Venitusi iseloomustavad maatriksid ning venituskoefitsientide tuletused

Artur Tamm

13. aprill 2009. a.

1 Võret iseloomustav maatriks ning venitusmaatriksid

Igasugused kristalle on võimalik kirjeldada Bravais' võrega, mis koosneb elementaarrakkudest. Kolmemõõtmelise kristalli korral iseloomustatakse rakku kolme võrevektoriga:

$$\vec{a} = (a_x, a_y, a_z); \tag{1.1}$$

$$\vec{b} = (b_x, b_y, b_z); \tag{1.2}$$

$$\vec{c} = (c_x, c_y, c_z); \tag{1.3}$$

Kristall on invariantne translatsioonide suhtes, mida kirjeldab võrevektoritest moodustatud translatsioonivektor $\vec{R_n}$, mis saadakse järgnevalt:

$$\vec{R_n} = n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{c} , kus \, n_1, n_2, n_3 \in \mathbb{N};$$
(1.4)

Elementaarrakku iseloomustav maatriks koostatakse võrevektoritest järgmiselt:

$$R = \begin{pmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ a_z & b_z & c_z \end{pmatrix};$$
(1.5)

Kristalli venitusi on võimalik kirjeldada ruutmaatriksiga D, mille dimensiooniks on 3, mis mõjub võret iseloomustavale maatriksile R järgnevalt:

$$R' = R.D; (1.6)$$

Saadud tulemus R' iseloomustab deformeeritud Bravais' võret. Tehe . on maatrikskorrutis.

2 Erinevad deformatsiooni maatriksid

2.1 Võrevektorite suunalised deformatsioonid

Elementaarraku deformatsioone vektorite suunas iseloomustavad järgmised maatriksid[1]:

$$D_{1} = \begin{pmatrix} 1+\delta & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$
(2.1)
$$D_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1+\delta & 0 \\ 0 & 0 & 1 \end{pmatrix};$$
(2.2)
$$D_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1+\delta \end{pmatrix};$$
(2.3)

Maatriksid D_1 , D_2 ning D_3 iseloomustavad vastavalt vektorite \vec{a} , \vec{b} ning \vec{c} suhtelist muutus suuruse δ võrra. Vektorite pikkuse muutus iseloomustab kristallvõre elementaarraku venitust või kokkusurumist kindla võrevektori suunas.

2.2 Elementaarraku deformatsioon, mis tekib võrevektori nihutamisel tema sihis

Maatriksid D_4 , D_5 ning D_6 , mis avalduvad järgmiselt[1]:

$$D_4 = \begin{pmatrix} \frac{1}{\sqrt[3]{1-\delta^2}} & 0 & 0\\ 0 & \frac{1}{\sqrt[3]{1-\delta^2}} & \frac{\delta}{\sqrt[3]{1-\delta^2}}\\ 0 & \frac{\delta}{\sqrt[3]{1-\delta^2}} & \frac{1}{\sqrt[3]{1-\delta^2}} \end{pmatrix};$$
(2.4)

$$D_{5} = \begin{pmatrix} \frac{1}{\sqrt[3]{1-\delta^{2}}} & 0 & \frac{\delta}{\sqrt[3]{1-\delta^{2}}} \\ 0 & \frac{1}{\sqrt[3]{1-\delta^{2}}} & 0 \\ \frac{\delta}{\sqrt[3]{1-\delta^{2}}} & 0 & \frac{1}{\sqrt[3]{1-\delta^{2}}} \end{pmatrix};$$
(2.5)

$$D_{6} = \begin{pmatrix} \frac{1}{\sqrt[3]{1-\delta^{2}}} & \frac{\delta}{\sqrt[3]{1-\delta^{2}}} & 0\\ \frac{\delta}{\sqrt[3]{1-\delta^{2}}} & \frac{1}{\sqrt[3]{1-\delta^{2}}} & 0\\ 0 & 0 & \frac{1}{\sqrt[3]{1-\delta^{2}}} \end{pmatrix};$$
(2.6)

