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Abstract— The bodies and brains of fish have evolved to achieve con-
trol objectives beyond the capabilities of current underwater vehicles. One
route toward designing underwater vehicles with similar capabilities is to
better understand fish physiological design and control strategies. This pa-
per has two objectives: (1) to review clues to artificial swimmer design taken
from fish physiology, and (2) to formalize and review the control problems
which must be solved by a robot fish. The goal is to expoit fish locomotion
principles to address the truly difficult control challenges of station keeping
under large perturbations, rapid maneuvering, power-efficient endurance
swimming, and trajectory planning and tracking. The design and control of
biomimetic swimming machines meeting these challenges will require state-
of-the-art engineering and biology.
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I. INTRODUCTION

The bodies and brains of fish have evolved to achieve con-
trol objectives beyond the capabilities of current underwater ve-
hicles. Some fish are highly maneuverable, some are power-
efficient endurance swimmers, some are accomplished at station
keeping in the presence of significant perturbations, and some
combine these capabilities. One route toward designing under-
water vehicles with similar capabilities is to better understand
fish physiological design and control strategies.

This paper has two objectives: (1) to review clues to artificial
swimmer design taken from fish physiology, and (2) to formal-
ize and review the control problems which must be solved by a
robot fish. Design encompasses issues such as morphology, pas-
sive mechanical properties, actuator selection and placement,
and sensor selection and placement. Control encompasses is-
sues such as planning and executing goal-directed fin and body
movements and incorporating sensory feedback. Because there
have been many more studies on the control advantages offered
by fish mechanical design and behavior than on neural feedback
control of fish locomotion, our review of the control problems to
be solved by robot fish focuses on control-theoretic approaches
to robot fish locomotion.

As a first step, it is necessary to understand context and goals.
A robot built to locomote in littoral zones is likely quite different
from one built to swim in deep water. Similarly, a robot built to
swim efficiently for long distances will be different from one
built to perform rapid maneuvers.

To limit the scope of this review, we first take note of the fact
that it is relatively straightforward, with existing technology, to
build robotic fish that look life-like as they swim through the
water. Among the most convincing of these are the artificial sea
bream and coelacanth (an extinct fish) developed by Mitsubishi
Heavy Industries. Our goal is not to build life-like robotic fish,
but to exploit fish locomotion principles to address the truly dif-
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ficult control challenges of station keeping under large perturba-
tions, rapid maneuvering, power-efficient endurance swimming,
and trajectory planning and tracking. The design and control of
biomimetic swimming machines meeting these challenges will
require state-of-the-art engineering and biology.

Section II reviews fish swimming modes, the basic hydrody-
namics of swimming, and the effect of design choices such as fin
placement and stiffness on maneuverability and stability. Sec-
tion III formulates the control problems which must be solved
by a robot fish, taking consideration of the possible underactu-
ated nature of the fish, and reviews proposed solutions to these
problems.

II. CONSIDERATIONS FOR THE DESIGN OF BIOMIMETIC
SWIMMING MACHINES

A. Morphology and Swimming Modes

A basic consideration for the design of swimming machines is
the design of propulsors: their shape, their location on the robot,
their mechanical properties (e.g., inertia and stiffness), and their
pattern of movement. Another important consideration is the
overall shape of the robot. Fish provide useful illustrations of
propulsor design, swimming modes, and body shape (morphol-
ogy). Not surprisingly, they also reveal that these are tightly
interrelated [89]. Sfakiotakis ef al. [105] provide an excellent
review of these factors, including the classification scheme il-
lustrated in Figure 1. Their classification is based on two main
factors: (1) the extent to which propulsion is based on undula-
tory motion versus oscillatory motion, and (2) the body struc-
tures or fins that are most active in generating thrust. In order
to illustrate these factors and review a few of the most relevant
swimming modes and fish morphologies, we will discuss several
examples below. For a more complete discussion, the reader is
referred to [105].

Fish that generate thrust principally via body and/or caudal
tailfin motions are known collectively as BCF swimmers (Fig-
ure la). For example, in anguilliform locomotion, the entire
body is the propulsor. Anguilliform swimming, which is typi-
cal of eels, lampreys and the invertebrate amphioxus (lancelets),
requires a long, slender, and highly flexible body. Thrust is pro-
duced by undulation, i.e., passing a transverse wave from head
to tail. Thus, one useful feature of anguilliform swimming is
the ability to swim backwards, which simply requires that the
wave be passed from tail to head [20]. Robotic anguilliforms
have been described in [7], [83], and have proved useful in the
study of artificial neural network control as well as path plan-
ning for underactuated systems (see Section III). Carangiform
locomotion also involves undulation of the entire body, but with
amplitude growing toward the tail. Typical carangiform swim-
mers (jacks, mackerel, snapper) have a narrow peduncle and a
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Fig. 1. Swimming modes associated with (a) BCF propulsion and (b) MPF propulsion. Shaded areas contribute to thrust generation. Modified from [105].

tall, forked caudal fin. These are among the swiftest of swim-
mers. The fastest of the carangiforms are often placed in another
category, known as thunniform swimmers. These fish, including
tuna and some sharks, have very low-drag body shapes, narrow
peduncles, and tall, lunate (crescent-shaped) caudal fins. Not
surprisingly, most studies of efficient fin-based swimming have
focused on the carangiforms and thunniforms. Mason and Bur-
dick [79] and Saimek and Li [102] describe robotic testbeds for
the study of carangiform swimming, while the MIT RoboTuna
is an example of a robotic thunniform [110]. Sub-carangiform
locomotion is intermediate between carangiform and anguilli-
form.

Although the caudal fin is arguably the most successful of
aquatic propulsors (certainly based on number of species), there
are many types of fish (Figure 1b), known as MPF swimmers,
that generate thrust using principally median (e.g., dorsal and
anal) and paired (e.g., pectoral) fins. Among these, a particu-
larly important class is the labriform swimmers that make use
of pectoral fin oscillation and almost no body motion. These
include the wrasses, angelfish and surfperches. As will be dis-
cussed later, the labriform swimmers may generate either drag-
based or lift-based locomotion. While there is evidence that
labriform swimmers are less efficient than carangiform swim-
mers at cruising speeds [105], labriform swimming is thought
to be more efficient at slow speeds and considerably more ma-
neuverable as well [17], [18]. Maneuverability stems from the
fact that the two pectoral fins may be controlled independently
of one another, and also from the fact that pectoral fins may pro-
duce reverse thrust. Labriforms also appear to be proficient at
station-keeping in currents, which may relate to the absence of
caudal fin oscillations, reducing lateral recoil and sideslip [45].
Kato [55], [56] has performed extensive testing and control de-
velopment for a labriform robot known as “Bass I1.”

