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Summary

The First problem - �An Artery for Bubba?�

Short description of the problem: Finding the velocity of blood �ow in arteries,
considering viscosity, fatty acid depostis or both. Also �nd the time to clot the
artery and the rate of the �shrinkage�.

The results of calculations, manipulations of the problem are listed below:

• Solutions of Eq (1) from the Exam description (case τ →∞).

vx (y) =
R2

0

2Dηρ0

∆P

L

(
1− y2

R2
0

)
(1)

Q =
2
3

bR3
0∆P

DηL
(2)

Rη
A =

3
2

DηL

bR3
0

(3)

See details in the list item no. 1 on page 5.

• Solutions of Eq (1) from the Exam description (case Dη = 0)

vx =
τ∆P

ρ0L
(4)

Q = 2
bτR0∆P

L
(5)

Rτ
A =

1
2

L

bτR0
. (6)

See details in the list item no. 2 on page 6.

• A general solution of Eq (1) from the Exam description

vx (y) =
∆P

Dηρ0Lκ2

(
1− cosh (ky)

cosh (kR0)

)
(7)

Q = 2
b∆P

DηLκ2

(
R0 −

1
κ

tanh (kR0)
)

(8)

See description of above equations in the list item no. 3 on page 7.

RA =
L

2bτR0

z

(z − tanh (z))
(9)

f(z) =
z

(z − tanh (z))
(10)

See details in the list item no. 1 on page 8.

• Limits, such as z → ∞ and z → 0 and explanation about physical back-
ground of z could be found in the list items: 2 on page 8, 3 on page 8,
and 4 on page 8.
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• f(z) as a function of z is shown in Figure 1 on page 3.

• Shear stress for generic radius R:

σxy (R) =
∆P R

L
. (11)

Details in the list item no. 1 on page 9.

• Plot (∆Pσ0) / (P0|σxy(R)|) as function of κR is shown in Figure 2 on the
next page.

• R as a function of time: R = R0

√
1− 2t

R2
0κ2τF

. Details could be found in

the list item no. 3 on page 9.

Note: The following graphs use following values:

0.1cm < R0 < 1cm
1
τA

= 0.1s−1 (exp (0.43 · 3)− 1) = 0.26 ⇒ τA = 3.8s,

∆P = 0.5P0 ⇒ τF = 0.5τA = 1.9s

Dη = 0.05
cm2

s
, τ = 5s ⇒ κ = 2

1
cm

• Plot of R/R0 as a function of t/τF is in Figure 3 on page 4.

• Q dependency on time with changing R.

Q(t) = 2b
R2

0∆P

2DηL

√
R2

0 −
2t

κ2τF
− 1

3R2
0

√(
R2

0 −
2t

κ2τF

)3
 (12)

. The details could be found in Eq. 49 on page 9.

• Plot of Q as a function of time in the form Q(R(t))/Q(R0) vs t/τF is in
Figure 4 on page 4.

• Time estimation fo Bubba's artery to block. Basically it happens when

2t

R2
0κ

2τF
= 1 ⇒ t =

R2
0κ

2τF

2
≈ 1 · 4 · 2

2
≈ 4s. (13)

A bit too fast ;).

• Considering the Eq. 48 on page 9, we can see that only if nF is inversely
proportional to x, the second segment tends to clot slower than the �rst
one. Analogy to resistors in my opinion is that if the second resistor is
�bigger� in sense of the conductivity (i.e. less resistivity), then the voltage
drops more on the �rst resistor.
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Figure 1: Grahp of f(z) = z
z−tanh(z) .

Figure 2: The plot of (∆Pσ0) / (P0|σxy(R)|) as a function of κR. After doing
the manipulations the function takes the form 1

κR . At this case we considered
∆P to be a positive number. If it was negative, the graph would look like vice
versa because the result would be − 1

κR
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Figure 3: The Plot of R/R0 as a function of t/τF . The red graph (fastest drop)
represents value of R0 = 0.2cm. The green graph (middle one) represents the
value of R0 = 0.5cm and the blue graph R0 = 1cm. The x axis is t/τF and the
y-axis is R/R0. (the steepest line should reach to the zero)

Figure 4: The Plot of Q(R(t))/Q(R0) as a function of t/τF . The red graph
(fastest drop) represents value of R0 = 0.2cm. The green graph (middle one)
represents the value of R0 = 0.5cm and the blue graph R0 = 1cm. The x axis
is t/τF and the y-axis is Q(R(t))/Q(R0). (the steepest line should reach to the
zero)
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How to �nd a Submarine?