2.3 Võrevektorite suunaline deformatsioon konstantsel elementaarraku ruumalal

Järgnevad maatriksid iseloomustavad deformatsioone vastavate võrevektorite suunas nii, et elementaarraku ruumala jääb samaks[1]:

$$D_{7} = \begin{pmatrix} \frac{1+\delta}{\sqrt[3]{1-\delta^{2}}} & 0 & 0\\ 0 & \frac{1-\delta}{\sqrt[3]{1-\delta^{2}}} & 0\\ 0 & 0 & \frac{1}{\sqrt[3]{1-\delta^{2}}} \end{pmatrix};$$
(2.7)

$$D_8 = \begin{pmatrix} \frac{1+\delta}{\sqrt[3]{1-\delta^2}} & 0 & 0\\ 0 & \frac{1}{\sqrt[3]{1-\delta^2}} & 0\\ 0 & 0 & \frac{1-\delta}{\sqrt[3]{1-\delta^2}} \end{pmatrix};$$
(2.8)

$$D_{9} = \begin{pmatrix} \frac{1}{\sqrt[3]{1-\delta^{2}}} & 0 & 0\\ 0 & \frac{1+\delta}{\sqrt[3]{1-\delta^{2}}} & 0\\ 0 & 0 & \frac{1-\delta}{\sqrt[3]{1-\delta^{2}}} \end{pmatrix};$$
(2.9)

2.4 Elastsusmaatriks ning sellest sõltuvad elastsuskoefitsiendid

Materjali elastsusomadusi kirjeldab elastsusmaatriks, mis on üldiselt 6x6 maatriks. Ortorombiliste kristallide puhul näeb elastsusmaatriks välja järgnev:

$$C = \begin{pmatrix} c_{1,1} & c_{1,2} & c_{1,3} & 0 & 0 & 0 \\ c_{1,2} & c_{2,2} & c_{2,3} & 0 & 0 & 0 \\ c_{1,3} & c_{2,3} & c_{3,3} & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{4,4} & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{5,5} & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{6,6} \end{pmatrix};$$
(2.10)

Lisaks on võimalik viimase maatriksi abil avaldada painduvus maatriksi.

$$S = C^{-1};$$
 (2.11)

Viimase kahe maatriksi abil on võimalik leida erinevad elastsuskoefitsiendid. Leiame kõigepealt elastsusmooduli sõltuvuse suunast.

$$1/K = (s_{1,1} + s_{1,2} + s_{1,3})l_1^2 + (s_{1,2} + s_{2,2} + s_{2,3})l_2^2 + (s_{1,3} + s_{2,3} + s_{3,3})l_3^2;$$
(2.12)

Suurused l_1, l_2, l_3 is eloomustava vastava suuna koosiinust.

Reussi ja Voigti nihkemoodulid avalduvad järgnevalt:

$$G_R = \frac{15}{4(s_{1,1} + s_{2,2} + s_{3,3}) - 4(s_{1,2} + s_{1,3} + s_{2,3}) + 3(s_{4,4} + s_{5,5} + s_{6,6})};$$
 (2.13)

$$G_V = \frac{1}{15}(c_{1,1} + c_{2,2} + c_{3,3} - c_{1,2} - c_{1,3} - c_{2,3}) + \frac{1}{5}(c_{4,4} + c_{5,5} + c_{6,6});$$
(2.14)

Reussi ja Voigti elastsusmoodul avalduvad järgmiste valemite kaudu.

$$B_R = \frac{1}{(s_{1,1} + s_{2,2} + s_{3,3}) + 2(s_{1,2} + s_{1,3} + s_{2,3})};$$
(2.15)

$$B_V = \frac{1}{9}(c_{1,1} + c_{2,2} + c_{3,3}) + \frac{2}{9}(c_{1,2} + c_{1,3} + c_{2,3}); \qquad (2.16)$$