The ostraciiform swimmers, such as cowfish and boxfish,
make use of both median and paired fins to swim. These fish are
also characterized by a rigid carapace that encases about three-
fourths of the body length. Although classically known as slow
swimmers, a recent study points to high maximum speeds, high
endurance, and a high level of dynamic stability, all features that
would be desirable in an AUV [45].

A final swimming mode that will be mentioned here is that of
the gymnotiforms, especially the American knifefishes. These
fish possess a ventral ribbon fin that runs most of the length of
the body. They have pectoral fins and either a vestigial caudal
fine or none at all. Thrust is produced by passing waves down
the ribbon fin while the body remains relatively rigid. These fish
also possess an elaborate electrosensory system with receptors
spread across their bodies. The gymnotiforms are remarkably
maneuverable swimmers, able to reverse swimming direction
suddenly and also roll their bodies in order to capture prey [77].
This maneuverability stems from the fact that the ribbon fin is
a propulsor having a high number of actively controlled inputs.
By properly coordinating these inputs, exquisite control of the
thrust vector is possible [105], [19].

B. Non-dimensional parameters and key metrics

To facilitate the discussion of swimming, especially compar-
isons across different fish, several non-dimensional parameters
and metrics are commonly used. The propulsive efficiency, or
Froude number, is defined as

np = 5= ey

where P = UT) is the useful propulsive power, the product of
the time-averaged thrust 7'y and swimming speed U, and Pp is
the time-averaged power expended by the fish [14]. Propulsive
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efficiencies reported in the literature vary over a considerable
range, from 90% for a carangiform swimmer [90] to only 16%
for drag-based labriform locomotion [18].

The reduced frequency or Strouhal number relates oscillation
frequency f to swimming speed U, and is considered a measure
of the importance of unsteady hydrodynamic effects [105], [34].
It is defined as

0':271'7 2)

where L is a characteristic length, usually the chord length of
the moving fin. If o is greater than 0.1, unsteady effects are
considered important. This is the case for most fish. Triantafyl-
lou [108] introduces a closely related measure where the length
scale A derives from the peak-to-peak lateral excursion of the
tail fin at its junction with the body. Following [110], we will
simply call this the Strouhal number:

_ 4
=T
Triantafyllou and Triantafyllou [110] argue that a Strouhal num-

ber in the range 0.25-0.35 is indicative of efficient swimming.
The Reynolds number is approximated as

St 3

UL
Re = —, “
1%
where v is the kinematic viscosity of water. For most fish, Re
is in the range 103 to 5 x 10°, for which viscous forces are neg-
ligible, but added mass, pressure drag and lift are all important
[105].

C. Mechanics and models of swimming

Fish generate thrust by transferring momentum to the sur-
rounding fluid. While the detailed mechanisms of this momen-
tum transfer are typically quite complex, it is often possible to
develop greatly simplified models that are competent to support
controller design. Not all energy generated by a fish produces
useful thrust, however; some of it is dissipated to the surround-
ing fluid via mechanisms which may also be quite complex.
But here again, simple models often prove quite useful. In the
sequel, a brief review is given of both thrust and dissipation
mechanisms, followed by commentary on model development
for real-time control. Much more detailed discussions of bio-
hydrodynamics are given elsewhere in this volume [109], [84].

When a fish moves its body or fins relative to the surround-
ing fluid, fluid is displaced and reaction forces arise. The net
force and moment that accelerate (or decelerate) the fish’s body
are given simply by surface integrals of the vector force per unit
area taken over the body. In principle, this force distribution as
well as the surrounding flow field may be computed by solution
of the Navier-Stokes equation. In practice, this requires compu-
tational fluid dynamics codes [84], a subject beyond the scope
of this review. Many useful insights, however, can be obtained
by making simplifications and describing the fluid mechanics in
terms of constituent effects.

Classically, an important simplification is the assumption of
steady or quasi-steady flow. The forces on a foil immersed in a
steady flow may be described as lift and drag. Lift is defined as
the force acting perpendicular to the direction of motion, while

drag acts parallel to the direction of motion. At high Reynolds
number, the lift per unit area, I, and drag per unit area, 1D, take
the form

_pCLU2 D—pCDU2

=g =5
Here, C; and Cp are nondimensional lift and drag coefficients,
respectively. They depend on the shape of the foil, the Reynolds
number, and the angle of attack. If the dependence on angle
of attack is known for a particular foil, then these equations may
be used in the blade-element method to compute thrust and drag.
This is accomplished by specifying the foil’s motion while dis-
cretizing time and treating the foil’s surface as a collection of
blade elements. At each point in time, lift and drag are com-
puted for each blade element, then summed to compute total
thrust, moment and drag. A good example of this technique ap-
plied to pectoral fins may be found in [17]. Here the results of
the blade element analysis are averaged over a fin beat cycle to
study Froude efficiency.

There are a number of limitations to the blade element
method, the most obvious of which is that acceleration reac-
tion forces — those stemming from fluid acceleration — are
neglected. Acceleration reaction may be captured fairly simply
by endowing the foil with “added mass” to account for the fluid
inertia that moves along with it [17], [115]. Unsteady effects,
however, are more difficult to capture and ultimately limit the
power of this technique.

Dickinson has given an excellent review of unsteady mecha-
nisms [34]. His analysis employs a more sophisticated view of
hydrodynamics, focusing especially on circulation and vorticity.
The reader is referred to his paper for a complete discussion;
however, a few key ideas will be reviewed here. First, the lift on
a foil is proportional to the circulation around it. Yet, Kelvin’s
Law tells us that the net circulation within a fluid system is con-
stant. In the case of a foil starting from rest, the net circulation
must be zero. This begs the question: how can lift be gener-
ated? The answer is that, as the foil begins to move and circula-
tion develops about it, a starting vortex is shed from its trailing
edge. As the foil departs from the starting vortex, the effect
of that vortex diminishes, while the bound circulation remains,
producing lift. When stopping, the bound circulation is shed as
a stopping vortex, equal and opposite in strength to the original
starting vortex, and lift once again drops to zero. This picture
of lift generation is particularly valuable when considering os-
cillating fins, which may be viewed as continually starting and
stopping. If the reduced frequency is sufficiently high, we may
surmise that the starting and stopping vortices never move very
far from one another and must be considered in any computation
of thrust. This phenomenon was first described by Wagner, who
found that the starting vortex tends to counteract circulation, re-
ducing lift, so long as it remains within a few chord lengths of
the foil.

Of even greater importance for fish, however, is the unsteady
phenomenon of delayed stall. Delayed stall occurs during the
impulsive start of a foil at a high angle of attack. As the foil
begins to move, a starting vortex is shed from the trailing edge,
but instead of bound circulation growing around the foil, an at-
tached vortex develops at the leading edge. This vortex creates a
region of low pressure on the top surface of the foil resulting in
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lift that may be much greater than that arising from steady state
circulation. Dickinson suggests that this effect may be of enor-
mous importance in swimming, and may explain why many fish
use high angles of attack. Unfortunately, delayed stall is very
difficult to capture in a simple model.

