P740.HW2.sol.tex

1. To go from the viscosity to a cross section for a gas at 1 atm and $300 \mathrm{~K}: \eta \approx \rho D_{\eta}$, $D_{\eta} \approx v \lambda, \lambda=1 / n \sigma(\rho=m n)$

$$
\begin{equation*}
\sigma \approx \frac{m v}{\eta} \tag{1}
\end{equation*}
$$

where $v^{2} \sim k_{B} T / m$.
When crunching numbers it can help to write a short program

$$
\begin{aligned}
& \text { eta.m } \\
& \text { clear } \\
& \mathrm{m}=\left[\begin{array}{lllll}
4 & 20 & 40 & 84 & 131
\end{array}\right] \text {; } \\
& \text { ep=}=\left[\begin{array}{lllll}
10 & 36 & 120 & 170 & 231
\end{array}\right] \text {; } \\
& \operatorname{sig}=\left[\begin{array}{lllll}
2.56 & 2.78 & 3.40 & 3.64 & 3.96
\end{array}\right]^{\prime} ; \\
& \text { eta }=0.0001^{*}\left[\begin{array}{llll}
1.94 & 3.10 & 2.21 & 2.47 \\
2.25
\end{array}\right] \text { '; } \\
& \text { rho1 }=0.00004 \text {; } \\
& \text { rho=rho1*m; } \\
& \mathrm{D}=\text { =eta./rho; } \\
& \mathrm{v} 1=1.6 \mathrm{e} 5 \text {; } \\
& \mathrm{v}=\mathrm{v} 1 . / \operatorname{sqrt}(\mathrm{m}) \text {; } \\
& \mathrm{L}=\mathrm{D} . / \mathrm{v} \text {; } \\
& \mathrm{L} 8=1.0 \mathrm{e} 8 \text {; } \\
& \text { Lstar }=(\mathrm{L} . / \text { sig }) * \text { L8; } \\
& \text { mscale }=1.6 \mathrm{e}-8 \text {; } \\
& \text { cross } 16=\text { mscale }^{*} \text { m. }{ }^{*} \text { v./eta }
\end{aligned}
$$

There is a possible ambiguity, the cross section is usually denoted by σ and so is the length scale involved in the Lennard-Jones interaction. But the units are different.
2. Begin with (b). Note that the m in Eq. (3) is in the wrong place. Eq. (2) and (3) are essentially the same. Use

$$
\begin{equation*}
\frac{p^{2}}{2 m}-p Q=\frac{1}{2 m}(p-m Q)^{2}-m \frac{Q^{2}}{2}=\frac{m}{2}(v-u)^{2}-m \frac{Q^{2}}{2} \tag{2}
\end{equation*}
$$

where $p=m v$ and $u=Q$. Since the p integration is from $-\infty$ to $+\infty$ when calculating the average of p you can shift the origin of integration to $p_{Q}=m Q$ so that the argument

FIG. 1: σ vs ϵ.
in the numerator of the momentum average shifts to $m Q$, i.e., $p=m Q+(p-m Q)$. Thus $<p>=m Q$. Or using the Eq. (2) above $<p>=m u$.
3. The probability scales as v / v_{T} where $v_{T}^{2}=2 / m \beta$. So use $x=v / v_{T}$

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{\pi}} \exp \left(-x^{2}\right) \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{-\infty}^{+\infty} d x f(x)=2 \int_{0}^{+\infty} d x f(x)=1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
<|v|>=v_{T}<x>=v_{T} 2 \int_{0}^{+\infty} d x x f(x)=\frac{v_{T}}{\sqrt{\pi}} . \tag{5}
\end{equation*}
$$

To find $P_{>}$use $x_{>}=1 / \sqrt{\pi}=0.5642$ and

$$
\begin{equation*}
P_{>}=2 \int_{x_{>}}^{+\infty} d x f(x)=1-2 \int_{0}^{x_{>}} d x f(x)=1-\operatorname{erf}\left(x_{>}\right)=0.4249 \tag{6}
\end{equation*}
$$

