hence a course of voltage with opposite polarity is registered (Figure 13E). In the case of IEAP of Type I, the generated voltage decreased more slowly and did not cross the zero value. Finally (Figure 13F), the double-layers in the opposite electrodes have reached a new equilibrium state.
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[bookmark: _Ref376973059]Figure 13. (A) The course of open-circuit voltage and (B-F) the schematic explaination for the formation of the measured voltage.
[bookmark: _Ref376972707][bookmark: _Toc396045858]Characteristics of the carbon-based IEAP motion sensors
In this work, the IEAPs with activated carbon electrodes are found to operate successfully as motion sensors. Additionally, motion-sensing property has been demonstrated in Section 5.2 in the case of an IEAP with non-ionic polymer separator (that is, IEAP Type II). The sensorial properties of the IEAPs are compared in Table 5.
[bookmark: _Ref390599783]Table 5. Parameters for the bending rigs used to investigate motion-sensing properties of the IEAPs
	
	IEAP Type I
	IEAP Type II
	Otsuki et al. [64]

	Sensor output voltage, µV m1
	4.5
	7.6
	4.9

	Attenuation of open-circuit voltage in 10 s
	41–48%
	20%
	15%

	Charge output, mC m1 m-2
	1.7
	20
	



Transient course of voltage generated by the investigated IEAP laminates in response to a steep bending motion wasis characterized by significant attenuation. The output voltage of the IEAP Type II droppeds by 20% from its peak value in 10 s, while the voltage on the laminate Type I droppeds as much as 41–48% from its peak value in the same time span (Table 5). Attenuation of the output voltage is known also in the case of other carbon-based IEAP motion sensors. Otsuki et al. [64] have observed a similar, but less attenuated (attenuation ca 15% of the peak value in 10 s) response in the case of a laminate with IL-impregnated polymer membrane and carbonaceous electrodes.
The investigated IEAP sensors produced open-circuit voltages comparable with the values previously reported by Kamamichi et al. [62] and Otsuki et al. [64]. Peak output voltage is found to be proportional to the bending magnitude (Figure 7B); therefore, it is possible to measure the magnitude of motion the IEAP is subjected to. On the other hand, large attenuation of the transient signal complicates the measurement of frequent consecutive deformations. Attenuation is also the cause for the nonlinear frequency-response of the IEAP motion sensors at constant bending magnitude (Figure 10B). In addition, open-circuit voltage is found to be sensitive to material inhomogeneity. In principle, all parts of the laminate undergoing same bending motion are expected to generate equal voltage. However, a smaller piece of IEAP generated voltage that is considerably lower than that generated by a larger piece, as demonstrated in Figure 10B. Despite substantial difference in the construction method and the composition between the IEAPs of Type I and Type II, their normalized peak output voltages were close in value: when the curvature of an IEAP wasis changed in 5 s, the IEAP Type I generated 4.5 µV m1, while the IEAP Type II yielded 7.6 µV m1 of peak voltage (Table 5).
Measurement of electric current and charge is shown to be more advantageous in motion sensing. The peak value of electric current wasis proportional to the bending magnitude, as given in Figure 7C. Every part of the material that is bent uniformly should contribute to the total current and charge in proportion to its area. A linear dependence of the peak current on the laminate area wasis verified in the case of IEAP Type I, as shown in Figure 11C. As expected, the frequency-response of electric current is highly nonlinear. Figure 11B confirms demonstrates that the current peak value rises rose with increased frequency up to the highest measured frequency – 3 Hz. At the same time, the phase difference between electric current and mechanical bending also decreaseds with increased frequency, as demonstrated in Figure 11D.
It is demonstrated that it is possible to measure the magnitude of bending by integrating the generated current, as depicted in Figure 7D. Calculation of the total generated charge is found to provide the most accurate feedback for bending motion. The exceptionally high sensitivity in charge-sensing mode has also been confirmed in the case of IPMC transducers [165].
The value of generated electric charge obtained by this method does not depend on bending speed, enabling accurate measurement of the magnitude of motion. The magnitude of the generated charge varied between was significantly different in case of different types of IEAPs. The IEAP Type I yielded 1.7 mC m1 m-2 of charge, normalized against the change in curvature and the laminate area, while the IEAP Type II generated as much as 20 mC m1 m-2 of charge (Table 5). A large, 12‑fold difference in the charge-generation capacity can be explained by a different amount of active carbon material per laminate area – the thickness of the electrodes of the IEAP Type I was 30 µm, while the IEAP Type II had 220-µm electrodes (Table 2). That is, the IEAP Type II has roughly 7.3 times more active carbon material for the same surface area, which obviously gives a rise to its charge-generation capacity. 
The generated charge provides accurate feedback only if the transient bending profile consists of short bending cycles followed by longer stationary positions. The estimation of magnitude of motion is more difficult in the case of periodic bending. It is shown in Figure 12A that the amount of electric charge generated in each bending cycle decreases with increased frequency. This is caused by the time needed to collect the generated charge from thean IEAP, which is approximately 10 s in the case of the IEAP Type I, as given in Figure 11A. 
The transient courses of voltage and electric current after a steep bending develop as a result of two factors: a) the transient course of electric double-layer charging due to the applied pressure gradient through the an IEAP; b) the extraction of the generated charge by a current-measurement device. When the electric current is measured, anthe IEAP can be seen as a supercapacitor charged by a mechanical stimulus. The discharge circuit for such supercapacitor consists of a series of internal resistance of the an IEAP- supercapacitor, a distributed electrode resistance, and a current-measurement resistor.
The results also demonstrate the effect of distributed electrode resistance on the mechanoelectrical parameters of the IEAP motion sensors. In the case of IEAP Type I, the electrode resistance is <1 Ω square-1 due to the high conductivity of its gold current collector. The magnitude of electrical impedance of the electrode of IEAP Type II, which is purely resistive [47], is 28 Ω square-1 (Table 2). In the case of the IEAP Type II, the transient courses of voltage and electric current were very similar, which refers to inefficient extraction of the generated charge. In the case of IEAP Type I, a majority of the generated charge was removed in 10 s, as depicted in Figure 11A, which indicates the advantage of using an IEAP with an extra current collector for sensing motion. 