Short description of the problem: Shallow water and waves in the shallow water.
A submarine in the shallow water causes disturbances in the wave frequency
modes in certain cases. We'll �nd the location and motion of the submarine
according to those disturbances.

• Normal mode frequencies of the submarine free ocean. The equation de-
scribing this kind of ocean is Jacobi di�erential equation and as α and β
are zero in the equation, which makes it actually Legendre equation. The
solution for it is a set of Legendre polynomials. See 1 on page 10.

• The shift in the normal mode frequencies due to the submarine. The shift
is described by equation

αn =
(

dφn

dz

)2

z=p

· 1
k (n)

. (14)

See the list item no. 2 on page 10.

• One possible trajectory of the submarine in terms of z and time could be

00h → 0.212h → 0.654h → 0.7610h → 0.6516h →
→ 0.2118h → 020h → 0.4522h → 0.7626h−34h → 0.4534h,

where the number shows the relative distance from the center of the
shallow-water-area and the power shows at which time the submarine
stays at this certain distance. For more details, see the list item no 3
on page 12.

• The color of the submarine - we could say that the color must match the
water, otherwise the sattellite could take pictures of the submarine itself
(at least in very shallow water). But apparently we are wrong, because it is
proven long time ago that the submarine is yellow ( http://en.wikipedia.org/wiki/USS_Menhaden_(SS-
377) http://en.wikipedia.org/wiki/Yellow_Submarine_(song) ).

Details

The First problem - �An Artery for Bubba?�

The �ow of the blood in arteries is modeled as the �ow between two parallel
plates of separation 2R and width b � 2R. The �ow obeys the equation of
motion

∂vx

∂t
= −vx

τ
+ Dη

∂2vx

∂y2
− 1

ρ0

∂P

∂x
, (15)

where Dη = η/ρ0 and P (x) = −(∆P/L)x. We are looking for steady state

solutions for the Eq (15). Also mass current will be calculated: Q = ρ0b

∫ +R0

−R0

dy·

vx (y).
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1. Fixed artery radius R0and τ → ∞ and vx (±R0) = 0. The Eq. (15)
becomes

Dη
∂2vx

∂y2
= − 1

ρ0

∆P

L
= C. (16)

Lets assume the solution in the form of

vx = A + By2. (17)

So we can get the following results:

2B = − 1
Dηρ0

∆P

L
= C (18)

A = −BR2
0 (19)

vx (y) = B
(
y2 −R2

0

)
= − 1

2Dηρ0

∆P

L

(
y2 −R2

0

)
=

R2
0

2Dηρ0

∆P

L

(
1− y2

R2
0

)
. (20)

The mass current is:

Q = b
R2

0∆P

2DηL

∫ R0

−R0

(
1− y2

R2
0

)
dy =

= b
R2

0∆P

2DηL

(
y − 1

3
y3

R2
0

)R0

−R0

=

= b
R2

0∆P

2DηL

(
2R0 −

2
3
R0

)
=

=
2
3

bR3
0∆P

DηL
. (21)

Following the analogy of electric circuit, we can �nd the resistance of the
artery from the relation

Q =
1

RA
∆P. (22)

For current case:

Rη
A =

3
2

DηL

bR3
0

(23)

2. The limit Dη = 0 and τ is �nite. This combination results in the equation

vx

τ
=

∆P

ρ0L
, (24)

which gives us the solution for vx

vx =
τ∆P

ρ0L
. (25)
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For mass current we'll get

Q = 2
bτR0∆P

L
. (26)

The resistance of the artery in this case would be

Rτ
A =

1
2

L

bτR0
. (27)

3. The general solution for Eq. (15). By doing some replacements (as κ2 =
1/(τDη), we can get the modi�ed form of the equation as follows