As a fish flaps its fins, the leading edge vortex created by de-
layed stall will eventually be shed, and a new, counter-rotating
vortex will develop and be shed over the next half-cycle of os-
cillation. This process leads to a wake of alternating vortices
known as a Karman street. This wake structure has been de-
scribed in detail in [34], [14], [64].

A final point to make with respect to the discussion of un-
steady effects, especially at high angles of attack, is that lift and
drag become closely related. For instance, in delayed stall the
force that is developed is roughly normal to the foil surface. But,
owing to the high angle of attack, the projection of this force
onto the direction of motion, i.e. the drag, is quite significant.
This is an example of pressure drag, which can be much more
important than the direct effect of viscous shear, known as skin
friction. Skin friction is inversely proportional to the square root
of Reynolds number, and tends to be unimportant for most fish.
A third component of lift, induced drag, results from the rear-
ward component of lift arising from bound circulation, and oc-
curs even at small angles of attack. The drag coefficient used in
steady analysis would normally correspond to pressure drag and
induced drag.

A challenge for the designer of biomimetic AUVs is the de-
velopment of hydrodynamic models that may be used for mo-
tion planning and real-time control. Here, simplicity is clearly
a virtue. It is not surprising, therefore, that most models devel-
oped for such purposes make various simplifying assumptions.
For example, in their work on robotic anguilliforms, Mclsaac
and Ostrowski [83] use what is essentially a blade element ap-
proach in which the only forces arise from pressure drag.

Perhaps the best-known model of swimming is Lighthill’s
elongated body theory (EBT), which has been used to study
anguilliform and carangiform propulsion. EBT makes use of
linear, inviscid aerodynamic theory (see, for instance, [42]). Al-
though strictly speaking an unsteady theory because it assumes
sinusoidal pitching and heaving motions, EBT has been used
principally to study the mechanics of steady swimming. Of
greater interest for AUV control is the related model developed
by Harper, Berkemeier and Grace [49] which comprises a set of
low-order, linear ordinary differential equations (ODEs). Such
equations are well-suited for the development of feedback con-
trollers. Harper’s model assumes that the flow is inviscid (a
reasonable assumption at high Reynolds numbers) and incom-
pressible, as well as irrotational outside a region defined by the
foil and its wake. Although the flow is taken to be inviscid, it
must obey the Kutta-Joukowski condition that velocity be finite
at the sharp trailing edge of the foil, a condition that arises from
viscosity. Moreover, while the flow is irrotational outside the
foil and wake, the model does allow for circulation about the
foil and vorticity (essentially a starting vortex) in the wake. The
point is that these assumptions are not terribly restrictive. Un-
fortunately, in order to linearize the equations, it is also neces-
sary to assume small foil displacements, including a small angle
of attack. While doing so may be considered restrictive, it al-

lows the wake effect to be described in the frequency domain
via the Theodorsen function [42]. Harper’s model approximates
the Theodorsen function with a low-order linear filter, leading
directly to a set of ODE:s for the lift and moment acting on the
foil. This model was used to optimize the design and stability
characteristics of an oscillating foil propulsor.

Other sets of simplifying assumptions may also prove quite
useful in developing models. For instance, Saimek and Li
[102] assume that the flow is inviscid, incompressible, and com-
pletely irrotational (including circulation about the foil and in
the wake). They also assume that the flow is at rest infinitely
far from the foil, and that the foil is neutrally buoyant. This
may seem like an overly restrictive set of assumptions since lift
is ignored, but added mass effects remain, and this model may
form the basis of an effective control policy. Under this set of as-
sumptions the Lagrangian of the dynamic system (foil and fluid)
is simply the total kinetic energy, which can be written

) 1, )
L(g,q) = §qTM(Q)q,

where g € R™ is the vector of generalized coordinates describ-
ing the foil’s configuration, and M (q) is the n x n symmet-
ric positive-definite inertia matrix due to the foil’s mass and the
added mass of the fluid. For conservative systems of this form,
the equations of motion can be written

M(q)i+ C(q,9)d = T(q)u, (6)

where the Coriolis matrix C'(¢,¢) is linear in ¢, u € R™ is
the control vector, and T'(¢) is an n x m matrix indicating how
the controls act on the generalized coordinates. There is an ex-
tensive body of robotics literature that applies to the control of
systems in this form, as discussed in Section III.

Kelly er al. [58], [60] develop a model having some of the fea-
tures of both those described above. Their model, which applies
to carangiform swimmers, addresses the mechanics of not only
the foil (caudal fin), but the body as well. They develop a set
of reduced Euler-Lagrange equations to describe the interaction
of the body with the surrounding fluid, which is treated as in-
compressible and inviscid, but containing a point vortex termed
a substitution vortex. The substitution vortex represents the cir-
culation developed around the caudal fin. The validity of this
approach stems from the morphology of carangiforms: because
of the long, narrow peduncle, the caudal tailfin is located sev-
eral chord lengths away from the main body. At this distance,
the flow field is largely independent of fin shape, and may be
treated as though it originated from a point vortex. The strength
of this vortex is computed, however, using an unsteady model
similar to Harper’s but not including the wake effect.

The models described above have great appeal for roboticists
since they are based on the hydrodynamics of swimming, yet
are low order and tractable for control analysis. It should be
pointed out, however, that there exist other approaches to the
development of models that circumvent the difficulties of theo-
retical hydrodynamics and, possibly, the need to make restrictive
assumptions. This topic is further discussed in Section III-C.

D. Stability and Maneuverability

Open- and closed-loop stability are important considerations
for the design of any control system, including one for aquatic
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locomotion. Closed-loop stability is clearly essential, but the
same cannot be said for open-loop stability. It is well established
that there exists a tradeoff between stability and maneuverabil-
ity [39], [116], [118], and that many fish are open loop unsta-
ble. For instance, most dead fish tend to float belly-up, suggest-
ing that the center of buoyancy lies below the center of mass.
Indeed this is true [89], although there are counter-examples
[117]. Thus, most fish are inverted pendulums, and must use
feedback control to remain upright. Also, Weihs points out that
BCF swimmers, because they are essentially pushed from be-
hind, tend to be unstable in yaw [118] (Figure 2). Pitch insta-
bilities are also common because the center of buoyancy is typi-
cally located fore or aft of the center of mass [117]. Hydrostatic
pitching moments must be counteracted with propulsors, which
may explain why most fish are observed to beat their paired fins
even at rest.