[bookmark: _Ref372720887][bookmark: _Ref380331281][bookmark: _Toc396045859]The influence of ambient humidity on the electrical parameters of the IEAP
[bookmark: _Ref373841170][bookmark: _Toc396045860]Introduction
[bookmark: _GoBack]Section 1.3 underlined the significant impact of ambient humidity on the performance of the IEAP materials operating in ambient air. This paragraph investigates experimentally the humidity-dependence of an IEAP Type I using electrochemical impedance spectroscopy. The impedance data is fitted with a suitably chosen equivalent electrical circuit and the shift in the equivalent circuit parameters is correlated with the changes in ambient RH. 
The IEAP Type II contains EMIBF4 ionic liquid, which undergoes irreversible chemical reactions with water [152]. As the investigation of long-term degradation processes is not in the scope of this thesis, humidity-sensitivity of the IEAP Type II is not investigated in this thesis.
The reason for the impedance change at variable ambient humidity is a drift in the material properties due to water vapor, which is reversibly absorbed by thean IEAP material. The IEAPs used in this work are composed out of highly hygroscopic materials – Nafion, activated carbon, and a hydrophilic IL. Previously, all constituents from this list have been proposed individually for humidity sensing, as it is explained in Section 4.3.
The impedance measurement and electromechanical characterization results reveal a number of advantages, but also deficiencies of the increased water content of the laminate. 
[bookmark: _Toc386532438][bookmark: _Toc386532439][bookmark: _Ref373065405][bookmark: _Toc396045861]Experimental
The impact of ambient RH was investigated by placing the IEAP laminate Type I in a container with a controlled RH value, as depicted on Figure 14. Humidity chambers with five fixed humidity points were constructed. The lowest humidity (0±4% RH) was generated by using calcium chloride (CaCl2) as absorbent, and the highest humidity value (100±4% RH) settled over a bath of distilled water. The fixed RH values of 23±2, 53±2, and 75±2% RH were generated by using saturated solutions of potassium acetate (CH3CO2K), magnesium nitrate (Mg(NO3)2), and sodium chloride (NaCl), respectively [166]. All chemicals used for stabilization of the RH level were of technical grade. 
The 3-cm2 piece of the IEAP laminate was fixed between the measurement terminals made of gold. Electric impedance was measured between the IEAP electrodes using PARSTAT 2273 potentiostat in a two-electrode mode. 10 mV RMS signals were used in the measurements.
The IEAP laminate was held in an environment of constant humidity for at least three hours before the impedance measurement for achievement of equilibrium water content in the IEAP. Air convection in the chamber was promoted using an air agitator. During the impedance measurements, the air agitator was turned off. A Rotronic HC2 temperature and humidity sensor was used as a reference for the RH value. All experiments were conducted at room temperature (24±1 ºC).
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[bookmark: _Ref378519149]Figure 14. Set-up for impedance measurements.
[bookmark: _Ref380331379][bookmark: _Toc396045862]Electrical impedance of the IEAP at different relative humidities
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[bookmark: _Ref372135077]Figure 15. Nyquist plot of the IEAP laminate’s electrical impedance.
The Nyquist plot of the measured impedance is given in Figure 15A. Impedance of the IEAP changed undergoes drastically changes as a result of changes in the RH level. The most significant difference is the shift of the real part of impedance towards higher values when the RH level is was decreased. The IEAP is was more sensitive to variation in the RH value in the low (<53%) RH region, while the impedances measured at >53% RH changed only a little. 
In the high-RH environment, the Nyquist plot has had a characteristic arc-shape at high frequencies (>100 Hz). This arc-shape is was not clearly distinguishable at low RH levels. The phase shift between voltage and current is was the largest at the lowest RH level, indicating to the least constrained motion of the IL ions. 
[bookmark: _Ref380331395][bookmark: _Toc396045863]Electrical equivalent circuit for an the IEAP
Equivalent circuit analysis is an indispensable method to understand the observed changes in the IEAP’s impedance. In this work, the equivalent circuit given in Figure 16A is selected to represent an the IEAP. Takeuchi et al. have previously used a similar equivalent circuit in the modelling of an IEAP actuator with ‘bucky gel’ electrodes [167].
 The equivalent circuit given in Figure 16A consists of three blocks connected in series. Figure 16B gives the physical interpretation for the selected equivalent circuit elements. 
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[bookmark: _Ref386474604]Figure 16. (A)The equivalent circuit for the an IEAP and (B) its physical interpretation. 
The resistance Rs represents the charge-transfer resistance between the electrodes. The value of Rs is determined by the level of ionic conductivity in the IL-containing polymer membrane.
Warburg element W with a mathematical form given by Equation (1) is a distributed element, which is used to describe the electrochemical systems with anomalous diffusion. The pores in the CDC grains are described as finite transmission lines, as given in Figure 16B. The boundary between the CDC and the IL electrolyte, i.e. the electric double-layer region, is modelled as non-ideal capacitors – constant phase elements. As the mobility of ions inside the pores is considerably constrained, i.e., it needs significantly more energy and time to charge the double-layer deep in the pores, a transmission line is formed in the pore thickness direction. A Warburg impedance Zw is described by three parameters – a proportional parameter Wr; a frequency-dependent parameter Tw; and an exponent Wc, which is a measure for non-ideality.
	