Dη
∂2vx

∂y2
− vx

τ
= −∆P

ρ0L
. (28)

∂2vx

∂y2
− 1

τDη
vx = − ∆P

Dηρ0L
. (29)

∂2vx

∂y2
− κ2vx = C. (30)

To solve the equation, we must �nd a solution for the homogenous part of
the equation and then a particular solution also. By adding those solution
together, we'll get the general solution. First of all, the solution for the
homogenous part:

∂2vx

∂y2
− κ2vx = 0 (31)

vhom
x = Aeky + Be−ky (32)

Considering the fact that we expect to see symmetric solution, we could
replace the result with cosh function:

vhom
x = A · cosh (ky) . (33)

It is really easy to see that a particular solution for the equation is

vpart
x = − C

κ2
. (34)

So the general solution is

vx = A · cosh (ky)− C

κ2
. (35)

We use boundary conditions to eliminate A. We also consider the fact
that cosh function is an even function - so only R0will be considered

vx (y = R0) = 0 ⇒

A =
C

κ2cosh (kR0)
. (36)
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So the �nal form of the general solution is

vx =
C

κ2

(
cosh (ky)

cosh (kR0)
− 1

)
=

∆P

Dηρ0Lκ2

(
1− cosh (ky)

cosh (kR0)

)
. (37)

The resistance of the artery for the general solution is

Q =
b∆P

DηLκ2

(
y − 1

κ

sinh (ky)
cosh (kR0)

)R0

−R0

=

= 2
b∆P

DηLκ2

(
R0 −

1
κ

tanh (kR0)
)

(38)

By replacing z2 = κ2R2
0 and doing couple of manipulations, we'll get for

Q

Q =
2bR3

0

DηLz2

(
1− tanh (z)

z

)
(39)

So for next we'll �nd various limits and resistances.

1. Now let's �nd the RA in the form of RA = Rτ
Af (z) .

RA =
DηLz3τ

2bR3
0τ (z − tanh (z))

=

=
Lκ2R2

0

2bτR3
0κ

2

z

(z − tanh (z))
=

=
L

2bτR0

z

(z − tanh (z))
. (40)

which really is in the form Rτ
Af (z), where f(z) = z

z−tanh(z) .

2. Let z →∞:
RA → Rτ

A,

because if z →∞, z
z−tanh(z) ≈

z
z = 1.

3. Let z → 0. In this case we can write for RA

RA =
L

2bτR0z2

z(
1
z −

tanh(z)
z2

) (41)

It's easy to check that the limit limz→0
z

( 1
z−

tanh(z)
z2 )

= 3. So for RAwe'll

get

RA =
3
2

LDη

bR3
0

= Rη
A (42)
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4. z is the controlling physical variable, because it consists of 3 parameters,
which are important in characterizing the �ow. First of all it consists of
the dimension of the tube. Other variables are Dηand τ. These variables
show kind of characteristic time. What it means is that if we consider τ
to be really big, the viscous di�usion becomes important. For smaller τ
and larger Dηwe'll see that fatty acid part starts to play role. Anyway, as
those variables are multiplied, we can conclude that the way they in�uence
the solution is kind of similar - the pysics behind the variables is not that
di�erent. The both variable are somehow responsible in resisting the �ow
of the blood. If one variable is much bigger than the other one, we could
just neglect the less important variable in our inital equation. But if both
are playing role, the both �t togeterh into the z very well to be a controlling
physical variable.

The following section is about the reduction of the size of the artery walls.

