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0.1 Problem #1

0.1.1 Calculation of kinetic viscosity

A kinetic viscosity can be found from the relation: Dη = η
ρ . We can �nd the ρ

from the ideal gas law as following:

pV =
m

M
RT → p

ρ
=

RT

M
→ ρ =

Mp

RT

where the p = 1atm = 101.325kPa, T = 300K, R = 8.31 J
K·mol . So the �nal

relation for �nding the kinetic viscosity is

Dη =
η ·R · T

p ·M
.

0.1.2 Calculation of mean free path

As derived also in class, the mean free path of a particle equals

l =
η

nmv
=

ρDη

ρv
=

Dη

v
,

where the v is an average velocity of a particle and can be found from molecular
kinetic theory. As an average kinetic energy is related to the average speed, we
can write:

1
2
mv2 =

3
2
kT → v =

√
3kT

m
=

√
3RT

M
.

And the mean free path is:

l =
Dη√
3RT
M

=
ηRT

p
√

3RTM
=

η

p

√
RT

3M
.

0.1.3 Calculation of cross section

The cross section of a particle is related to the mean free path as follows

l =
1

n · σ
.

Now again we can �nd the n from ideal gas law:

pV = nRT → pV = nkNAT = NkT → N

V
= n =

p

kT

and the �nal relation is:

σ =
1

l · n
=

kT

l · p
=

kT
√

3RT
M

Dηp
=

M
√

3RT
M

ηNA
=
√

3MRT

ηNA
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Figure 1: Cross section dependence on interaction strength

0.1.4 Calculations...

• He: Dη = 1.19 · 10−4 m2

s , l = 8.73 · 10−8m and �nally, σ = 4.7 · 10−19m2

• Ne: Dη = 0.381 · 10−4 m2

s , l = 6.24 · 10−8m and σ = 6.55 · 10−19m2

• Ar: Dη = 0.136 ·10
−4m2

s , l = π · 10−8m and σ = 1.3 · 10−18m2

• Kr: Dη = 0.0723 · 10−4 m2

s , l = 2.42 · 10−8 and σ = 1.69 · 10−18m2

• Xe: Dη = 0.0423 · 10−4 m2

s , l = 1.77 · 10−8m and σ = 2.31 · 10−18m2

The requested graphs is shown in Figure 1

0.2 Problem #2

0.2.1 Relate the P and the Q

As P =< px >= 1
β

∂
∂Q lnIQ and we know that IQ =

∫
dp ·exp

(
−β
(

p2

2m −Qp
))

,

so to get P , we have to solve the integral for IQ. As all values of p must pe
considered, thid inde�nite integral becomes a de�nite one and we can use table
of integrals to solve the problem. It is known that the integral

∫∞
−∞ e−ax2

ebxdx =√
π
a e

b2
4a . So for our case, the integral becomes

IQ =
√

2πm

β
· exp

(
mβQ2

2

)
.
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So the P would be

P =
1
β

∂

∂Q
ln(IQ) =

1
β

Qmβ√
2πm

β exp
(

mβQ2

2

)exp

(
mβQ2

2

)
= mQ

0.2.2 Show the relations to be equally good for �nding

P!=0

The �rst relation is:

f0 ∝ exp

(
−β

(
p2

2m
− pQ

))
, (1)

and the second one is:

f0 ∝ exp

(
− β

2m
(v − u)2

)
. (2)

What we can do, is modify those equations to show that they are internally
quite similar and really, P is not 0. I start with the equation (1):

f0 ∝ exp

(
−β

(
p2

2m
− pQ

))
=

= exp

(
− β

2m

(
p2 − 2mpQ

))
= (3)

= exp

(
− β

2m

(
p2 − 2pP

))
.

For the equation (2), we can write down:

f0 ∝ exp

(
− β

2m
(v − u)2

)
(4)

= exp

(
− β

2m
u2

)
exp

(
− β

2m

(
v2 − 2vu

))
As we can see, the equations (3) and (4) are really similar in structure. The
equation (4) has an additional exponent, but this is basically constant and it
does not in�uense the integration result in general. Both equations include a
mean value. the equation (3) includes value P and the equation (4) includes u.
These are constants. So, for proving that the P is not equal to zero, we have to
�nd average of either p or v (as the v is related to p with a constant). For both
cases, we'd have a integral in the form of∫ ∞

−∞
x · exp(−ax2 + bx)dx.

And this kindof integral does not equal to zero and it is really easy to see, that
symmetry of the integral is broken by term bx. That's how I've shown that both
of previously described integrals are equally good for showing that P 6= 0.
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0.2.3 Relate P to u

As u is an average velocity and P is an average momentum in a certain direction.
So at this point of understading, I would say that P is just u times mass of a
particle. Or at least the u is proportional to P.

0.3 Finding average of |v|

First, I'd do the normalization procedure on the equation:

1 = A

∫ ∞

−∞
exp

(
− β

2m
v2

)
,

1 = A

√
π2m

β
,

A =

√
β

2πm
.

0.3.1 Find |v̄|
We can �nd the average value of |v| as follows

|v̄| =

√
β

2πm

∫
d|v| · |v|exp

(
− β

2m
|v|2
)

=

√
β

2πm

(
−
∫ 0

−∞
dv · v · exp

(
− β

2m
v2

)
+
∫ ∞

0

dv · v · exp

(
− β

2m
v2

))
=

√
β

2πm

(
m

β
exp

(
− β

2m
v2

)0

−∞
− m

β
exp

(
− β

2m
v2

)∞
0

)

=

√
β

2πm

2m

β

=
√

2m

πβ
.

0.3.2 Probability of �nding a particle faster than average.

To �nd the probabilty, we have to integrate from the value, found in the previous
subsection, to the in�nity. The integral would be:

P> =

√
β

2πm

∫ ∞q
2m
πβ

exp

(
− β

2m
v2

)
.

An analytical result for the function is pretty nasty - including an Erf function,
which is basically a power series of x - but still, it seems that it could be used
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to �nd the probability

P> =

√
βπ

2πm

Erf

(√
β

2mv

)
2
√

β
2m

∞

q
2m
πβ

=
1
2

√
1
2

(
1− Erf

(√
1
π

))

=

√
1
8

(1− 0.347)

= 0.653

√
1
8

= 0.231

So, by my calculations, the probability would be about 25%

0.4 Problem #4

As it is a matlab problem, the program code is in a separate �le. Few comments
anyway. As this time wasn't said that the speed of the calculation is absolutely
crucial, I generate couple of 3D plots to show variable's dependence on the time
and ε. As it is easy to see from the result, there is a linear dependence on ε for
the X. There is no dependence on ε for < (x− < x >)2 > .
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