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ABSTRACT

This paper presents an electro-mechanical Finite Element Model of an ionic polymer-metal composite (IPMC)
material. Mobile counter ions inside the polymer are drifted by an applied electric �eld, causing mass imbalance
inside the material. This is the main cause of the bending motion of this kind of materials. All foregoing
physical e�ects have been considered as time dependent and modeled with FEM. Time dependent mechanics
is modeled with continuum mechanics equations. The model also considers the fact that there is a surface of
platinum and also a layer, where some amount of Pt is di�used into the polymer backbone. The described basic
model has been under developement for a while and has been improved over the time. Simulation comparisons
with experimental data have shown good harmony. Our previous paper described most of the basic model.
Additionally, the model was coupled with equations, which described self-oscillatory behavior of the IPMC
material. It included describing electrochemical processes with additional four di�erential equations. The Finite
Element Method turned out to be very reasonable for coupling together and solving all equations as a single
package. We were able to achieve reasonably precise model to describe this complicated phenomenon. Our
most recent goal has been improving the basic model. Studies have shown that some electrical parameters of an
IPMC, such as surface resistance and voltage drop are dependent on the curvature of the IPMC. The new model
takes these e�ects into account to some extent. It has had an extra level of complexity to the model, because
now all simulations are done in three dimensional domain. However, the result is advanced visual and numerical
behavior of an IPMC with di�erent surface characteristics.
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1. INTRODUCTION

Electroactive polymer actuators have gained a lot of attention in many �elds such as robotics and micro elec-
tronics. The advantages of EAP actuators are relatively simple mechanics and noiseless actuations. Additionally
some EAPs, such as IPMCs,1 are able to function in aqueous environments. Those qualities make the mate-
rials possible to use as so called arti�cial muscles. In this paper we consider three dimensional time dependent
simulations of IPMC type materials with the Finite Element Method.

One of the most important qualities of IPMC materials is relatively large amplitude bending in response
to electrical stimulations. An ion exchange polymer membrane, such as Na�onTM , Te�onTM , is covered with
metal layers. The metal is typically platinum or gold. During the fabrication process the polymer membrane is
saturated with certain solvent and ions. When voltage is applied to the metal electrodes, the ions start migrating
due to the applied electric �eld. Migrating ions usually drag some solvent with them, causing expansion and
contractions respectively near the surface layers. That in turn causes bending like actuation of IPMC sheet.

To simulate actuation of an IPMC sheet we need to solve coupled problems due to the complex nature of
bending of an IPMC. Electrostatics, mass transfer and mechanical e�ects must be taken account to get a minimal
functional base model which could predict actuation. Usually two dimensional time dependent model would be
enough to get reasonable results. However, in this paper we consider three dimensional model of IPMC. This
allows to take into account surface resistance changes for whole area of the metallic layer. Some authors2, 3

have already simulated mass transfer and electrostatic e�ects. We used similar approach in our model. Toi4 has
shown a Finite Element model including viscosity terms in transportation processes explicitly. The simulation is
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Figure 1. The IPMC strip, three-dimensional. The image is out of scale for illustrative purposes.

performed as time dependent and for three dimensions. However, the basis of the described model is a rectangular
beam with 2 pairs of electrodes. Our approach for simulating mechanical bending is taking advantage of the
numerical nature of FEM problems - we use continuum mechanics equations instead of analytical Euler beam
theory which is more commonly used by authors.5, 6 By coupling equations from di�erent domains, we get a
three dimensional simple model for an IPMC muscle sheet. That allows us to build up a more complex model.
In the last section of this article the variable surface resistance model is discussed.

2. BENDING SIMULATIONS

We have used Na�onTM 117, coated with thin layer of platinum in our experiments and therefore in theory.
Mass transfer and electrostatic simulations are done only for backbone polymer. Continuum mechanics is taken
into account for all domains, including the platinum coating. So there are two mechanical domains as shown in
Figure 1.

All simulations are done for an IPMC strip of 200µm thick polymer coated with 5µm thick platinum, in a
cantilever con�guration - one end of the strip is �xed.

2.1. The base model

The cation migration in the polymer backbone is described by the Nersnt-Planck equation, which covers migration
and di�usion part. The equation is:

∂C

∂t
+∇ · (−D∇C − zµFC∇φ) = −~u · ∇C, (1)

where C is concentration, µ mobility of species, D di�usion constant, T absolute temperature, R universal
gas constant, F Faraday constant, ~u velocity, z charge number and φ electric potential. The equations is solved
only for cations as anions are �xed in the polymer backbone. As voltage is applied to the platinum electrodes, all
free cations start migrating towards cathode, causing current in the outer electric circuit. As ions cannot move
beyond the boundary of the polymer, local charge intensity starts to increase near the surface of the platinum
electrodes, resulting in increase of electric �eld in the opposite direction to the applied one. This e�ect could be
described by by Gauss' Law:

∇ · ~E = −∆φ =
F · ρ
ε

, (2)

where ρ is charge density, ε is absolute dielectric constant and E is the strength of the electric �eld and can be
also expressed as ∇φ = − ~E. The formed steady state of the cations is shown in Figure 2. The corresponding
electric �eld distribution is also shown in Figure 2.