1. Shear stress σxy (R)

σxy (R) = −η
R2

0∆P

2Dηρ0L

(
−2

y

R2
0

)
y=R

=
∆P R

L
(43)

2. The plot could be found in Figure 2 on page 3.

3. R as a function of time, using equation dR
dt = − σ0

|σxy(R)|
1
κ

1
τA

and the rela-

tion σ0 = P0/ (κL) .We also consider R to be positive or zero.

dR

dT
= − P0L

κ2L |∆P R|
1
τA

= − P0

κ2 |∆P R|
1
τA

(44)

R dR = − P0dt

κ2τA |∆P |
(45)

1
2
R2 = − P0t

κ2τA |∆P |
+ C (46)

R =

√
R2

0 −
2P0t

κ2τA |∆P |
=

√
R2

0 −
2t

κ2τF
(47)

= R0

√
1− 2t

R2
0κ

2τF
(48)

4. The plot could be found in Figure 3 on page 4.

5. Q(t) would be

Q(t) = b
R2

0∆P

2DηL

(
y − 1

3
y3

R2
0

)R

−R

=

= 2b
R2

0∆P

2DηL

√
R2

0 −
2t

κ2τF
− 1

3R2
0

√(
R2

0 −
2t

κ2τF

)3
 (49)
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6. The plot of Q(R(t))/Q(R0) could be seen in Figure 4 on page 4. The form
of the plotted function is:

Q(R(t))/Q(R0) =
3

R0

√
R2

0 −
2t

κ2τF

(
1− 1

3

(
1− 2t

R2
0κ

2τF

))
= 2

√
1− 2t

R2
0κ

2τF

(
1 +

t

R2
0κ

2τF

)
(50)

How to �nd a Submarine?

1. Normal mode frequencies of the submarine free ocean, where the depth is

described by the equation h0 (x) = h0

(
1− x2

a2

)
and waves are described

by
∂2δh

∂t2
= g

∂

∂x

(
h0 (x)

∂δh

∂x

)
. (51)

By replacing z = x
a , gh0

a2 = ω2
0 , ω2

ω2
0

= Ω, we'll get the following equation:

∂2δh

∂t2
=

g

a2

∂

∂z

(
h0

(
1− z2

) ∂δh

∂z

)
, (52)

∂2δh

∂t2
= ω2

0

(
−2z

∂δh

∂z
+

(
1− z2

) ∂2δh

∂z2

)
(53)

For a steady state solution we could use the relation δh (z) = H (z) cos (ωt)

−ω2H = ω2
0

(
−2z

dH

dz
+

(
1− z2

) d2H

dz2

)
(54)

0 =
(
1− z2

) d2H

dz2
− 2z

dH

dz
+ Ω2H. (55)

This equation is a special case of the Jacobi di�erential equation, where
α and β are both zero. The Ω2 could be expanded as n(n + 1). For that
case the solutions for this equation are Legendre Polynomials φn (z) . For
example

φ1 (z) = z (56)

φ2 (z) =
1
2

(
3z2 − 1

)
(57)

2. For a submarine present at the bottom of the ocean, the depth pro�le
looks a bit di�erent:

h0 (x) = h0

(
1− x2

a2

)
+ R2δ (x− b) . (58)
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After replacing this into the inital equation (51) and doing similar manip-
ulations, we'll get

∂2δh

∂t2
= ω2

0

∂

∂z

((
1− z2

)
+

R2

h0a
δ

(
z − b

a

))
∂δh

∂z
(59)

Now again, after eliminating the time and by replacing H(z) by

θn(z) = φn(z) + εfn(z) + ε2gn(z) (60)

and also inserting perturbation of eigenvalues

ν2
n = Ω2

n + εαn + ε2βn, (61)

we'll get the following form

−
(
Ω2

n + εαn + ε2βn

) (
φn(z) + εfn(z) + ε2gn(z)

)
=

=
∂

∂z

((
1− z2

) ∂θn

∂z

)
+ ε

∂

∂z

(
δ (z − p)

∂θn

∂z

)
= (62)

= K0 (z) θn (z) + εK1 (z) θn (z) , (63)

where K0 and K1are some sort of di�erential operators and in the last
term, the θncould be writte explicitly using terms φn and fn and gn. It is
easy to see that to separate all terms with one ε, we'll get equation

−αnφn −
(
K0 (z) + Ω2

n

)
fn =

∂

∂z

(
δ (z − p)

∂φn

∂z

)
(64)

So to get a frequency shift, we have to �nd αn. Lets multiply Eq. (64) by
φn from left, which gives us

−αnφnφn − φnK0 (z)− φnΩ2
nfn = φn

∂

∂z

(
δ (z − p)