	
	[bookmark: _Ref389483166](1)


The last block, which consists of a parallel connection of resistance Rp and a constant phase element CPEp, represents contact impedances between the CDC grains within each electrode, and the impedance between the electrode and the measurement terminals.
The ionic diffusion constrained by the transmission line effect in the CDC micropores can be presented as a characteristic frequency t, given by Equation (2).
	
	
	[bookmark: _Ref378698743](2)


The impedance spectra, given in Figure 15, were fitted with the equivalent circuit given in Figure 16A. The best-fit values for the seven parameters describing the proposed equivalent circuit were extracted for different humidity levels.
[bookmark: _Ref376956017][bookmark: _Toc396045864]Impedance analysis results and discussion
Figure 17A demonstrates that a good fit is found for all measured impedances. Figure 17B illustrates that the ionic conductivity of the IL-swollen polymeric membrane increases drastically with increased humidity content. This is also expected, because the conductivity of IL-water mixtures increases with increased water content up to more than 10 times, until a peak value is achieved. Table 1 indicates that the conductivity of ionic liquid can increase as much as by a factor of six when mixed with water. The electrical conductivity of the IL-containing laminate undergoes drastic changes because of hydration – the resistance Rs decreased with increasing RH level as much as by a factor of 13 – from 41.1 to 3.17 Ω. Consequently, the humidity-sensitivity of the IEAP laminate is not governed only by IL.
The magnitude of the distributed resistance – Wr – was constant at the RH levels between 75 and 100%, while it increased 10-fold, from 1.90 to 21.2 Ω, in the dry environment, as given in Figure 17D. This emphasizes a significantly constrained ionic mobility in the dry environment. This is also expressed in a shift of characteristic frequency towards higher values at high RH conditions, as given in Figure 17G.
The exponent of the distributed CPE in the double-layer (equal to 2*Wc), given in Figure 17F, was in the range of 0.91–0.95 in all RH levels, except in the most hydrated condition. Therefore, the carbon-electrolyte boundary is capacitive in its nature, with only a slight deviation from an ideal capacitor (where 2*Wc  1).
The contact impedance has effect only at high (>25 Hz) frequencies, as the CPE is shorted by a low-ohm (1–5 Ω, according to Figure 17C) resistance at lower frequencies.  In addition, the contact impedance is more significant in dry environment, as the magnitude of CPEp-T drops by a factor of 4.4 with increased RH, according to Figure 17E. In addition, the CPEp-P is equal to 0.53 at the lowest RH (Figure 17F), which refers that, in addition to electronic current, there is also a significant amount of ionic current between the different regions within a single electrode.
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[bookmark: _Ref372135980]Figure 17. (A) Nyquist plots of impedance with the best-fit curves. (B-F) Best fit parameters of equivalent circuit at different RH levels. (G) Characteristic frequency ωt at different RH levels.
The impedance analysis results suggest that it is possible to measure the RH value over thean IEAP laminate by registering impedance between its electrodes. In Figure 18, the possibility of measuring the RH value by registering the phase difference between applied voltage and measured current is demonstrated. The phase change is linear at RH values >23%. More importantly, the magnitude of phase change is large (in tens of degrees), which enables measurements of RH value with high accuracy. The measurement of the RH value by registering the impedance of the same material is advantageous, because the signal directly corresponds to the momentary humidity content of the laminate. An external humidity sensor, based on a different active material, can also have different humidity-absorption kinetics. If the RH value, extracted using an external sensor, would be used as a calibration parameter for thean IEAP as a motion sensor, it can result in a considerable inaccuracy.
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[bookmark: _Ref372567620]Figure 18. The extraction of the RH value by measuring the phase angle at 1 Hz.
As a conclusion, the absorbed water content influences the electrical properties of the IEAP laminates and the ambient RH level should therefore be considered in development of applications for the IEAPs as an actuator, a sensor, or a supercapacitor. Additionally, the humidity-sensing capability broadens the field of application of IEAPs, as thean IEAP performing any other function in a device can additionally sense the RH level. 
In addition to the electrical properties, it should be considered that also the mechanical properties of the IEAP change considerably in an environment of variable RH level.  IThe investigation of the relation between the mechanical properties and the RH level is out of the scope of this thesis.