Eelnevatest võrranditest on võimalik avaldada üldise nihke- ning elastsusmooduli järgnevalt:

$$G = \frac{1}{2}(G_R + G_V);$$
(2.17)

$$B = \frac{1}{2}(B_R + B_V); \tag{2.18}$$

Toome lisaks välja Youngi mooduli ning Poisson'i suhte.

$$E = \frac{9BG}{3B+G};\tag{2.19}$$

$$\nu = \frac{3B - 2G}{2(3B + G)};\tag{2.20}$$

Viimasena toome välja võrrandi, millega on võimalik kirjeldada Youngi mooduli sõltuvust suunast.

$$1/E = l_1^4 s_{1,1} + 2l_1^2 l_2^2 s_{1,2} + 2l_1^2 l_3^2 s_{1,3} + l_2^4 s_{2,2} + 2l_2^2 l_3^2 s_{2,3} + l_3^4 s_{3,3} + l_2^2 l_3^3 s_{4,4} + l_1^2 l_3^2 s_{5,5} + l_1^2 l_2^2 s_{6,6}; \quad (2.21)$$

3 Venitusi iseloomustavad elastsuskoefitsiendid

Eelnevalt kirjeldatud deformatsiooni maatriksitega mõjudes on võimalik leida kristalli energia sõltuvuse elementaarraku muutuste suhtes. Energia muutus on üldjuhul kirjeldatav järgmise võrrandiga:

$$E(V,\delta) = E(V,0) + V_0(\sum_i \tau_i \xi_i \delta_i + \frac{1}{2} \sum_{i,j} c_{i,j} \delta_i \xi_i \delta_j \xi_j) + O(\delta^3);$$
(3.1)

Viimases võrrandis suurus δ iseloomustab defaormatsiooni suurust ning τ on deformatsiooni tensori komponent. Liige $O(\delta^3)$ iseloomustab Taylori rea kolmandat järku väikeseid suurusi, mida antud lähnduses ei arvetstata. Suurus ξ omandab järgnevaid väärtusi.

$$\xi_i = \begin{cases} 1 & \text{kui } i \in \{1, 2, 3\} \\ 2 & \text{kui } i \in \{4, 5, 6\} \end{cases} ;$$
(3.2)

Põhimõtteliselt on arvutatud tulemused lähendatavad järgmisele võrrandiga.

$$f(\delta) = \alpha + \beta \delta + \gamma \delta^2; \tag{3.3}$$

Lisaks elementaarraku muutusest tingitud energia muutusele tuleb arvestada raku ruumalast tingitud muutusega E(V, 0). Võttes viimasest võrrandist teist järku osatuletise δ_i järgi taandub viimane probleem välja ning saame võrrandi:

$$\gamma_i = V_0 c_{i,i} \tag{3.4}$$

Viimase võrrandiga on võimalik kätte saada kõik paarisindeksitega elastsuskoefitsiendid $c_{1,1}, c_{2,2}, c_{3,3}, c_{4,4}, c_{5,5}$ ning $c_{6,6}$.

4 Arvutuslikud tulemused, graafikud ja koefitsiendid

4.1 Venitusmaatriks D₁

Venitusmaatriksi D_1 abil on võimalik leida elastsuskoefitsient $c_{1,1}$ järgnevast võrrandist.

$$E(V,\delta) = E(V_0,0) + V_0\tau_1\delta + V_0\frac{c_{1,1}}{2}\delta^2;$$
(4.1)

Viimast võrrandit on võimalik lähendada funktsiooniga $f(x) = \alpha + \beta x + \gamma x^2$. Toome järgnevalt välja vastava graafiku.

