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ABSTRACT

This paper presents an electro-mechanical Finite Element Model of an ionic polymer-Institute of Technology,
Tartu University, Estoniametal composite (IPMC) material. Mobile counter ions inside the polymer are drifted
by an applied electric �eld, causing mass imbalance inside the material. This is the main cause of the bending
motion of this kind of materials. All foregoing physical e�ects have been considered as time dependent and
modeled with FEM. Time dependent mechanics is modeled with continuum mechanics equations. The model
also considers the fact that there is a surface of platinum and also a layer, where some amount of Pt is di�used
into the polymer backbone. The described basic model has been under developement for a while and has been
improved over the time. Simulation comparisons with experimental data have shown good harmony. Our previous
paper described most of the basic model. Additionally, the model was coupled with equations, which described
self-oscillatory behavior of the IPMC material. It included describing electrochemical processes with additional
four di�erential equations. The Finite Element Method turned out to be very reasonable for coupling together
and solving all equations as a single package. We were able to achieve reasonably precise model to describe
this complicated phenomenon. Our most recent goal has been improving the basic model. Studies have shown
that some electrical parameters of an IPMC, such as surface resistance and voltage drop are dependent on the
curvature of the IPMC. The new model takes these e�ects into account to some extent. It has had an extra level
of complexity to the model, because now all simulations are done in three dimensional domain. However, the
result is advanced visual and numerical behavior of an IPMC with di�erent surface characteristics.
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1. INTRODUCTION

Electroactive polymer actuators have gained a lot of attention in many �elds such as robotics and micro elec-
tronics. The advantages of EAP actuators are noiseless actuation, relatively simple mechanics and noiseless
actuations. Additionally some EAPs, such as IPMCs, are able to function in aqueous environments. Those
qualities make the materials possible to use as so called arti�cial muscles. In this paper we consider simulations
of IPMC type material with the Finite Element Method. In this paper we consider three dimensional time
dependent simulations of IPMC type materials with the Finite Element Method.

One of the most important qualities of IPMC materials is relatively large amplitude bending in response
to electrical stimulations. An ion exchange polymer membrane, such as Na�onTM , Te�onTM , is covered with
metal layers. The metal is typically platinum or gold. During the fabrication process the polymer membrane is
saturated with certain solvent and ions. When voltage is applied to the metal electrodes, the ions start migrating
due to the applied electric �eld. Migrating ions usually drag some solvent with them, causing expansion and
contractions respectively near the surface layers. That in turn causes bending like actuation of IPMC sheet.

To simulate actuation of an IPMC sheet we need to solve coupled problems due to the complex nature of
bending of an IPMC. Electrostatics, mass transfer and mechanical e�ects must be taken account to get a minimal
functional base model which could predict actuation. Usually two dimensional time dependent model would be
enough to get reasonable results. However, in this paper we consider three dimensional model of IPMC. This
allows to take into account surface resistance changes for whole area of the metallic layer. Some authors have
already simulated mass transfer and electrostatic e�ects. We used similar approach in our model. Toi has
shown a Finite Element model including viscosity terms in transportation processes explicitly. The simulation is
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Figure 1. The IPMC strip, three-dimensional. The image is out of scale for illustrative purposes.

performed as time dependent and for three dimensions. However, the basis of the described model is a rectangular
beam with 2 pairs of electrodes. Our approach for simulating mechanical bending is taking advantage of the
numerical nature of FEM problems - we use continuum mechanics equations instead of analytical Euler beam
theory which is more commonly used by authors. By coupling equations from di�erent domains, we get a three
dimensional simple model for an IPMC muscle sheet. That allows us to build up a more complex model. In the
last section of this article the variable surface resistance model is discussed.

2. BENDING SIMULATIONS

We have used Na�onTM 117, coated with thin layer of platinum in our experiments and therefore in theory.
Mass transfer and electrostatic simulations are done only for backbone polymer. Continuum mechanics is taken
into account for all domains, including the platinum coating. So there are two mechanical domains as shown in
Figure 1.

All simulations are done for an IPMC strip of 200µm thick polymer coated with 7µm thick platinum, in a
cantilever con�guration - one end of the strip is �xed.

2.1. The base model

The cation migration in the polymer backbone is described by the Nersnt-Planck equation (Eq. (XXX)), which
covers migration and di�usion part. The equation is:

∂C

∂t
+∇ · (−D∇C − zµFC∇φ) = −~u · ∇C, (1)

where C is concentration, µ mobility of species, D di�usion constant, T absolute temperature, R universal
gas constant, F Faraday constant, ~u velocity, z charge number and φ electric potential. The equations is solved
only for cations as anions are �xed in the polymer backbone. As voltage is applied to the platinum electrodes, all
free cations start migrating towards cathode, causing current in the outer electric circuit. As ions cannot move
beyond the boundary of the polymer, local charge intensity starts to increase near the surface of the platinum
electrodes, resulting in increase of electric �eld in the opposite direction to the applied one. This e�ect could be
described by by Gauss' Law:

∇ · ~E = −∆φ =
F · ρ
ε

, (2)

where ρ is charge density, ε is absolute dielectric constant and E is the strength of the electric �eld and can be
also expressed as ∇φ = − ~E. The formed steady state of the cations is shown in Figure 2. The corresponding
electric �eld distribution is also shown in Figure 2.