Many authors like Shahinpoor7 and Lee5 have used cantilever beam equation to model bending of an IPMC
strip in cantilever con�guration. Though using Euler beam model provides us analytical solution for a static



Figure 2. Cation concentration and electric �eld strength in an arbitrary cross section of an IPMC strip in time. The
cross section length is 200 µm, and the time is from 0 to 0.5 s.

con�guration, the model described in this paper is dynamic. So more accurate results could be obtained by using
continuum mechanics model with damping. The tradeo� is slower calculation speed, but the given model is not
intented for using in real time simulations anyway. Importance of viscoelasticity has been brought out also by
some other authors like Richardson8 and Newbury.9

There are di�erences in charge distribution only in really thin boundary layers as shown in Figure 2. As
many authors have concluded, only the boundary layers cause the bending.10 The longitudinal force per unit
cube in each point in the polymer of an IPMC is de�ned as follows:

~F = (A · ρ+B · ρ2) · ŷ, (3)

where ρ is charge density and A and B are constants which could be �tted from di�erent experiments.

To relate the force in Eq. 3 to the physical bending of an IPMC sheet, almost the same approach is used as
in11.11 Except this time all equations are solved in three dimensisons. These equations are described in Comsol
Multiphysics structural mechanics software package. Normal and shear strain are de�ned as

εi =
∂ui

∂xi
, εij =

1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
, (4)

where u is the displacement vector, x denotes a coordinate and indeces i and j are from 1 to 3 and denote
components correspondingly to x, y, or z direction. The general stress-strain relationship is

σ = Dε, (5)

where D is 6×6 elasticity matrix, consisting of components of Young's modulus and Poisson's ratio. The system
is in equilibrium, if the relation

−∇ · σ = ~F , (6)

is satis�ed. This is Navier's equation for displacement. The values of Young's modulus and Poisson's ratios,
which are used in the simulations, are shown in Table 1.

As we are dealing with time dependent simulations, we have to describe the dynamics of actuation rather
than statics. Besides, we also want to consider damping. The damping e�ect could be caused by material itself



and by the environment in which the IPMC is working. Therefore we use Rayleigh damping model to empirically
describe the e�ect:

m
d2u

dt2
+ ξ

du

dt
+ ku = f(t), (7)

where the damping parameter ξ is expressed as ξ = αm + βk. The parameter m is a mass, k is a sti�ness and
α and β are correspondingly damping coe�cients. By coupling Eq. (7) with Newton's equation, we get the the
equation, which is describes the dynamics of an IPMC strip:

ρ
∂2~u

∂t2
−∇ ·

[
c∇~u+ cβ∇∂~u

∂t

]
+ αρ

∂~u

∂t
= ~F . (8)

The origin of the equation is coverd in11 and also in Comsol Multiphysics manual.

So far we have described the base model, which is usable in both two dimensional and three dimensional
modeling. The parameters for given equations Eq. (1) - Eq. (8) are given in Table 1. The illustrative example of
bending is shown in Figure 3.

Variable Value Dimension Comment

Dcation 2 · 10−9 m2

s Di�usion coe�cient of cations, e.g Na+.

ε 3.8 · 10−5 F
m From capacitance measurment of an IPMC.

µ 8 · 10−13 mol·s
kg From Nernst-Einsten relation µ = D

R·T where T = 293K, R = 8.31 J
mol·K .

YN 50 · 106 Pa Young modulus of Na�onTM .

YPt 169 · 109 Pa Young modulus of platinum.

ρN 2600 kg
m3 Density of Na�onTM .

ρPt 21500 kg
m3 Density of platinum.

A 5 · 105 N ·m
C A constant in Eq. (3).

B 3 · 104 N ·m4

C2 A constant in Eq. (3).

α 1 1
s Mass damping parameter.

β 0.5 s Sti�ness damping parameter.

Table 1. Simulation values of the base model.

2.1.1. Meshing in three dimensional domain

Meshing in a three dimensional domain is not as straightforward as it is for 2 dimensions. There are couple of
things which should be taken account. First of all, two dimensions of an IPMC sheet are relatively large (in
range of centimeters) but the thickness is really small, much less than a millimeter. In addition, the thickness
consists of three layers - a polymer backbone and two layers of metal coating which are considered as separate
domains. Therefore the tetrahedral mesh really cannot be used over all the domains as the degrees of freedom
for calculations would be unreasonably large. That is why the mapped meshing technique is used. Instead of
tetrahedral �ne mesh, the rectangular coarser mesh is greated. The coarseness of the mesh is larger in the areas,
where physical variables do not tend to change very rapidly. For instance the concentration of cations is rather
smooth function in the middle of polymer backbone. Therefore areas around the surface layers contain �ner mesh.
As the problem is solved in number of physical domains, it is not really straightforward to analytically determine
the optimal mesh size. Instead trial and error method could be used and after performing some simulations, the
smoothness of the results could help to determine the optimal size of the mesh for future simulations. Example
of a mesh could be seen in Figure 4.

