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FIG. 1: Surface energy and the work, force to move a fluid across a surface.
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Surface energy and consequences.

1. Surface Tension. In a simple approximation the particles on the surface of a fluid have

approximately half of the energy of a particle within the fluid. The latter have approximate

energy

−ε0 = −1

2
zV (0), (1)

where V (0) is the potential of a particle at the most favorable distance from a neighbor and

z is the coordination number (number of near neighbors), about 12, Fig. 1. The energy of

a liquid is written in the form

E = V nB(−ε0) + AnA
ε0

2
, (2)

where V and A are the area and volume respectively and nB and nA are the bulk and areal
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particle density respectively. The surface tension, the analogue of pressure is

γ =
∂E

∂A
= nA

ε0

2
. (3)

It is the amount of energy necessary to have a unit area of surface, [γ] = [E]/L2.

2. Surface Tension, numerical estimate. For a typical liquid the number ε0 is about

0.1 eV; e.g., evaporation of water takes 540 cal/mole. The particles on the surface of a fluid

are spaced, as in the bulk, by about 3 Ao. Thus

γ ≈ 50 ergs/(cm)2. (4)

The surface tensions for helium, water, mercury are 1, 72 and 470 ergs/(cm)2 respectively.

Fluids in which the binding of particles to one another is strong have large values of the

surface tension.

3. Interfacial energy and contact angle. The energy, which is the surface tension,

is the energy of a molecule on the surface of a liquid where it sees a vapor outside of the

liquid. There are many (most) circumstances in which the boundary of a liquid is a solid,

another liquid, a vapor, etc. Molecules on the surface of a liquid that is bounded by X

have an interfacial energy denoted γLX . [This is a slightly delicate subject. The class act

is Intermolecular and Surface Forces, Second Edition: With Applications to Colloidal and

Biological Systems, by Jacob N. Israelachvili.] Assuming we have the interfacial energies

in hand a situation like that in Fig. 1, bottom can arise. A fluid/vapor interface is pulled

along the surface of a solid. Each advance δx of the interface involves energy change ∆E =

(γV S − γLS)bδx. Thus there is a force

F =
∂∆E

∂x
= (γV S − γLS)b (5)

tending to pull the interface further onto the solid (γV S − γLS) > 0, tending to push the

interface off of the solid (γV S − γLS) < 0. The important physical point is that an interfaial

energy causes forces that work along the line of the interface. A mechanical balance is

achieved, if possible, by the orientation of the liquid/vapor interface. As in Fig. 2 (top).

Considering the forces due to interfacial energy to work along the line of the relevant surface

find

γV S − γLS − γLV cos θ = 0. (6)
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FIG. 2: Fluid rise in a capillary tube.

The angle θ is called the contact angle. These forces are seen at work in capillary rise.

4. Wetting. [See Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves,

by Pierre-Gilles de Gennes, Francoise Brochard-Wyart, and David Quere; Pierre-Gilles de

Gennes: The Nobel Prize in Physics 1991.]

A. Wetting refer qualitatively to your sense of whether or not a liquid wants to lie on

a surface. When a car is waxed water drops bead up and do not wet. The quantitative

measure of this is the contact angle defined in Fig. 2 (top). A contact angle less than π/2 is

taken to mean the liquid wets the substrate (solid) a contact angle greater than π/2 means

that the liquid does not want to wet the solid.

B. While the term wetting is not used, the sense of wetting is involved in the interaction

between hydrophilic (water seeking) and hydrophobic (water adverse) ends of a polymer and

the solution in which it resides. This interaction can lead to micelles, certain colloids, etc.

These systems arise in part because of the interfacial energy of parts of their conformation.

For example a micelle may form as a collection of polymers arrange themselves to protect

the hydrophobic parts from contact with the water solution in which they reside.

C. A further example of the presence of surface energy occurs as a system undergoes a phase

transition (usually first order). Suppose the thermodynamic variables are changed so that

a system, in equilibrium in phase 1, should make a transition to phase 2. The transition to

3
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FIG. 3: Contact angle (top). Nucleation (bottom).