The most common benefit attributed to open loop instability
is high maneuverability. Indeed, many fish are quite maneu-
verable. Bandyopadhyay [12] compares normal acceleration to
turning radius (normalized by body length) and finds that fish
are able to execute comparable turns at much lower normal ac-
celeration than two small underwater vehicles. It is not clear,
however, whether this should be attributed to instability, or sim-
ply the fish’s ability to generate turning moments at low speed,
which foils such as rudders cannot. Anderson and Chhabra [4]
demonstrate dramatic increases in yaw rate during turning ma-
neuvers for a robotic tuna as compared to a conventional under-
water vehicle.

While open loop instability may be a good thing, the problem
remains of how to achieve closed loop stability, which is essen-
tial for activities such as cruising and station holding. Webb
describes two basic strategies that fish use: trimming forces and
powered correction forces [116]. The former arise from steer-
ing the flow over control surfaces in order to develop corrective
forces. In a recent study of the ostraciiform trunkfish, however,
Bartol et al. concluded that the unique shape of the bony cara-
pace led to trimming-based stability in both pitch and yaw [15].
Nonetheless, for most fish trimming forces arise from the fins,
leading to a design tradeoff: larger fins produce stronger trim-
ming forces and enhance stability, but also increase drag and re-
duce maneuverability [4]. Powered correction forces arise from
the flapping of fins. While powered correction is energetically

more costly than trimming, the latter becomes ineffective at low
speeds requiring that powered correction be used for stable hov-
ering [16]. To the best of the authors’ knowledge, no robotic
studies have yet addressed the use of paired fins for stabilization
at either low or high speeds.

Indeed, very little work has been done that would indicate
what the open-loop stability properties of a robotic swimmer
ought to be, or how this would relate to morphology and swim-
ming mode. Anderson and Chhabra [4] make use of hydrody-
namic coefficients to study the stability of the Vorticity Con-
trolled Unmanned Undersea Vehicle (VCUUYV), a direct descen-
dant of the RoboTuna [110]. Hydrodynamic coefficients are
generalizations of the standard lift and drag coefficients. They
relate the six-vector of forces and torques acting on the rigid
body coordinates to the six-vector of velocities and angular ve-
locities, as well as perturbations of body coordinates such as
caudal fin angle. The use of these coefficients is a powerful
technique permitting not only analysis, but design, including the
sizing and placement of fins.

As a final point, it is important to remember that maneu-
verability is very much related to swimming mode and body
morphology. For instance, as described earlier, the gymnotids
are highly maneuverable in roll, an ability stemming from their
compressed body shape and long ribbon fin. Similarly, in an
effort to increase yawing maneuverability, Bandyopadhyay [11]
added a long dorsal fin capable of controlled camber to a small
underwater vehicle. Labriforms are particularly interesting from
a maneuverability standpoint. Bandyopadhyay [12] points out
that a number of fish which are both fast and agile make use of
pectoral fins, and Kato [55], [56] cites maneuverability at low
speeds as a rationale for the study of mechanical pectoral fins.
Westneat et al. [119] (this volume) give a detailed review of pec-
toral fin morphology and kinematics as they relate to maneuver-
ability. Lauder and Drucker [63] (this volume) summarize a set
of lessons for the placement of fins on a biomimetic AUV.

E. Actuation and Passive Mechanical Properties

Fish use muscle to actuate their propulsors. As muscle is not
currently an alternative for artificial systems, a variety of other
actuators have been explored. Most commonly, electric motors
are employed [14], [79], [102], [55], but a difficulty with mo-
tors is that they must generally be used along with fairly elab-
orate transmission systems to amplify torque and convey it to
the propulsors [14]. Alternatives that arguably provide config-
uration advantages, if not efficiency advantages, include shape
memory alloy actuators [96], piezoelectric unimorph actuators
[22], and ICPF actuators [47].

A more direct cue can be taken from the manner in which
fish make use of passive mechanical properties — most notably
springiness — to enhance the effectiveness of their muscles.
For instance, it stands to reason that, in generating oscillatory
motions, the need for muscles to perform negative work will
be minimized if the system is driven at its natural frequency.
Springs, including the muscles and tendons themselves, colla-
gen fibers, skin and other body structures [99], [53], play an im-
portant role in defining the natural frequency. The significance
of this concept to robot designers was demonstrated by Harper,
Berkemeier and Grace [49] who computed a 33% reduction in


Maarja
Highlight

Maarja
Highlight

Maarja
Highlight


energy costs for heaving motions when driving a hydrofoil via
a properly tuned series stiffness. An important issue, however,
is that different swimming speeds require different stiffnesses
in order to match body natural frequency to tailbeat frequency.
McHenry, Pell and Long [82] built vinyl models of the pump-
kinseed sunfish to investigate the effect of body stiffness on
undulatory waveforms. One interesting conclusion is that the
live pumpkinseed must actively increase body stiffness to dou-
ble the level of passive stiffness in order to achieve their swim-
ming speeds. In a related study, Long and Nipper [74] explored
the use of muscles to modulate body stiffness. They showed
that the muscles of a largemouth bass are capable of modulating
stiffness. Maclver [76] points out that gymnotids have a spe-
cial body-stiffening adaptation, intra-muscular bones (although
this adaptation serves to maintain a rigid body shape during prey
capture rather than modulate natural frequency). Using muscles
to stiffen the body requires that the muscles produce negative
work, which seems to invalidate the primary rationale for tuning
body stiffness — energetic efficiency. There may, however, be
other energetic advantages to a properly tuned stiffness that out-
weigh the cost of negative work. As an example, Barrett et al.
[14] use the RoboTuna to demonstrate significant drag reduc-
tion associated with undulation. In a robot, stiffness modulation
does not need to be accomplished actively, potentially allowing
both benefits: reduced negative work and reduced drag. In stud-
ies of a robotic dolphin with an actuated joint at the peduncle
and a passive compliant joint at the caudal fin, Nakashima and
Ono [94] found correlations of speed, tailbeat frequency and re-
duced frequency with stiffness of the compliant joint, providing
a possible basis for performance optimization.

In his extensive studies of animal locomotion, Alexander has
pointed out that springs have several important functions beyond
energy efficiency [3]. These include, for instance, energy stor-
age for catapulting, shock absorption, and acting as muscle an-
tagonists. In her review of springs in swimming, Pabst [99] has
highlighted the latter function. As an example, the skin of a
lemon shark is reinforced with helically wound collagen fibers,
producing a distinctly nonlinear (hardening) spring that acts in
parallel with the musculature. As the shark’s body is flexed side
to side, the outside muscles may get stretched to a point where
they are ineffective at generating force. But at this point the
springs are highly stretched, and may serve to accelerate un-
bending.

Numerous other mechanical aspects of fish, such as body
shape, mucous layers, and scales, are also known to affect ef-
ficiency and speed, but are beyond the scope of this review.