[bookmark: _Ref373345332][bookmark: _Ref373345335][bookmark: _Ref387844667][bookmark: _Toc396045865]IEAP as a hygroelectrical sensor 
As demonstrated in Section 6, the electrical impedance of the an IEAP laminate is highly dependent on the ambient RH value. It is therefore possible to determine the RH value around the an IEAP laminate by measuring its electrical impedance. This is an advantageous and unique additional feature for the IEAPs, primarily engaged as either an actuator or a supercapacitor. The use of an IEAPs  primarily as an impedance-based humidity sensors is, however, impractical due to the relative complexity of the three-layered laminate and a wide choice of highly-developed competitive (e.g. resistive, capacitive, or quartz crystal microbalance-based) humidity sensor technologies.
The use of changes in the IEAP’s impedance in humidity sensing is well predictable, concerning its highly hygroscopic constituents. In this work, humidity-sensitivity of the IEAP laminate is found to be expressed in one additional, unanticipated way. The newly found sensing phenomenon reveals itself in formation of voltage and electric current between the IEAP electrodes, when the opposite electrodes of an IEAP laminate are exposed to an environment with uneven RH distribution. In other words, a humidity gradient across an IEAP results in formation of a macroscopic electric charge. Concurrently, volumetric effects emerge; i.e. the side of laminate exposed to a higher RH expands and the cantilevered laminate bends towards the drier environment. The bipartite response of an the IEAP laminate is demonstrated in Figure 19.
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[bookmark: _Ref372902912]Figure 19. Demonstration of the humidity response of a cantilevered piece of  IEAP Type I.
[bookmark: _Toc396045866]Set-up for measurement of hygroelectrical properties
The water sorption-induced charge-generation properties were characterized by exposing the opposite sides of an IEAP Type I laminate to chambers, which have fixed RH values. The An IEAP laminate was fixed between epoxy frames, as illustrated in Figure 20A. The ‘windows’ in the plates with an IEAP between them were exposed to the humidity chambers. The constant RH levels in the humidity chambers were established by the use of saturated saline solutions, in similar to the experiments described in Section 6.2.
Before the experiments, the humidity content in the an IEAP was equilibrated by exposing the opposite sides of the laminate to humidity chambers with equal RH, as illustrated in Figure 20C. Subsequently, one humidity chamber was replaced quickly (in 1 s) with a humidity chamber with a different RH level, as depicted on Figure 20D, consequently establishing a RH gradient across the IEAP. All humidity chambers were equipped with air agitators, which ensured preservation of constant RH in the chambers and also accelerated the water sorption or desorption. 
Voltage and electric current were registered using a National Instruments PCI-6036E DAQ board. The bias current of the PCI-6036E DAQ board with its SCC-AI series front-end analog input modules was found to be too high (about 10 nA) for measurement of open-circuit potential on capacitor-like systems, as the capacitor under test is charged by the current originating from the measurement device in the long run. Therefore, a preamplifier with low input bias current is needed. Burr-Brown INA116 instrumentation amplifier with an extremely low input bias current (<3 fA) was selected as a preamplifier. 
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[bookmark: _Ref372908788]Figure 20. (A) Fixing of an IEAP between epoxy plates with ‘windows’. (B) The set-up for electrical measurements. (C-D) The experiment set-up for varying RH gradient across an IEAP.