FIG. 4: Examples of wetting/non-wetting.
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phase 2 occurs with little pieces of 1 making the transition to 2 and subsequently growing

in size. The energy advantage to a volume V ∼ R3, upon making the transition is

EV ≈ R3 n(−∆e), (7)

where ∆e = e2−e1 < 0 and n is the particle number density. If there is an interfacial energy

for phase 2 in phase 1 there is an energy cost (if γ12 > 0)

ES ≈ R2γ12, (8)

or

E = EV + ES ≈ (−|∆e|)R3 n + R2γ12. (9)

This energy is positive for small R. Thus there is a barrier to nucleation of the desired phase

that is overcome if a piece of 1 can turn into a piece of 2 of size Rc, where Rc is found from

∂E

∂R
≈ −3|∆e|R2 n + 2Rγ12 = 0. (10)

5. Laplace Formula.

A. The Laplace formula describes the condition for mechanical equilibrium across an inter-

face. Pressures p1 and p2 are above and below the interface. If a differential piece of area

A, at the interface, is displaced by dz the work done is

dW1 = (p2 − p1)Adz. (11)

Additional work is done if the interface, with interfacial tension γ12, changes area.

dW2 = γ12 dA. (12)

Take the area A to be the product dl1 × dl2, where dl1 and dl2 are differential elements of

length found from swinging radii R1 and R2 through angles dθ1 and dθ2 respectively. The

displacement dz changes these radii to R1 + dz and R2 + dz resulting in a change in area

given by

dA = A
(

1

R1

+
1

R2

)
dz. (13)

Thus

Fz =
dW1 + dW2

dz
= A

[
(p2 − p1) + γ12

(
1

R1

+
1

R2

)]
= 0, (14)

where the zero on the RHS comes from the requirement of mechanical equilibrium.
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(1/R1  +  1/R2  )=  2/R (1/R1  +  1/R2  )=  1/R

ζ(x) ζ(x + dx)

dx

dx2  +  (dz/dx)2 dx2

FIG. 5: Curvature in special cases. Curvature of a surface.

B. For simple objects like a soap bubble that is spherical or cylindrical the Laplace equation

reduces to ∆p = 2γ/R and ∆p = γ/R respectively. As it costs energy to create surface the

direction of the force due to surface tension is toward the center of the figure, in the same

direction as the external pressure.

C. For the surface of a fluid with displacement away from equilibrium given by ζ(x) the

additional amount of surface at X is given by

δA = b

√√√√dx2 +

(
dζ

dx

)2

dx2 − b dx = b dx
1

2

(
dζ

dx

)2

. (15)

In an equation describing the energy at the surface we would write (just as above)

∫
b dx

(p2 − p1)dζ + γ12
1

2

(
dζ

dx

)2
 . (16)

The second term can be integrated by parts to yield∫
b dx dζ

[
(p2 − p1) − γ12

1

2

d2ζ

dx2

]
. (17)

So in mechanical equilibrium

p2 − p1 = γ12
1

2

d2ζ

dx2
. (18)

6



The direction of these pressures is set by the argument above, p1 is the pressure in the fluid

and p2, the ambient pressure, is set to zero. Thus

p1 = p = − γ12
1

2

d2ζ

dx2
. (19)

Capillary Waves. Go way back to the discussion of surface waves. LL Section 12, Note 11.

On the surface of the fluid the velocity potential, pressure and potential energy are related

by [i.e., the Bernoulli equation]
∂φ

∂t
+

p

ρ0

+ gζ = 0. (20)

Use Eq. (19) for p
∂φ

∂t
− γ12

ρ0

1

2

d2ζ

dx2
+ gζ = 0. (21)

Now ∂ζ/∂t = vz = ∂φ/∂z so this equation takes the form

∂2φ

∂t2
− γ12

ρ0

1

2

∂

∂z

∂2φ

∂x2
+ g

∂φ

∂z
= 0. (22)

This is a modification of the boundary condition used in the deep water wave problem. For

φ ∝ cos(kx− ωt)exp(kz)

ω2 = gk +
γ12

ρ0

k3. (23)

7


