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1. To go from the viscosity to a cross section for a gas at 1 atm and 300 K: η ≈ ρDη,

Dη ≈ vλ, λ = 1/nσ (ρ = mn)

σ ≈ mv

η
(1)

where v2 ∼ kBT/m.

When crunching numbers it can help to write a short program

eta.m

clear

m=[4 20 40 84 131]’;

ep=[10 36 120 170 231]’;

sig=[2.56 2.78 3.40 3.64 3.96]’;

eta=0.0001*[1.94 3.10 2.21 2.47 2.25]’;

rho1=0.00004;

rho=rho1*m;

D=eta./rho;

v1=1.6e5;

v=v1./sqrt(m);

L=D./v;

L8=1.0e8;

Lstar=(L./sig)*L8;

mscale=1.6e-8;

cross16=mscale*m.*v./eta

There is a possible ambiguity, the cross section is usually denoted by σ and so is the length

scale involved in the Lennard-Jones interaction. But the units are different.

2. Begin with (b). Note that the m in Eq. (3) is in the wrong place. Eq. (2) and (3) are

essentially the same. Use

p2

2m
− pQ =

1

2m
(p−mQ)2 −m

Q2

2
=

m

2
(v − u)2 −m

Q2

2
(2)

where p = mv and u = Q. Since the p integration is from −∞ to +∞ when calculating

the average of p you can shift the origin of integration to pQ = mQ so that the argument
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FIG. 1: σ vs ε.

in the numerator of the momentum average shifts to mQ, i.e., p = mQ + (p −mQ). Thus

< p >= mQ. Or using the Eq. (2) above < p >= mu.

3. The probability scales as v/vT where v2
T = 2/mβ. So use x = v/vT

f(x) =
1√
π

exp(−x2). (3)

Then ∫ +∞

−∞
dx f(x) = 2

∫ +∞

0
dx f(x) = 1 (4)

and

< |v| >= vT < x >= vT 2
∫ +∞

0
dx xf(x) =

vT√
π

. (5)

To find P> use x> = 1/
√

π = 0.5642 and

P> = 2
∫ +∞

x>

dx f(x) = 1− 2
∫ x>

0
dx f(x) = 1− erf(x>) = 0.4249. (6)

As a test of the numbers use the cumulative probability, P (x), defined by

P (x) = 2
∫ x

0
dx f(x), (7)
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the probability that v/vT is less than x. see Fig. 2. [It doesn’t hurt to test results

numerically.]

% fofv.m

clear

% Sincef(−x) = f(x) use f(x) = (2/
√

pi)exp− x2

% values of x, f(x)

N=1000;

x=linspace(0,6,N)’;

xx=x.*x;

dx=x(2)-x(1);

Cnorm=2/sqrt(pi);

fofx=Cnorm*exp(-xx);

% dress the norm for numerical errors

Inorm=dx*sum(fofx)

fofx=fofx/Inorm;

% cumulative probability

Pofx=cumsum(dx*fofx);

% < |v| > /vT

vbar=dx*sum(x.*fofx); % (numerical)

vbarT=1/sqrt(pi); % (analytic)

% compare numerical and analytic result

look=[vbar vbarT]

Pgreater = 1-erf(vbar)

% to make a figure

X=[vbar vbar];

Y=[0 1.5];

plot(x,fofx,X,Y,x,Pofx)

axis([0 3 0 1.2])

xlabel(’x = v/vT ’,’Fontsize’,16)

ylabel(’f(x)’,’Fontsize’,16)

title(’f(x) and P(x) vs x’,’Fontsize’,16)
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FIG. 2: f(x) and P (x) vs x..

grid

4. This is essentially the same as problem 3 on HW1. For ε � 1 expect

< x > = εaN = εa
t

τ
, (8)

< x2 > − < x >2 = a2N = a2 t

τ
, (9)

where a is the step length and τ is the step time. The particles average position moves

proportional to time. The particle diffuses relative to its average position just as it does

when there is no bias. When ε approaches 1 this simple result is modified as it must be for

at ε = 1 the walk is a completely deterministic walk, every step to the right.
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