F. Sensing

A final set of design considerations, prior to the development
of control mechanisms, is the nature and allocation of sensors.
Fish have the usual array of olfactory, acoustical, visual and tac-
tile sensors, adapted of course to their aqueous environment.
Fish also have an inner ear structured much like our own which
is critical for maintaining orientation. Many fish also have spe-
cialized sensory apparatus, such as the electrosense of the gym-
notids, which is discussed in detail by Maclver elsewhere in this
volume [76].

But perhaps most interesting to designers of robotic swim-

mers is the lateral line system common to all fish. This system
consists of a set of hair cell mechanoreceptors known as neu-
romasts. The superficial neuromasts extend outward from the
epidermis into the flow, while canal neuromasts lie beneath the
epidermis and communicate with the flow via a set of pores. It
has been shown that canal neuromasts respond better to the ac-
celeration of the water, while superficial neuromasts respond to
the velocity of the flow across the fish’s body [85].

There is considerable evidence that the lateral line system
provides fish with a “distance touch” capability that is used to
detect other animals (e.g, for schooling or prey capture) and ob-
stacles [31], [95]. Montgomery et al. [85] have shown that the
superficial neuromasts play an important role in station keeping
(rheotaxis). Several varieties of fish were able to orient to cur-
rent at much lower flow rates with the superficial lateral line sys-
tem intact than with it blocked. The canal neuromasts seemed to
play no role in rheotaxis, as one might expect, given their greater
sensitivity to water accelerations.

Less is known about the intriguing possibility that the lat-
eral line may be used in the closed-loop control of swimming
motions, as has been suggested by Triantafyllou [110]. Li and
Saimek [72] have developed a Kalman filter based estimation
scheme which recovers the hydrodynamic potential (assuming
inviscid, incompressible flow and a wake comprised of point
vortices) from a set of pressure measurements along a fish’s
body. Such a method is likely to be an important precursor to the
development of effective closed-loop controllers. On the hard-
ware side, Fan er al. [38] have developed flow sensors reminis-
cent of superficial neuromasts using silicon micromachining. A
cautionary note, however, is that there is little biological evi-
dence for the role of the lateral line in swimming performance.
Indeed, Dijkgraaf [35] reports that the swimming performance
of blinded minnows was unchanged after complete elimination
of the lateral line system. If the labyrinth was removed instead,
leaving the lateral line intact, the minnows were no longer able
to swim in a normal manner.

III. CONSIDERATIONS FOR THE CONTROL OF BIOMIMETIC
SWIMMING MACHINES

Control problems for a robot fish include the following:
1. Station keeping in the presence of disturbances, such as in a
littoral zone.
2. Trajectory planning for point-to-point motions, possibly in
the presence of obstacles.
3. Tracking a planned trajectory.
4. Power efficient swimming, for long battery life and “quiet”
wake signatures.
5. Fast starts and high maneuverability, e.g., the ability to turn
180 degrees within one body length, even at high speeds.
These issues are naturally of interest for any underwater vehi-
cle, biomimetic or otherwise. In this section we take inspiration
from fish while phrasing the problems in modern control terms.

A. Modeling and Controllability

Usually the first step to designing controllers to address these
issues is to write a dynamic model of the system. Generically,
such a model takes the form

&= f(z,u), @)
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Fig. 3. A planar model of a robot fish.

where « is the state of the system, « is the control vector, and
time-invariant dynamics are assumed. Unfortunately it is diffi-
cult to write such a model, as the hydrodynamics of swimming
are still a topic of current research, and the state  includes not
only the robot’s state but the infinite-dimensional state of the
surrounding fluid. Even if we could capture the dynamic equa-
tions in the form (7), there do not exist techniques for designing
controllers for general nonlinear systems of this form. More
structure is needed before analytical design techniques can be
brought to bear.

To simplify the equations of motion, we let & be simply the
state of the robot fish. Model inaccuracies due to this simplifi-
cation can then be treated as disturbances to be compensated for
in closed-loop control. In this case, the state = can be written
as the robot’s configuration ¢ and velocity ¢. The configuration
q is written ¢ = (¢,0) € Q@ = G x B, where ¢ € G is the
position and orientation of a frame fixed to the robot fish in a
world inertial frame, called the “group” variables, and b € B isa
set of “shape” variables describing the robot’s internal degrees-
of-freedom, such as the joint angles of pectoral or caudal fins
(Figure 3). Typically the body frame configuration space G is
SFE(3), the six-dimensional matrix group of positions and ori-
entations of a rigid body in three-dimensional space

g= [ ? ]1’] peR3 ReR¥3 RRT = I det(R) =1,

where p is the position of the reference point of the robot and R
is a 3 x 3 rotation matrix describing the robot’s orientation in an
inertial frame. The shape space B may be considered infinite-
dimensional if we assume fins are made of flexible material, but
we will remain finite-dimensional.

Although the body-fixed frame configuration ¢ can be glob-
ally represented as an element of the matrix Lie group SF(3),
and its velocity can be properly thought of as an element of the
Lie algebra se(3), it is beyond the scope of this paper to review
the use of Lie groups and Lie algebras in motion planning and
control (see, for example, the texts [91], [54], [103], or the pa-
pers [114], [80], [60], [88] for their use in the context of robot
fish, or the papers [67], [30] in the context of autonomous under-
water vehicles). For this reason, we will assume that ¢ is written
as an element of IR® (or R3 if the fish is restricted to a plane)
using local coordinates, such as x-y-z-roll-pitch-yaw, with the
velocity given by the time-derivatives of these coordinates. We
will continue to refer to ¢ as the group variables.

A.1 Model Abstractions

In the development of control algorithms for robot arms, the
control signals are joint torques and the controlled outputs are
joint angles. This is an abstraction, however; the control algo-
rithm actually sends a control signal to a motor amplifier, which
implements its own feedback loop to try to generate a motor
current proportional to the signal. This “inner” feedback loop
is usually assumed to be available and is not part of the robot
control system design.

In the design of a controller for a robot fish, we need to choose
an appropriate level of abstraction. Our interest is in controlling
the motion of the body frame ¢(¢), and these variables are in-
directly controlled by their state-dependent coupling to the di-
rectly actuated shape degrees-of-freedom b(¢). At the lowest
level of abstraction, the control signals are generalized forces at
the robot fish’s joints. At a higher level of abstraction, we could
assume the control inputs are the joint accelerations b(¢). This
would then require an inner feedback loop to realize the com-
manded joint motions (see, for example, the caudal fin trajectory
controller described in [101], [102]). At a still higher level of
abstraction, we could assume the robot fish is a rigid body and
the control inputs are forces and torques on the body. For ex-
ample, in the case of a propeller-powered AUV, the shape vari-
ables (the propeller angles) are usually eliminated completely
from the description of the configuration, and the propellers are
treated simply as force and torque sources. Propeller thrust con-
trol, as a function of the current water flow and propeller speed,
has been studied in [50], [9], [8]. Similarly, when the moving
surfaces of a robot fish are “small” relative to the size of the
fish, e.g., pectoral fin locomotion, we might follow the same ap-
proach, separating the control of the fish into an outer control
loop for the group variables and an inner control loop for (possi-
bly time-averaged) thrust control. A great deal of simulation and
experimental work is currently aimed at characterizing the force
generating capabilities of oscillating foils under different oper-
ating conditions. We do not review this work here, but see for
example the review paper [109], work on pectoral fin controllers
by Kato [55], [56], and the Nektor oscillating fin thruster [1].