Electric current was measured as a voltage drop over a low-ohm resistor, as depicted in Figure 20B. The same amplifier set-up was used as an ammeter or a voltmeter, depending on the state of the switch S, connecting the shunt resistor. The actual value of the shunt resistor – 10 Ω – was equivalent to the value of series resistance Rs at medium RH level, as given in Figure 15 for a similar IEAP of comparable size. Matching the internal resistance Rs with the value of the shunt resistor Rc assured that the power dissipated on the shunt resistor Rc was the highest.
[bookmark: _Ref373156256][bookmark: _Toc396045867]Transient response to humidity gradient
[bookmark: _Ref373156963][bookmark: _Toc396045868]Open-circuit voltage
The transient course of open-circuit voltage after a sudden formation of a RH gradient across the IEAP revealed two different processes with different time constants, as depicted in Figure 21. Immediately after formation of humidity gradient, the voltage rose steeply and gained its peak or ‘knee’ in100-500 s. After this, the open-circuit voltage increased further and achieved its final peak after as long as 2.2 h.
The process with a shorter time constant corresponds to water sorption or desorption processes occurring in this particular electrode, above which the RH was changed. Concurrently, also water diffusion through the IEAP slowly starts to occur. After the time of a first peak or a ’knee’ value in 100-500 s, water diffusion across the IEAP becomes the primary mechanism, responsible for increasing the open-circuit voltage.
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[bookmark: _Ref373070639]Figure 21. Transient course of the open-circuit voltage after exposing an initially dry electrode to 50% RH.
Synchronously to the rise of open-circuit voltage across the IEAP laminate, also volumetric effects emerged. Figure 22 illustrates the course of open-circuit voltage in comparison with the deflection of a cantilevered IEAP as a response to a RH increase above one of the electrodes. In this experiment, the IEAP laminate was not fixed between the rigid plates. This enabled measurement of the bending motion using a laser displacement meter, but, in turn, complicated the estimation of the humidity gradient magnitude across the IEAP. 
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[bookmark: _Ref373071325]Figure 22. Simultaneous deflection of the a cantilevered IEAP laminate and formation of an open-circuit voltage between the electrodes after creation formation of a humidity difference between the electrodes.
The open-circuit voltage was clearly more sensitive, compared to deflection, to the change (to both increase and decrease) in RH above the laminate. Bending of the laminate reflects the total strain in all parts of the laminate; therefore, it is obvious that the diffusion of absorbed water through the electrode needs a significant amount of time. On the contrary, sorption of water by even the topmost layer of a single electrode can be registered by measuring the voltage difference between the electrodes. 
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[bookmark: _Ref373139188]Figure 23. (A) Transient course of the voltage after initially dry electrodes were exposed to different levels of humidity. (B) Peak values of open-circuit voltage for all tested combinations of initial humidity and humidity gradients.
The transient course of voltage was characterized by a steep rise of voltage immediately after the formation of RH gradient, gaining its peak value in 100-500 s. As expected, the peak or ‘knee’ value was dependent on the magnitude of RH gradient, as illustrated in Figure 23A. 
Figure 23B shows the peak values of open-circuit voltages (in the case a peak value was not formed in 500 s, the open-circuit value after 500 s is given) measured in experiments with various combinations of initial equilibrium RH values and induced RH gradients. The RH gradient positive by its sign refers to the experiment where the RH gradient was achieved by increasing the RH level, and vice versa. It was observed that (a) smaller increase in RH gradient yields proportionally larger open-circuit voltages; and (b) RH increase yielded higher peak values, as absorption process is generally faster than desorption.
The transient course of electric current after the formation of RH gradient was characterized by a steep peak and subsequent decay. Figure 24A shows that the level of electric current dropped to the electrical noise level after 150 s. The peak value of electric current was roughly proportional to the change in RH level, as illustrated in Figure 24C, on the assumption of an equal initial humidity level. At the same time, the slope between peak value of current and the change in RH was strongly dependent on the initial RH level. Interestingly, the generated values of electric charge, calculated in Figure 24B for transient courses given in Figure 24A, did not follow the same trend with peak current – the RH gradient of 100% yielded roughly the same amount of charge as the gradient of 75%.
In the conducted experiments, the laminate was returned to initial, homogeneous RH after 300 s. The repeated change in RH caused a second peak of electric current to be formed; only the direction of current was reversed this time. The peak values are given in Figure 24D for all investigated combinations of initial RHs and RH gradients. It can be noticed that the peak corresponding to the return to initial conditions did not follow the same pattern with the peak formed after the initial disturbance of RH level. Figure 24A illustrates that the highest peak was formed when one side of the initially dry laminate was exposed to the highest RH, but the return to the initial conditions yielded the lowest peak value instead.
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[bookmark: _Ref373140888]Figure 24. (A) Transient response of electric current to humidity change. (B) Generated and stored charge as a function of time. (C) Peak values of the electric current at various combinations of initial humidity and humidity gradients. (D) Peak values of the electric current upon returning the laminate to the initial humidity levels.