Joonis 1: Arvutuspunktid maatriksi D_1 jaoks, venitusel 2%

Koefitsient	Väärtus
α	-53.2825827489177257
eta	0.0448333333334243259
γ	58.206493506479226

Tabel 1: Sobitatud funktsiooni f(x) koefitsiendid koos veaga

Arvestades, et $V_0 = 85.962 A^3$ on võimalik leida suuruse $c_{1,1}$ väärtuse.

$$c_{1,1} = 216.9729051 \, GPa; \tag{4.2}$$

4.2 Venitusmaatriks D₂

Venitusmaatriksi D_2 abil on võimalik leida elastsuskoefitsient $c_{2,2}$ järgnevast võrrandist.

$$E(V,\delta) = E(V_0,0) + V_0\tau_2\delta + V_0\frac{c_{2,2}}{2}\delta^2;$$
(4.3)

Viimast võrrandit on võimalik lähendada funktsiooniga $f(x) = \alpha + \beta x + \gamma x^2$. Toome järgnevalt välja vastava graafiku.

Joonis 2: Arvutuspunktid maatriksi D_2 jaoks, venitusel 2%

Koefitsient	Väärtus
α	-53.2825775324675206
eta	-0.006666666666620103696
γ	34.938528138493332

Tabel 2: Sobitatud funktsiooni f(x) koefitsiendid koos veaga

Arvestades, et $V_0 = 85.962 A^3$ on võimalik leida suuruse $c_{2,2}$ väärtuse.

$$c_{2,2} = 130.23828 \, GPa \tag{4.4}$$

4.3 Venitusmaatriks D₃

Venitusmaatriksi D_3 abil on võimalik leida elastsuskoefitsient $c_{3,3}$ järgnevast võrrandist.

$$E(V,\delta) = E(V_0,0) + V_0\tau_3\delta + V_0\frac{c_{3,3}}{2}\delta^2;$$
(4.5)

Viimast võrrandit on võimalik lähendada funktsiooniga $f(x) = \alpha + \beta x + \gamma x^2$. Toome järgnevalt välja vastava graafiku.

Joonis 3: Arvutus
punktid maatriksi D_3 jaoks, venitusel
 2%

Koefitsient	Väärtus
α	-53.2825912554112548
eta	-0.0199333333329102247
γ	36.634199134150115

Tabel 3: Sobitatud funktsiooni f(x) koefitsiendid koos veaga

Arvestades, et $V_0 = 85.962 A^3$ on võimalik leida suuruse $c_{3,3}$ väärtuse.

$$c_{3,3} = 136.5591386 \, GPa \tag{4.6}$$

4.4 Venitusmaatriks D_4

Venitusmaatriksi D_4 abil on võimalik leida elastsuskoefitsient $c_{4,4}$ järgnevast võrrandist.

$$E(V,\delta) = E(V_0,0) + 2V_0 \tau_4 \delta + 2V_0 c_{4,4} \delta^2;$$
(4.7)

Viimast võrrandit on võimalik lähendada funktsiooniga $f(x) = \alpha + \beta x + \gamma x^2$. Toome järgnevalt välja vastava graafiku.

Joonis 4: Arvutuspunktid maatriksi D_4 jaoks, venitusel2%

	N 7
Koefitsient	Väärtus
α	-53.2826088744588660
eta	-0.0000499999995657918520
γ	38.036580086546791

Tabel 4: Sobitatud funktsiooni f(x) koefitsiendid koos veaga

Arvestades, et $V_0 = 85.962 A^3$ on võimalik leida suuruse $c_{4,4}$ väärtuse.

$$c_{4,4} = 35.44667779 \, GPa \tag{4.8}$$

4.5 Venitusmaatriks D₅

Venitusmaatriksi D_5 abil on võimalik leida elastsuskoefitsient $c_{5,5}$ järgnevast võrrandist.

$$E(V,\delta) = E(V_0,0) + 2V_0 \tau_5 \delta + 2V_0 c_{5,5} \delta^2;$$
(4.9)

Viimast võrrandit on võimalik lähendada funktsiooniga $f(x) = \alpha + \beta x + \gamma x^2$. Toome järgnevalt välja vastava graafiku.