An abstraction is useful when it both captures the essential
dynamics of the system and simplifies the design of the control
algorithm. The control of robot fish adds layers of abstraction
complexity as compared to the control of a robot arm. For an
arm, we assume control of joint torques, which are turned into
joint motions in a state-dependent way. For a robot fish, we
assume control of joint torques, which are turned into joint mo-
tions in a state-dependent way, producing forces on the body
in a state-dependent way, resulting in motions ¢(¢) in a state-
dependent way. To avoid restrictions on the subsequent dis-
cussion, we will assume the lowest-level abstraction, where the
control inputs u are generalized forces acting on the shape coor-
dinates.

A.2 Underactuation

Because our actuators directly control 6(¢) but only indirectly
control g(¢), a natural question is whether the configuration g¢
is controllable at all. Since dim(B) < dim(Q), the robot fish
system is trivially underactuated — there are fewer control vari-



ables than configuration variables. Our primary interest is in
controlling the ¢ variables, however, so in this paper we will
call the robot fish underactuated if dim(B) < dim(G) — there
are fewer controls than group configuration variables. An ex-
ample of such a robot fish is the planar carangiform swimmer
of Burdick er al. [79], [81], [87], [88], which has two con-
trolled degrees-of-freedom of the caudal fin (dim(B) = 2) but
three degrees-of-freedom of the body (x-y-yaw) in the plane

(dim(G) = 3).
Most real fish are redundant in the sense that the number of
controlled joints is greater than dim(() = 6, and the joints

themselves have redundant muscular actuation [92]. A system
with dim(B) > dim(() may still be underactuated, however,
if the coupling from the control inputs to certain g directions is
weak (i.e., if thrust cannot be generated in certain body direc-
tions). If the robot fish can generate a force-torque combination
in an arbitrary direction in the ¢ frame, for example an AUV
with six or more fixed-direction propellers, we call it fully actu-
ated.

Controllability of the g variables via direct actuation of the
b variables is sometimes called fiber controllability [59], [33].
This terminology arises from the decomposition of the config-
uration space () into a shape space B and a “fiber” attached to
each b € B, corresponding to the group variables ¢ (see, e.g.,
[2], [104], [21]). Fiber controllability refers to the ability to con-
trol the ¢ variables while not worrying about how the & variables
evolve. In other words, we only care about controlling the evo-
lution of the system on (5, not on the full configuration space
Q.

For a system of the form (7), let ¢, ¢ € IR”, written as column
vectors, and write the state = (¢7,¢7)7 € M = R?" and
the control u € U C R™, where I{ contains a neighborhood of
the originin R™. Let RY (x, < T') be the set of reachable states
beginning from x in time 0 < ¢ < T by feasible trajectories
satisfying (7) and remaining in a neighborhood V' of z on M.
Then the system (7) is

+ (globally) controllable from x if any state x ; is reachable from
z in finite time; that is, z, € RM (z, < T') for some T > 0;

o small-time locally controllable (STLC) from z if R (z, < T')
contains a neighborhood of z for any 7" > 0 and any neighbor-
hood V' of x (this definition only makes sense from zero veloc-
ity states = = (¢7,07)7 for a dynamic system with forces as
inputs);

o configuration controllable from = = (¢7,07)T if any state
(¢7,07)7 is reachable from z in finite time;

o small-time locally configuration controllable (STLCC) from
z = (¢7, 00T if RV (z, < T) contains a neighborhood of ¢ on
@ for any 7' > 0 and any neighborhood V' of z.

Fiber controllability concepts are a natural extension of these
concepts, with the projection from the full state (¢7, ¢*)7 down
to the group state (g7, ¢7)7.

Controllability tests for underactuated systems of the form (7)
are a topic of current research, but for the particular case of
control affine nonlinear control systems, much is known. The
class of systems which can be written in this form, perhaps af-
ter a feedback or coordinate transformation, is quite broad and
includes some mathematical models of fish locomotion. Such

systems can be written

b= Xo(x) + > Xi(w)u;, ueld CR™, ®)

i=1

where Xy () is a drift vector field describing the unforced natu-
ral motion of the system and the X;(z),7 = 1...m, are control
vector fields describing the action of the controls on the system.
The Lie bracket of two vector fields X; and X is a new vector
field, written [X;, X;], describing the second-order approxima-
tion of the motion achieved by following X ; for time ¢, X; for
time €, —X; for time ¢, then —X; for time ¢, as ¢ — O:

z(4e) = 2(0) + €°[X;, X;](2(0)) + O(e%),
where

0X, 0,

ol = (G20 - L)@ o

Lie brackets play a vital role in controllability tests for con-
trol affine nonlinear control systems. A system (8) is said to
satisfy the Lie algebra rank condition (LARC) at x if the drift
and control vector fields, along with their iterated Lie brackets,
span the 2n-dimensional space of all possible motions at x (the
tangent space 7; M). In other words, local “wiggling” maneu-
vers can break the apparent motion limitations due to underactu-
ation. As an example, consider a robot fish with a configuration
q = (=,y,0)T, describing the position and orientation of the
body in a horizontal plane. For simplicity, we will treat it as
a kinematic system with velocities as inputs instead of forces
(see, for example, [67], [68], where this assumption is used for
AUV’s). This robot fish is drift-free (X g = 0) with two control
vector fields: swim forward (surge), X1 (g) = (cos d,sin 6, 0)7,
and turn in place (yaw), X2(q) = (0,0,1)T. Then the control
system is written

¢ =X1(qgur + Xo(q)us, u,us €R,

and we calculate the Lie bracket

[X1, Xo] =

This is a motion in the slip direction, or “parallel-parking” (Fig-
ure 4). The three vector fields X, X», and [X;, X5] span R3
at any ¢, so motion is locally possible in any direction despite
the underactuation. Some systems require iterated Lie brackets,
for example of the form [X, [X1, [X1, X2]]], to establish the
LARC.