[bookmark: _Toc396045869]Cyclic stability
The electrical output of IEAP laminate in response to ambient humidity gradient has a high cyclic stability. In the cycling experiment, depicted in Figure 25A, the laminate was placed between the humidity chambers with 0 and 53% RH and the humidity gradient was reversed after every minute. After 1000 cycles, the transient course of open-circuit voltage was nearly indistinguishable from the initial. The charge generated in each cycle, however, showed a small decrease – the 1000th cycle yielded 92% of the charge generated in the first cycle, as depicted in Figure 25B.
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[bookmark: _Ref391045255]Figure 25. (A) Output current of the laminate during the cycling test. (B) Variation of the generated charge in consecutive cycles.
[bookmark: _Ref387844340]

[bookmark: _Ref390604890][bookmark: _Toc396045870]IEAP as an energy harvester
The IEAP laminates can convert mechanical and water-sorption energy into electrical; therefore its energy-harvesting capability is a topic of interest.
The IEAPs generates electric charge as a result of mechanical stimuli, but the magnitude of the generated charge is low. The highest transient electric power generated by an IEAP Type II as a response to mechanical bending has been found to be 0.4 nW cm-2 in the case of an impedance-matched load [151]. This power level is evidently too low to be considered for energy harvesting. Consequently, energy harvesting only from ambient humidity is considered in this thesis.
[bookmark: _Toc396045871]IEAP for hygroelectrical energy harvesting
The voltage and electric current generation from ambient RH gradient by the use of an IEAP material is discussed in Section 7.2. This paragraph characterizes the use of IEAP laminates as hygrovoltaic cells for hygroelectrical energy harvesting.
The highest charge generation rate occurs directly after the change of RH. In principle, the highest momentary charge output of 1500 C m-2 h-1 or 3300 C kg-1 h-1 was registered; although, at the lowest voltage (<1 mV), which is impractical to be used to power any electronic device. 
As described in Section 7.2.1, the open-circuit voltage on an IEAP increases when the laminate is held between environments with different RHs. The An IEAP is able to produce a small amount of electric current from water diffusion through the laminate. This amount of current is too low to be collected by any external power-conditioning circuitry. At this point, the capacitive properties of the IEAP come into use. The IEAP is able to store a significant amount of generated electric charge in the very same material, where the charge was generated. 
In conventional energy-harvesting systems, the generated electric energy is transferred into intermediary storage units via power-conditioning circuitry. The power-conditioning electronics start to work only if the input current or voltage has increased over some threshold level. In the case of an IEAP hygroelectrical cell, external power-conditioning electronics is not required; therefore, it can harvest energy at any rate. Consequently, energy can be harvested from sources previously considered unavailable.
The total amount of energy collected into an IEAP during a long (from hours to days) time span can be extracted, on demand, at very high rate. This energy-consumption profile matches with the WSN nodes, which operate at low-duty-cycle mode. 
Figure 26 describes the use of IEAP as an energy harvester. The IEAP Type I was held between humidity chambers with different RHs during more than 2 hours, until the open-circuit voltage achieved its peak value. Subsequently, the IEAP was discharged on a 10-Ω load Rc, which was connected between the IEAP electrodes via switch S. The resistor Rc simulated an electronic device consuming the charge in a real-world application. Only 30 s was needed to discharge the IEAP fully. More importantly, the peak current of 23 A m-2 was registered, which corresponds to a power density of 2.0 W m-2. This current level is as much as 31 times higher than the highest peak current registered in continuous mode directly after a rapid change of RH gradient. The difference in power density is even more drastic – by the use of periodic charge-discharge cycle, the peak power density increased as much as three orders of magnitudes, from 2.1 mW m-2 to 2.0 W m-2.
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[bookmark: _Ref390604582]Figure 26. Energy-harvesting principle based on intermittent charging and discharging of the capacitive IEAP laminate.
The highest energy density of the hygroelectrical energy harvester was 4.4 J m-2. As a comparison, the same IEAP working purely as a supercapacitor, with a nominal voltage of 3 V and capacitance of 270 F m-2, can hold 810 C m-2 of charge and it has an energy density of 1215 J m-2. Therefore, the laminate is able to collect up to 6% and 0.36% of its maximum charge and energy, respectively, merely from ambient humidity.
The simultaneous energy-storage capability is a unique property among energy-harvesting materials. For a comparison, a metallized 17 µm thick film of crystalline PVdF is able to collect 0.5 J m-2 of energy from human respiration in 20 minutes [89]. At the same time, the energy-harvesting material itself as a parallel plate capacitor with a relative permittivity εr = 11 can hold only 7.3 mJ m-2, when charged to 10 V. The energy generated in each cycle has to be collected into external storage units for subsequent use. Therefore, an IEAP material can collect energy from merely humidity gradients with a rate that is comparable to mechanical stimulus. Moreover, there is no need for external energy storage units, as the material itself can store a significant amount of energy.