Many authors like Shahinpoor and Lee have used cantilever beam equation to model bending of an IPMC
strip in cantilever con�guration. Though using Euler beam model provides us analytical solution for a static



Figure 2. Cation concentration and electric �eld strength in an arbitrary cross section of an IPMC strip in time. The
cross section length is 200 µm, and the time is from 0 to 0.5 s.

con�guration, the model described in this paper is dynamic. So more accurate results could be obtained by using
continuum mechanics model with damping. The tradeo� is slower calculation speed, but the given model is not
intented for using in real time simulations anyway. Importance of viscoelasticity has been brought out also by
some other authors like Richardson and Newbury.

There are di�erences in charge distribution only in really thin boundary layers as shown in Figure. As many
authors have concluded, only the boundary layers cause the bending. The longitudinal force per unit cube in
each point in the polymer of an IPMC is de�ned as follows:

~F = (A · ρ+B · ρ2) · ŷ, (3)

where ρ is charge density and A and B are constants which could be �tted from di�erent experiments.

To relate the force in Eq. 3 to the physical bending of an IPMC sheet, almost the same approach is used as
in . Except this time all equations are solved in three dimensisons. These equations are described in Comsol
Multiphysics structural mechanics software package. Normal and shear strain are de�ned as

εi =
∂ui

∂xi
, εij =

1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
, (4)

where u is the displacement vector, x denotes a coordinate and indeces i and j are from 1 to 3 and denote
components correspondingly to x, y, or z direction. The general stress-strain relationship is

σ = Dε, (5)

where D is 6×6 elasticity matrix, consisting of components of Young's modulus and Poisson's ratio. The system
is in equilibrium, if the relation

−∇ · σ = ~F , (6)

is satis�ed. This is Navier's equation for displacement. The values of Young's modulus and Poisson's ratios,
which are used in the simulations, are shown in Table ??.

As we are dealing with time dependent simulations, we have to describe the dynamics of actuation rather
than statics. Besides, we also want to consider damping. The damping e�ect could be caused by material itself



and by the environment in which the IPMC is working. Therefore we use Rayleigh damping model to empirically
describe the e�ect:

m
d2u

dt2
+ ξ

du

dt
+ ku = f(t), (7)

where the damping parameter ξ is expressed as ξ = αm + βk. The parameter m is a mass, k is a sti�ness and
α and β are correspondingly damping coe�cients. By coupling Eq. (7) with Newton's equation, we get the the
equation, which is describes the dynamics of an IPMC strip:

ρ
∂2~u

∂t2
−∇ ·

[
c∇~u+ cβ∇∂~u

∂t

]
+ αρ

∂~u

∂t
= ~F . (8)

The origin of the equation is coverd in and also in Comsol Multiphysics manual.

So far we have described the base model, which is usable in both two dimensional and three dimensional
modeling. The parameters for given equations Eq. (1) - Eq. (8) are given in 1.

Variable Value Dimension Comment

Dcation 2 · 10−9 m2

s Di�usion coe�cient of cations, e.g Na+.

ε 3.8 · 10−5 F
m From capacitance measurment of an IPMC.

µ 8 · 10−13 mol·s
kg From Nernst-Einsten relation µ = D

R·T where T = 293K, R = 8.31 J
mol·K .

YN 50 · 106 Pa Young modulus of Na�onTM .

YPt 169 · 109 Pa Young modulus of platinum.

ρN 2600 kg
m3 Density of Na�onTM .

ρPt 21500 kg
m3 Density of platinum.

A 5 · 105 N ·m
C A constant in Eq. (7).

B 3 · 104 N ·m4

C2 A constant in Eq. (7).

α 1 1
s Mass damping parameter.

β 0.5 s Sti�ness damping parameter.

Table 1. Base model simulation values.

2.2. Extended model

The model described in the previous section is good for both two dimensional and three dimensional modeling.
However, solving the base model in 3D domain does not give us any kind of extra information. Instead it adds
some complexity such as more complicated meshing and increased solving times. The real use of the third
dimension comes, when the model takes into account also the surface resistance of the electrodes.

The surface resistance is an interesting characteristic of an IPMC strip. Besides of being di�erent for di�erent
IPMC sheets, it tends to depend on the curvature of the IPMC strip. On the other hand, the surface resistance
is the parameter which could be rather easily changed. For instance it is possible to make some areas of the
muscle sheet less conductive. That's the place where 3 dimensional model could be useful.

The idea of the extended model is to put together part of the electrical model, such as and the model
described in the previous section. It means that the cation transportation and continuum mechanics is coupled
to the surface resistance and e�ects due to that.

2.3. Meshing in three dimensional domain

Meshing in three dimensional domain is not as straightforward as it is for 2 dimensions. There are couple of things
which should be taken account. First of all, two dimensions of an IPMC sheet are relatively large (in range of
centimeters) but the thickness is really small, far less than a millimeter. Besides, the thickness is not a solid piece
as two layers of metal coating are considered as separate domains. Therefore the tetrahedral mesh really cannot
be used over all the domains as the degrees of freedom for calculations would be unreasonably large. That's why
the mapped meshing is technique is used. Instead of tetrahedral �ne mesh, the rectangular mesh is greated. The



Figure 3. Meshing of an IPMC strip. One corner of the strip is shown. Notice the coarse mesh in the middle of the
IPMC but �ne mesh near the boundaries.

coarseness of the mesh is larger in the areas, where physical variables do not tend to change very rapidly. For
instance the concentration of cations is rather smooth function in the middle of polymer backbone. Therefore
areas around the surface layers contain �ner mesh. As the problem is solved in number of physical domains,
it is not really straightforward to determine the optimal mesh size analytically. Instead trial and error method
could be used and after performing some simulations, the smoothness of the results could help to determine the
optimal size of the mesh for future simulations. Example of a mesh could be seen in Figure 3.