∂φn

∂z

)
(65)

Considering the fact that we could write for the second and third term in
the equation

φnfn = φn

∑
n′ 6=n

an′φn′ (66)

K0fn = φn

∑
n′ 6=n

λn′an′φn′ (67)

It is easy to see that the orthogonality makes the second and the third term
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to disappear and results φnφn = 1 in the �rst term, in case of integration:

−
∫

αnφnφndz −
∫

φnK0 (z) dz −
∫

φnΩ2
nfndz = (68)

=
∫

φn
∂

∂z

(
δ (z − p)

∂φn

∂z

)
dz (69)

−
∫

φn

(
dφn

dz
δ′ (z − p)

)
dz −

∫
φn

d2φn

dz2
δ (z − p) dz = αnk(n)(70)(

dφn

dz
· dφn

dz
+ φn (p)

d2φn

dz2
− φn (p)

d2φn

dz2

)
z=p = αnk (n)(71)(

dφn

dz

)2

z=p

· 1
k (n)

= αn, (72)

because of the relation∫
f (x) δ′ (x− p) dx = −f (p)′ . (73)

k (n)is a norming function
(

2n+1
2

)
, because we don't have an orthonormal

set of functions.

3. The submarine motion in time. At �rst we detect the points from the
graph in Figure 6 on page 14, where are no perturbations. It is alos worth
of mentioning that the modes on the graph are n = 2...7. These could be
easily found knowing the fact that normal modes on the graph represent Ω2

in Eq. (55) and Ω2 = n(n + 1). At those points Eq. (72) is zero, therefore
the perturbation is zero. What it means that the submarine stays at the
nodepoint of the wave of that frequency, causing no disturbance in wave.
Considering that, I found zeroes for each node:

n = 2 , t = 30h? almost zero..

n = 3 , t = 22h, 38h

n = 4 , t = 4h, 16h

n = 5 , t = 10h, 26− 34h

n = 6 , t = 0h, 20h

n = 7 , t = 2h, 18h

Using this data and extermum points of Legendre polynomials (dφn

dz is zero
at the extremums), we can detect the possible locations of the submarine.
In Figure 5 on page 14 we can see the maximums and minimums. For
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nodes, they are approximately:

n = 2 , z = 0
n = 3 , z = 0.45
n = 4 , z = 0, z = 0.65
n = 5 , z = 0.28, z = 0.76
n = 6 , z = 0, z = 0.47, z = 0.83
n = 7 , z = 0.21, z = 0.59, z = 0.87

Now w could estimate all kind of imaginary trajectories the submarine
could have had during this 40 hour measuring cycle. Let's propose one
possible movement. At t = 0h, the submarine was at n = 6, therefore it
must have been either at z = 0, z = 0.47, or at z = 0.83. At t = 2h,
following the same logic, the submarine must have been either at z =
0.21, z = 0.59 or at z = 0.87. For t = 4h, the shipe were at z = 0 or
z = 0.65. For t = 10h, the submarine was at z = 0.28 or z = 0.76. For
z = 16h, the submarine was again at 0 or z = 0.65. and etc. We could
arrange the possible locations and the known times as follows:

t = 0h , z = 0, 0.47, 0.83
t = 2h , z = 0.21, 0.59, 0.87
t = 4h , z = 0, 0.65

t = 10h , z = 0.28, 0.76
t = 16h , z = 0, 0.65
t = 18h , z = 0.21, 0.59, 0.87
t = 20h , z = 0, 0.47, 0.83
t = 22h , z = 0.45

t = 26− 34h , z = 0.28, 0.76
t = 38h , z = 0.45

So one possible, considering that the covered distance during equal timepe-
riods is possibly the same, could be:

00h → 0.212h → 0.654h → 0.7610h → 0.6516h →
→ 0.2118h → 020h → 0.4522h → 0.7626h−34h → 0.4534h.

So the submarine goes back and forth and then moves to a new location
and hangs around about 8 hours (the crew needs to rest :)) and then
moves again...
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Figure 5: The Legendre polynomials, from n=2 to n=7.

Figure 6: The mode frequencies.
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