[bookmark: _Toc396045872]Conclusions
The work at hand explored a novel and distinctive characteristic of the IEAP laminates with high specific surface area activated carbon electrodes – the IEAPs respond to various externally imposed stimuli by formation of electric charge between the electrodes.
In the first part of this work, the IEAP laminate’s response to mechanical bending was investigated. The IEAPs with IL as electrolyte and both ionic and non-ionic polymer as separator were considered. The transient response of the IEAPs to bending motion was characterized by formation of a sharp peak immediately after bending and slow diminishing of the generated voltage and electric current towards zero. The IEAP motion sensor had a strongly nonlinear frequency response. However, it is possible to determine the magnitude of infrequent bending action by measuring electric current between the electrodes. 
In addition to their motion-sensing capability, the IEAP laminates were found to have remarkable sensitivity to ambient humidity. Impedance spectroscopy analysis revealed that the series resistance decreased as much as 13 times because of RH change above the laminate. This is caused by highly hygroscopic constituents of the investigated IEAP laminates. The use of an IEAP as a sensor for measurement of ambient RH level was demonstrated.
The most significant novelty in this work is engagement of the IEAP’s strong response to the ambient water vapor in a novel, previously unconceived configuration. It was discovered that the IEAP laminate responds not only to uniform RH level, but also to RH gradient. Establishment of a unidirectional humidity gradient across the IEAP laminate resulted in formation of electric current and voltage between its electrodes – an IEAP serves as a hygrovoltaic cell. What is the most remarkable; the magnitude of the generated electric charge because of RH gradient was found to be more than an order of magnitude higher than the electric charge generated as a result of mechanical bending. The high magnitude of the generated charge suggested that the field of application for the IEAPs could be broadened towards hygroelectrical energy harvesting. Consequently, the IEAP technology can bring ambient humidity gradient among the available sources for harvesting electrical energy. 
In hygroelectrical energy harvesting, the supercapacitor-like properties of the IEAP laminates are brought into use. An IEAP hygrovoltaic cell is able to store the generated electric charge into itself, therefore serving concurrently as an energy harvester and a storage unit. This property enables collection of electric energy from the environment during a long time at a low rate, and extraction of the total harvested energy at a high rate.
Formation of electric charge because of mechanical stimuli and water vapor absorption have a similar underlying physical mechanism. Charge formation can occur if the following preconditions are met:
a) Unequal conditions are applied to the opposite electrodes of a single laminate. In the case of mechanoelectrical transduction, the opposite electrodes of a bent laminate are exerted to unequal mechanical stress; and in the case of hygroelectrical transduction, different conditions on the opposite electrodes are achieved by varying the environmental conditions above them.
b) The mobility of cations and anions in the carbon and polymer matrix are unequal. This is achieved by tailoring of the porosity parameters of the IEAP electrode and the morphology of the ionically conductive polymeric separator. 
The IEAPs are demonstrated to be very multifunctional materials. In addition to their sensorial properties, virtually the same IEAP laminates as investigated in this work can function also as electromechanical actuators and as supercapacitors for energy storage. Figure 27 gives a roadmap between the applications for the IEAPs. 
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[bookmark: _Ref388791138]Figure 27. The roadmap for the applications for IEAPs.