As a test of the numbers use the cumulative probability, $P(x)$, defined by

$$
\begin{equation*}
P(x)=2 \int_{0}^{x} d x f(x) \tag{7}
\end{equation*}
$$

the probability that v / v_{T} is less than x. see Fig. 2. [It doesn't hurt to test results numerically.]
\% fofv.m
clear
$\%$ Since $f(-x)=f(x)$ use $f(x)=(2 / \sqrt{p i}) \exp -x^{2}$
$\%$ values of $\mathrm{x}, \mathrm{f}(\mathrm{x})$

$$
\begin{aligned}
& \mathrm{N}=1000 ; \\
& \mathrm{x}=\operatorname{linspace}(0,6, \mathrm{~N})^{\prime} ; \\
& \mathrm{xx}=\mathrm{x} . .^{*} \mathrm{x} ; \\
& \mathrm{dx}=\mathrm{x}(2)-\mathrm{x}(1) ; \\
& \text { Cnorm }=2 / \text { sqrt }^{2}(\mathrm{pi}) ; \\
& \mathrm{fof}=\text { Cnorm*exp }(-\mathrm{xx}) ;
\end{aligned}
$$

\% dress the norm for numerical errors

$$
\begin{aligned}
& \text { Inorm }=\mathrm{dx}^{*} \text { sum(fofx) } \\
& \text { fofx=fofx/Inorm; }
\end{aligned}
$$

\% cumulative probability

$$
\text { Pofx }=\text { cumsum }(d x * \text { fofx }) ;
$$

$\%<|v|>/ v_{T}$

$$
\begin{aligned}
& \text { vbar }=\mathrm{dx} * \operatorname{sum}(\mathrm{x} . * \text { fofx }) ; \quad \% \text { (numerical) } \\
& \text { vbar } \mathrm{T}=1 / \operatorname{sqrt}(\mathrm{pi}) ; \quad \% \text { (analytic) }
\end{aligned}
$$

\% compare numerical and analytic result

$$
\begin{aligned}
& \text { look=[vbar vbarT }] \\
& \text { Pgreater }=1 \text {-erf(vbar) }
\end{aligned}
$$

\% to make a figure

$$
\begin{aligned}
& \mathrm{X}=[\text { vbar vbar }] ; \\
& \mathrm{Y}=\left[\begin{array}{lll}
0 & 1.5
\end{array}\right] ; \\
& \operatorname{plot}(\mathrm{x}, \mathrm{fofx}, \mathrm{X}, \mathrm{Y}, \mathrm{x}, \mathrm{Pofx}) \\
& \operatorname{axis}\left(\left[\begin{array}{lll}
0 & 3 & 0
\end{array} 1.2\right]\right) \\
& \text { xlabel(' } x=v / v_{T}, ', ' \text { Fontsize',16) } \\
& \text { ylabel('f(x)','Fontsize',16) } \\
& \text { title('f(x) and } \mathrm{P}(\mathrm{x}) \text { vs } \mathrm{x}^{\prime}, ' \text { 'Fontsize',16) }
\end{aligned}
$$

FIG. 2: $f(x)$ and $P(x)$ vs $x .$.
grid
4. This is essentially the same as problem 3 on HW1. For $\epsilon \ll 1$ expect

$$
\begin{align*}
<x> & =\epsilon a N=\epsilon a \frac{t}{\tau} \tag{8}\\
<x^{2}>-<x>^{2} & =a^{2} N=a^{2} \frac{t}{\tau} \tag{9}
\end{align*}
$$

where a is the step length and τ is the step time. The particles average position moves proportional to time. The particle diffuses relative to its average position just as it does when there is no bias. When ϵ approaches 1 this simple result is modified as it must be for at $\epsilon=1$ the walk is a completely deterministic walk, every step to the right.

