

Name: Janno Torop

- PhD student at University of Tartu
- Research of electroactive properties of carbon materials

Preveiw

Supercap and EDL formation
 TiC-derived carbon

- Properties
- Synthesis

 Preparation of TiC-derived carbonpolymer films
 Experimental setup
 Results

During charging cycle dimensonal chages were observed

Chem. Eur. J. 2008, 14, 6614 – 6626

Electrochemical behavior of nanoporous carbon electrodes and electrical-double layer capacitors

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$
Double layer capacitor
Electrolyte
$$\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_2}$$

$$C/A = rac{\varepsilon_{\mathrm{r}} \, \varepsilon_{\mathrm{0}}}{d}$$

$$E = \frac{1}{2}CU^2$$
 and $P = \frac{U^2}{4R_S}$

To achieve highest **capacitance** (*C*) the capacitor should be made of CDC carbon with high **surface area** (*A*) the electrolyte used in capacitor should be with high **polarity** (ε_r), small distance (*d*) between ion and carbon (limited by **ionic radii**) should be provided.

Carbide-Derived Carbon (CDC)

CDC is made by chemically extracting the metal or metalloid from carbide cristal lattice

$$MC_x + yCl_2 \rightarrow MCl_{2y} + xC$$

Carbon particles retain the shape of precursor carbide. The structure and porosity of carbon is significantly infuenced by the structure and chemical composition of carbide

Carbide-Derived Carbon (CDC)- Material for Energy Storage

Notation of	T _{Chlorin}	\mathbf{S}_{A}	Vp	V_{μ}	Micropor	osity [%]	APS
CDC material	[°C]	$[m^2 g^{-1}]$	[cm ³ g ⁻¹]	$[cm^3 g^{-1}]$	<11 Å	<20 Å	[Å]
TiC-600	600	1150	0.53	0.49	70	91	9.3
TiC-800	800	1470	0.71	0.59	50	83	10.2

- $T_{Chlorin}$ Temperature of chlorination (powder synthesis) $S_{\rm A}$ Specific area
- V_{p} Volume of porosity per gram
- V_{μ}^{p} Volume of micropores per gram APS- Average pore size (Measured from N₂ adsorption)

www.carbon.ee

Preparation of polymer-supported carbon sheets

CDC 92 % + PTFE 8 %

- Impregnation with ethanol and heptane
- Rolling of electrode sheets
- Evaporation of additives

Polymer supported electrode sheet

- » Vacuum owen to remove adsorbed gases
- » Electrolyte injection
- Electromechanical mesurements

Actuator assembly

cell

The principal scheme of linear actuators

Actuation measurements

Actuation measurements

Charge and movement relationship during charging/discharging cycle

EMI800

Cyclic voltammetry measurements

The electrochemical parameters series capacitance (C_s) , series resistance (R_s) , round-trip efficiecy (RTE) and actuation of linear actuators

Notation of actuator	C _s [F g ⁻¹]	R _s [Ω·cm ²]	Actuation at 3V [µm]	RTE %
TEA600	64	3.9	10.2	84
TEA800	112	9.3	11.7	68
EMI600	75	7.3	16.2	72
EMI800	121	4.6	13.5	84

Thank you!

どうもありがとう。