[bookmark: _Toc396045873]Summary in estonian
SÜSINIKMATERJALIST ELEKTROODIDEGA IOONSED JA MAHTUVUSLIKUD ELEKTROAKTIIVSED LAMINAADID SENSORITE NING ENERGIAKOGUMISSEADMETENA
Ioonsed elektroaktiivsed polümeerid (IEAP) on laminaatmaterjalid, mis koosnevad suure-eripinnalistest elektroodidest, elektroode eraldavast mikropoorsest polümeersest membraanist ning elektrolüüdist, mis sisaldub nii polümeermembraanis kui ka elektroodides. IEAP-d on multifunktsionaalsed materjalid – varasemalt on IEAP-d tuntud eelkõige energiasalvestuselementide ning elektromehaaniliste täituritena. Käesolev doktoritöö uurib suure-eripinnaliste süsinikelektroodidega IEAP-laminaatmaterjali uudset ja unikaalset omadust – võimet tekitada elektrilaengut mitmesuguste väliste mõjurite toimel.
Doktoritöö esimeses osas uuritakse eksperimentaalselt IEAP elektrilist kostet välise jõu abil painutamisele. IEAP-laminaadi painutamine toob kaasa nii elektripinge kui ‑voolu piikväärtuse tekke elektroodide vahel. IEAP-painutussensori sageduskoste on tugevalt mittelineaarne. Doktoritöös on demonstreeritud, et on võimalik mõõta perioodiliselt toimuvate painutuste ulatust, registreerides elektrivoolu teket elektroodide vahel.
Töö käigus uuriti IEAP-sid, mis sisaldavad elektrolüüdina ioonvedelikku ning on seetõttu võimelised töötama õhu käes praktiliselt piiramatu aja jooksul. Vaatamata ioonvedeliku mitteaurustumisele leiti aga, et IEAP elektrilised omadused on erakordselt tundlikud ümbritseva keskkonna suhtelise õhuniiskuse suhtes, sest laminaadi kõik koostisosad on hügroskoopsed. Töös demonstreeritakse keskkonna suhtelise õhuniiskuse määramist IEAP-laminaadist sensori abil.
Antud doktoritöö kõige olulisem uudsus on IEAP niiskustundlikkuse rakendamine varasemalt tundmatus konfiguratsioonis. Töö käigus avastati, et IEAP reageerib lisaks suhtelise õhuniiskuse muudule ka õhuniiskuse gradiendile. Niiskuse gradiendi püstitumine IEAP-laminaadi vastaskülgede vahel tingib elektripinge ja ‑voolu tekke elektroodide vahel – IEAP käitub hügroelektrilise rakuna. On tähelepanuväärne, et õhuniiskuse gradient, võrrelduna välise jõu abil painutamisega, suudab IEAP-laminaati laadida enam kui ühe suurusjärgu võrra kõrgemale laetusastmele. Genereeritava laengu suur hulk viitab, et IEAP-laminaadi perspektiivseks uudseks kasutusalaks võib olla hügroelektriline energiakogumine. IEAP-laminaat on ühtlasi üks väheseid olemasolevaid seadmeid, millega on võimalik õhuniiskuse sorptsiooni energiat muundada otseselt elektrienergiaks.
IEAP-laminaadi rakendamisel hügroelektrilise energiakogumisseadmena on olulise tähtsusega tema kondensaatoromadused. IEAP hügroelektriline rakk on võimeline salvestama genereeritud elektrilaengu samasse materjali, mis antud laengu genereeris. See omadus teeb võimalikuks elektrienergia kogumise vähesel määral väga pika aja jooksul ning vajaduse tekkimise korral kogu IEAP-sse talletatud elektrienergia väga kiire väljavõtmise. Antud töös registreeriti õhuniiskuse gradiendi toimel IEAP-sse salvestatud energia mahalaadimisel maksimaalne voolutugevus 23 A m-2.
Elektrilaengu teke omab sarnast füüsikalist mehhanismi nii paindumise kui õhuniiskuse gradiendi tekke tagajärjel. Elektrilaeng saab IEAP elektroodidel formeeruda juhul, kui on samaaegselt rahuldatud alljärgnevad eeltingimused.
a) IEAP vastaselektroodid satuvad erinevatesse tingimustesse. Liigutussensorina kasutamise korral rakendatakse IEAP vastaselektroodidele erinev mehaaniline pinge ning hügroelektrilise raku korral tekitatakse erinevad tingimused ümbritseva keskkonna parameetrite muutmise teel.
b) Katioonide ning anioonide mobiilsus süsinikelektroodides ning polümeerses maatriksis on erinev. Erinev mobiilsus saavutatakse erineva poorsusjaotusega elektroodimaterjali kohaldamise ja ioonjuhtiva polümeerseparaatori valiku teel.
Süsinikelektroodidega IEAP-materjalid on äärmiselt multifunktsionaalsed. Käesolevas töös demonstreeritakse, et lisaks varasemalt tuntud rakendustele energiasalvestuselemendi ning täiturina funktsioneerivad sisuliselt samad IEAP-laminaadid ka liigutussensori, niiskussensori ning hügroelektrilise energiakogumiselemendina. 
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