Joonis 5: Arvutuspunktid maatriks
i D_5 jaoks, venitusel2%

Koefitsient	Väärtus
α	-53.2828307359307232
eta	-0.000433333333186570449
γ	43.7177489177370120

Tabel 5: Sobitatud funktsiooni f(x) koefitsiendid koos veaga

Arvestades, et $V_0 = 85.962 A^3$ on võimalik leida suurus
e $c_{5,5}$ väärtuse.

$$c_{5.5} = 40.74101711 \, GPa \tag{4.10}$$

4.6 Venitusmaatriks D_6

Venitusmaatriksi D_6 abil on võimalik leida elastsuskoefitsient $c_{6,6}$ järgnevast võrrandist.

$$E(V,\delta) = E(V_0,0) + 2V_0 \tau_6 \delta + 2V_0 c_{6,6} \delta^2;$$
(4.11)

Viimast võrrandit on võimalik lähendada funktsiooniga $f(x) = \alpha + \beta x + \gamma x^2$. Toome järgnevalt välja vastava graafiku.

Joonis 6: Arvutus
punktid maatriksi D_6 jaoks, venitusel
 2%

Koefitsient	Väärtus
α	-53.2826472943722891
β	0.0011500000053087914
γ	43.7504329003781578

Tabel 6: Sobitatud funktsiooni f(x) koefitsiendid koos veaga

Arvestades, et $V_0 = 85.962 A^3$ on võimalik leida suurus
e $c_{6,6}$ väärtuse.

$$c_{6,6} = 40.77147563 \, GPa \tag{4.12}$$

4.7 Venitusmaatriks D₇

Venitusmaatriksi D_7 abil on võimalik leida elastsuskoefitsient $c_{1,2}$ järgnevast võrrandist.

$$E(V,\delta) = E(V_0,0) + V_0 (\tau_1 - \tau_2)\delta + \frac{1}{2}V_0 (c_{1,1} + c_{2,2} - 2c_{1,2})\delta^2;$$
(4.13)

Viimast võrrandit on võimalik lähendada funktsiooniga $f(x) = \alpha + \beta x + \gamma x^2$. Toome järgnevalt välja vastava graafiku.

Joonis 7: Arvutuspunktid maatriks
i D_7 jaoks, venitusel2%

Koefitsient	Väärtus
α	-53.2825700595238203
eta	0.0522499999995505865
γ	57.7595238096163897

Tabel 7: Sobitatud funktsiooni f(x) koefitsiendid koos veaga

Arvestades, et $V_0 = 85.962A^3$ on võimalik leida suuruse $c_{1,2}$ väärtuse.

$$c_{1,2} = 65.95221430 \, GPa \tag{4.14}$$

4.8 Venitusmaatriks D₈

Venitusmaatriksi D_8 abil on võimalik leida elastsuskoefitsient $c_{1,3}$ järgnevast võrrandist.

$$E(V,\delta) = E(V_0,0) + V_0 (\tau_1 - \tau_3)\delta + \frac{1}{2}V_0 (c_{1,1} + c_{3,3} - 2c_{1,3})\delta^2;$$
(4.15)

Viimast võrrandit on võimalik lähendada funktsiooniga $f(x) = \alpha + \beta x + \gamma x^2$. Toome järgnevalt välja vastava graafiku.

Joonis 8: Arvutus
punktid maatriksi D_8 jaoks, venitusel
 2%

Koefitsient	Väärtus
α	-53.2825792136150369
eta	0.0575613940050676634
γ	61.8030877573118147

Tabel 8: Sobitatud funktsiooni f(x) koefitsiendid koos veaga

Arvestades, et $V_0 = 85.962 A^3$ on võimalik leida suuruse $c_{1,3}$ väärtuse.

$$c_{1,3} = 61.57616340 \, GPa \tag{4.16}$$

4.9 Venitusmaatriks D₉

Venitusmaatriksi D_9 abil on võimalik leida elastsuskoefitsient $c_{2,3}$ järgnevast võrrandist.

$$E(V,\delta) = E(V_0,0) + V_0 (\tau_2 - \tau_3)\delta + \frac{1}{2}V_0 (c_{2,2} + c_{3,3} - 2c_{2,3})\delta^2;$$
(4.17)

Viimast võrrandit on võimalik lähendada funktsiooniga $f(x) = \alpha + \beta x + \gamma x^2$. Toome järgnevalt välja vastava graafiku.