2.2. Extended model

The model described in the previous section is good for both two dimensional and three dimensional modeling.
However, solving the base model in 3 dimensional domain does not give us any kind of extra information. Instead
it adds some complexity such as more complicated meshing and increased solving times. The real use of the
third dimension comes, when the model takes into account also the surface resistance of the electrodes.



Figure 3. Example of three dimensional bending of an IPMC sheet. The length of the strip is 2cm, the width is 0.5cm
and the bending amplitude is approximately 4mm.

Figure 4. Meshing of an IPMC strip. One corner of the strip is shown. Notice the coarse mesh in the middle of the
IPMC but �ne mesh near the boundaries.



Figure 5. The conceptual diagram of the model.

Figure 6. Mapping the calculated current to the three dimensional model.

The surface resistance is an interesting characteristic of an IPMC strip. Besides of being di�erent for di�erent
IPMC sheets, it tends to depend on the curvature of the IPMC strip.12 On the other hand, the surface resistance
is the parameter which could be rather easily changed. For instance it is possible to make some areas of the
muscle sheet less conductive. That's the place where 3 dimensional model could be useful.

The idea of the extended model is to put together part of the electrical model, which includes active resi-
tances and the model described in the previous section. It means that the cation transportation and continuum
mechanics is coupled to the currents in the surface layers.

2.2.1. Currents in the surface layers

An IPMC strip connected to external power source forms an electric circuit. There are roughly two types of
conduction mechanisms in the circuit: electron conduction in the outer part of the ciruit and ion migration in
the IPMC. Even though the ions move only inside the polymer backbone, there is a connection between current
in outer circuit and displacement of the ions. The theorem which is more often used in plasma physics,13 is
called Ramo-Shockley theorem. The theorem connects movement of charged particles in con�ned space to the
current in connected electric circuit. The theory have been for instance used for modelling ion channels.14 The
genereal equation is:

I =
1
V

∑
i

qi × ~W (ri)i~vi, (9)

where j is the index of a particle, q is the charge, and v is the velocity of a particle. W corresponds to a electric
�eld which would exist without any charged particles present.14 By using Eq. 9, we can calculate the current
�owing in an electrode and therefore also voltage in the surface layer. The conceptual diagram is shown in
Figure 5.only Notice that there are number of resistors shown in the �gure. Those resistors resemble the metallic
electrode. The current model considers voltage drop only at the one side of the IPMC sheet - the side which
stretches during the actuation - as the resistance of this electrode is bigger.12

2.2.2. Simulation details

The simulation of proposed model coupled with the base model is rather complex problem. The complexity
comes from the fact that considering the surface resistance gives an extra variable which controls the applied
voltage. At the same time the applied voltage controls the current inside the polymer. However, there are ways



Figure 7. An electrode surface with the area of one square millimeter. The 0V is applied to the edge y = 0. There is a
current in�ow from the bottom surface, which resembles the connection with polymer backbone. The conductivity of the
electrode is maximum at x = 0 and decreases to zero at x = 1. The plot shows the voltage distribution - voltage of the
lighter areas is greater than voltage of the darker areas. The lines show the constant current density in the electrode.

to simplify the model by means of reducing solution time. One way to optimize is to calculate the current �ow in
two dimensional domain - two dimensional polymer - and then extend the solved value to the three dimensional
model. The conceptual diagram is shown in Figure 6. As the ions migrate, we know the total �ux with unit
mol/(m2s). By using the equation

I =
F

d

ˆ d

0

~j · ~dz, (10)

where d is the distance between electrodes and ~j is the migration current, F is Faraday constant, it is possible
to calculate the current I in the electrodes.

The given model is able to calculate surface currents and voltages at the initial moment. So the time
dependency is yet to come. The illustrative plot of the voltage distribution on the surface and the current
streamlines in the surface is shown in Figure (7). The �gure shows how the voltages and currents could possibly
distribute in the electode surface during the �rst moments of actuation. As it could be seen, the voltage
distribution is not uniform at all, which is also supported by the measurements.15 Preliminary data and
simulations show that the given theory should be develope further to obtain more sophisticated time dependent
three dimentional model of an IPMC.

3. CONCLUSIONS

We have developed a base model to model the simple physical processes such as ion migration and electric �eld
change in an IPMC. In this paper we have extended the base model to three dimensions. Some improvements in
meshing techniques have been necessary to be able to solve the three dimensional model within reasonable time.
To get the full use of the three dimensional model, we introduced the mechanism for calculating currents inside
the electrodes as a result of ion movement. The used theory is Ramo-Shockley theorem mostly know in other
�elds of physics. However, the theorem could be applicable also for an IPMC to estimate currents and therefore
voltage drops inside the electrodes. In this paper we have shown only the simple simulations of electrode currents,
but the given theory could be extended further to get a more sophisticated model of a three dimensional IPMC
actuator.

4. FUTURE WORK

Future work will be extending the given model, possibly using some electric circuit modeling coupled with the
use of Ramo-Shockley theorem to predict the currents inside the electrodes of an IPMC.
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