The LARC is the kernel of most tests for local controllabil-
ity. If the LARC is satisfied at x, the system is small-time lo-
cally accessible at x, meaning RY (z, < T') contains an open
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Fig. 4. Generating motion in a Lie bracket direction.

set on M for any neighborhood V' and any 7" > 0. If the sys-
tem is drift-free, the LARC implies STLC, under the assump-
tion that /{ contains a neighborhood of the origin of R ™. For
dynamic systems with drift (X, # 0), STLC at zero-velocity
states = (¢7,07)T can be established by the LARC and
auxiliary conditions that certain “bad” Lie brackets can be ex-
pressed as linear combinations of “good” Lie brackets of lower
degree [107]. The weaker condition of STLCC, which only re-
quires that the locally reachable set contain a neighborhood of
the initial configuration, not necessarily the velocity, can be es-
tablished for a class of mechanical control systems by Lie alge-
braic tests described in [69], [70], and the corresponding fiber
controllability tests can be found in [33].

The LARC is the nonlinear analog of the Kalman rank condi-
tion for linear systems. In general, the linearized dynamics of an
underactuated robot fish will be uncontrollable. Therefore, con-
trollability for an underactuated system is inherently a nonlinear
phenomenon. This has important consequences in the design of
feedback controllers and trajectory planners.

B. Station Keeping

Station keeping is the problem of maintaining a desired equi-
librium state in the presence of disturbances. For a robot fish
control system of the form

&= fz,u), t €M, ueR™,

let zy be the desired equilibrium state, such that f(z,0) = 0.
A necessary condition for the existence of a continuous state
feedback law u(z) to asymptotically stabilize «  is that

FB,R™) = {f(z,u)|x € B,u e R™}

must contain a neighborhood of the origin in A/ for any neigh-
borhood B of xzy on M [23], [32]. If the system is under-
actuated, then this condition will not be satisfied. This ob-
servation has led to the development of feedback controllers
for underactuated systems which are time-varying, i.e., of the
form w(x, ), or discontinuous, i.e., of the form Ui (o) (z), where
i: M — {1,... p}isanindex function which chooses among
a set of p controllers based on the current state. One approach
to implementing a time-varying controller is to plan a trajectory
to the goal state, execute it, and iterate the process, ensuring
that the final error decreases after each iterate. Feedback is only
incorporated between iterates. Another approach is to continu-
ally re-plan and immediately begin to implement the new trajec-
tory, before the previous one is finished. This is a type of model
predictive control. Trajectory planning is described in the next
section.

Any disturbance that pushes the robot fish in a non-actuated
direction can only be recovered from by locally executing a ma-
neuver (e.g., the parallel-parking slip maneuver of Section III-
A.2), which may be time-consuming. For this reason, it may be
preferable to design a robot fish which can thrust in any direc-
tion when station holding is a primary function. Fish employing
MPF swimming modes can generate a greater range of thrust
directions than those employing BCF swimming modes, which
may be why many fish operating in littoral zones rely on median
and pectoral fins.

C. Trajectory Planning and Tracking

A primary control goal is to be able to drive the robot fish
from one state to another, possibly in the presence of control
constraints and obstacles. As with station keeping, underactua-
tion of the robot fish results in considerable challenges in control
design. The linearization of the fish dynamics is not generally
controllable, so linear feedback control design is inapplicable.
Discontinuous or time-varying feedback controllers may be de-
signed to drive the system to a goal state, but pure feedback con-
trollers are likely to result in inefficient trajectories. If it is not
necessary to completely control the group variables ¢, it may be
possible to choose a subset of these variables as the controlled
“outputs” and perform an input-output feedback linearization.
In this case, care must be taken to ensure that the uncontrolled
state variables, the “zero dynamics,” are stable.

An alternative approach to control of state-to-state motions
for an underactuated system has been called a two degree-of-
freedom approach [73], [111], [44]. In this approach, a nominal
trajectory for the system is planned in advance, and a feedback
controller is used to track the trajectory. The feedforward con-
trol derived by the trajectory planner accounts for the nominal
nonlinear dynamics of the system, while the feedback controller
accounts for disturbances and model inaccuracies. This feed-
back controller may be a linear controller, since the linearized
system is likely to be controllable about a trajectory, despite not
being controllable at an equilibrium.

The goal of the trajectory planner is to find a time- or energy-
efficient state-to-state trajectory for the robot fish, and to find
that trajectory in a computationally efficient manner, possibly
allowing real-time implementation. The first issue can be ad-
dressed by numerical optimal control methods such as nonlinear
optimization or dynamic programming [66], [25], [71], [106].
Nonlinear optimization can be used to solve for the optimal con-
trol parameters in a finite parameterization of the input histo-
ries. The search for the optimal parameters in the design space
is usually aided by gradient information, assuming the objec-
tive function and control and state constraints are sufficiently
smooth with respect to the control parameters. The result is a
locally optimal control in the design space. This approach was
used by Saimek and Li [101], [102] to find energy-efficient mo-
tion primitives for a caudal fin swimmer, and by Maclver [76] to
find “effort” minimizing motions for a fully-actuated ellipsoidal
body in water, producing motions mimicking the predatory be-
havior of a gymnotid knifefish.

Numerical optimal control methods address the goal of gen-
erating time-optimal or energy-efficient motion, but they tend to
be computationally intensive. On the other hand, randomized


Maarja
Highlight


techniques from the robot motion planning literature [57], [65]
attempt to quickly find satisficing trajectories without concern
for optimality. These techniques are particularly applicable to
systems operating in cluttered environments.

Another approach to motion planning for robot fish is based
on motion libraries. This approach is based on the observation
that many biological systems employ a small number of stereo-
typical maneuvers, motion primitives, or gaits, and these primi-
tives are efficient in some way. For example, fish locomotion is
characterized by highly stereotypical oscillatory or undulatory
motions of the fins and body. A motion library consists of a set
of primitive maneuvers which are concatenable, so that a tra-
jectory plan consists of a specification of a sequence of maneu-
vers and their switching conditions. One formalization of this
idea is the maneuver automaton of Frazzoli et al. [41], which
consists of a set of motion primitives in a graph structure in-
dicating how they can be concatenated. Motion libraries have
also been used to generate natural motions for animated char-
acters [62]. Motion libraries are an instantiation of the general
idea of hierarchical motion planning, where the task of planning
the motion of a complex mechanical system is broken down into
simpler planning tasks for reduced-complexity approximations
of the full system [98], [100], [30], [24], [37], [52], [78]. Ex-
ample motion libraries for robot fish locomotion have been gen-
erated by Ayers et al. [7], Wilbur et al. [120], and Ostrowski
and Mclsaac [98], [83] for anguilliform locomotion; Burdick et
al. [81], [87], [88] and Saimek and Li [102], [101] for carangi-
form locomotion; and Kato [55], [56] for pectoral fin locomo-
tion.