Joonis 9: Arvutus
punktid maatriksi D_9 jaoks, venitusel
 2%

Koefitsient	Väärtus
α	-53.2825716450216476
eta	-0.00174999999918164987
γ	49.0465367964679615

Tabel 9: Sobitatud funktsiooni $\mathbf{f}(\mathbf{x})$ koefitsiendid koos ve
aga

Arvestades, et $V_0 = 85.962 A^3$ on võimalik leida suuruse $c_{2,3}$ väärtuse.

$$c_{2,3} = 41.98477440 \, GPa \tag{4.18}$$

4.10 Elastsusmooduli sõltuvus suunast

Vastavalt võrrandile on võimalik leida elastsusmooduli sõltuvuse suunast. Toome siinkohal välja vaid graafikud. Esimesed kolm kirjeldavad projektsioone kolmele tasandile (a-b, a-c, b-c) ning neljas on kolmemõõtmeline graafik.

4.10.1 Projektsioon a b tasandile

Joonis 10: Elastusmooduli projektsioon vektoritega \vec{a} ning \vec{b} määratud tasandile

4.10.2 Projektsioon a c tasandile

Joonis 11: Elastusmooduli projektsioon vektoritega \vec{a} ning \vec{c} määratud tasandile

4.10.3 Projektsioon b c tasandile

Joonis 12: Elastusmooduli projektsioon vektoritega \vec{b} ning \vec{c} määratud tasandile

4.10.4 Kolmemõõtmiline joonis

Joonis 13: Elastusmooduli sõltuvus suunast kolmemõõtmeline joonis

4.11 Nihke- ning elastsusmoodulid

Vastavalt eelpool defineeritud valemitele saame Reussi ja Voigti elastsus- ning nihkemooduliteks järgmised väärtused.

Nihkemoodul:

$$G_R = 42.52549886GPa; (4.19)$$

$$G_V = 44.34231261GPa; (4.20)$$

Elastsusmoodul:

$$B_R = 84.43446201GPa;$$
(4.21)
$$P_{-} = 01.42184822Cma;$$
(4.22)

$$B_V = 91.42184823Gpa; (4.22)$$

Üldine nihke- ning elastsusmoodul:

$$G = 43.43390574GPa; (4.23)$$

$$B = 87.92815510GPa; (4.24)$$

Youngi moodul ning Poisson suhe:

$$E = 111.8799266GPa; (4.25)$$

$$\nu = 0.2879330640; \tag{4.26}$$

4.12 Youngi mooduli sõltuvus suunast

Järgnevalt toome sarnaselt elastsusmooduliga välja neli graafikut, mis iseloomustavad Youngi mooduli sõltuvust suunast.

4.12.1 Projektsioon a b tasandile

Joonis 14: Youngi mooduli projektsioon vektoritega \vec{a} ning \vec{b} määratud tasandile

4.12.2 Projektsioon a c tasandile

Joonis 15: Youngi mooduli projektsioon vektoritega \vec{a} ning \vec{c} määratud tasandile

4.12.3 Projektsioon b c tasandile

Joonis 16: Youngi mooduli projektsioon vektoritega \vec{b} ning \vec{c} määratud tasandile

4.12.4 Kolmemõõtmiline joonis

Joonis 17: Youngi mooduli sõltuvus suunast kolmemõõtmeline joonis

5 Viited

Viited

[1] P. Ravindran, et al., J. Appl. Phys. 84, 4891 (1998).