The primitives of the motion library may be in the form of
feedback controllers or open-loop input profiles. The primitives
are generated off-line, allowing experimental derivation of the
primitives, or the use of time-consuming numerical optimal con-
trol methods to find the primitives. To limit the number of prim-
itives stored, it is useful to take advantage of symmetries in the
dynamics (7) to create parameterized primitives. For example,
the primitive swim-forward(d), where d is the total dis-
tance, is more useful than swim-forward-2meters. Since
we expect the dynamics to be invariant to displacements of the
fish in a horizontal plane, such a parameterized primitive is pos-
sible.

Perhaps more interestingly, systems satisfying the potential
flow assumption of (6) satisfy a time-scaling property: any fea-
sible trajectory ¢(t) implies a family of feasible trajectories of
the form ¢(At) [S1], [102], [101]. A choice A > 1 speeds up the
trajectory, while 0 < A < 1 slows down the trajectory. There-
fore, our primitive above could be modified to have two param-
eters, swim-forward(d,t), where t is the time of motion.
The required input magnitudes scale with A\%. If the primitive
was derived to be optimal for A = 1, it may be far from optimal
for A values significantly different from 1. This might suggest
multiple swim-forward primitives corresponding to qualita-
tively different “gaits” of the fish. Velocity-dependent transi-
tions between gaits can be triggered by efficiency considerations
or speed range limitations for each gait, much as in real fish and
other biological systems [36], [61], [40], [5].

For some underactuated systems of the form (6), certain tra-
jectories ¢(t) permit more general time-scalings than simple
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uniform time-scalings ¢(At). A trajectory ¢(t) is called a kine-
matic motion for the dynamic system if there exists a con-
trol « satisfying (6) for the trajectory ¢(s(¢)) for any twice-
differentiable time-scaling function s(¢) € R [75], [30], [29].
Any velocity vector field X (¢) whose integral curves are kine-
matic motions is called a decoupling vector field, meaning that
motion planning along such a vector field can be decoupled into
a kinematic problem (deciding how far to follow the vector field)
followed by a dynamic problem (deciding the time-scaling, or
how fast to follow the vector field, subject to actuator limits).
These vector fields can be thought of as “forced” trim trajecto-
ries or relative equilibria, and in the case of vehicles often cor-
respond to body-fixed velocities. The advantage of decoupling
vector fields in motion planning is that planning a robot trajec-
tory, possibly amidst obstacles, can be reduced from a dynamic
problem to a kinematic problem (plus time-scaling), reducing
the dimension of the search space by a factor of two and result-
ing in considerable computational savings. This approach was
applied to an underactuated AUV model in [30]. Decoupling
vector fields can be used as motion library primitives, suggested
directly by the dynamics of the system.

More generally, if the system can be written in the control
affine form (8), it is well known that time-periodic inputs can
be used to generate motions in directions corresponding to the
Lie brackets of the system vector fields. For example, plugging
in sinusoidal inputs and integrating the equations of motion, we
find that the net motion at the end of a cycle can be expressed
as a series expansion in terms of iterated Lie brackets. The con-
tributions of each of the Lie bracket terms to the total motion
depends on the magnitude, frequency, and phase of the sinu-
soidal inputs. The side-slip motion of the kinematic robot fish
of Figure 4, for example, can be approximately generated by
90° out-of-phase sinusoidal controls, instead of the alternating
on-off controls depicted in the figure.

Averaging formulas have been derived by many to describe
the average effect of sinusoidal inputs over a cycle [48], [68],
[67], [10], [97], [93], [28], [26], [27], [86], [113], [114], [112],
[88], [21]. This approach is appealing because fish locomotion
often involves oscillatory motions of the fins and body. These
formulas also provide a way to analytically find controls which
approximately generate motions in “surprising” directions; for
example, a carangiform robot fish can be made to approximately
rotate in place using only the caudal fin [87]. A drawback of the
averaging approach is that the formulas often only apply when
the robot is traveling at low speeds. Also, motions in Lie bracket
directions tend to be slow; consider, for example, how tedious
it is to parallel park a car. Thus, even though such motions are
possible, they may not be time- or energy-efficient, and should
be properly penalized in any trajectory planning scheme.

Once a nominal trajectory has been generated, the problem
is to track it. The nominal model of the dynamics provides the
feedforward controls, and feedback control is used to compen-
sate for perturbations and modeling error. One approach is to
linearize the dynamics about the trajectory and design a linear
controller based on the error coordinates. Another approach,
proposed in [88], [113], [112], uses averaging formulas based
on the system’s Lie brackets to construct controllers that use
discrete-time state feedback (at the end of each sinusoidal con-
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trol cycle) to choose controls to drive the system back to the
planned trajectory (or equilibrium state).

Because of the complexity of the hydrodynamics of swim-
ming, one possibility is to give up on simple, low-order de-
scriptions of the dynamic equations, and instead to use rule-
based models or empirical, data-driven models in trajectory
planning for robot fish [6]. Barrett [13] used extensive exper-
iments with the RoboTuna to find a motion pattern optimiz-
ing the thrust power ratio, defined as the thrust power divided
by the power input to undulate the body. The motion pattern
is described by seven parameters, such as the forward veloc-
ity, the Strouhal number, the amplitude of the caudal fin mo-
tion, etc. To efficiently guide the search through the seven-
parameter space without using gradient information (because of
possible discontinuities in hydrodynamic regimes, e.g., the tran-
sition from laminar to turbulent flow), a genetic algorithm (GA)
was used. The GA was specially designed for this problem to
minimize the number of expensive experiments needed for con-
vergence. Grzeszczuk and Terzopoulos [46] used another non-
smooth global optimization method, simulated annealing, to dis-
cover muscle activation patterns resulting in efficient, life-like
swimming gaits for simulated fish.

Galls and Redionitis [43] use a CFD simulation of carangi-
form swimming to generate test cases for training a relatively
low order neural network controller. One difficulty with this
approach is that, as the number of control inputs and the depen-
dence on control history grow, the number of test cases becomes
prohibitive.

Kato [55], [56] deals with the complexity of swimming hy-
drodynamics by generating fuzzy rule-based control laws for
point-to-point motions of a robot fish with two rigid pectoral
fins, each with two or three degrees-of-freedoms. For the con-
trol law currently in operation, fuzzy rules based on error coor-
dinates are used to choose the parameters of sinusoidal motions
of the pectoral fins. These control laws have been implemented
to drive a robot fish both in a horizontal plane and in three di-
mensions.

IV. CONCLUSION

Achieving fish-like capabilities in maneuverability and effi-
ciency in an AUV will require the tight integration of design
and control development. This effort will benefit from new in-
sight from biology, tractable and accurate hydrodynamics mod-
els, new actuation and sensing technology, and advances in non-
linear control theory and our understanding of the neural mecha-
nisms of control. This paper has reviewed lessons learned so far
on the design of swimming machines and the control problems
that must be solved to make full use of their capabilities.
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