Honeycomb carbon: A Review of Graphene¹

Endel Soolo

Tartu University Institute of Technology

22.02.2010

What is graphene?

2D structure sp²-hybridized

Properties of graphene

Stable sheets without growing substrate Quantum Hall effect at room temperature In-layer / out-layer conductivity ~ 1000 times Ambipolar field effect

Strength of graphene

Cross section of graphite oxide film. SEM image.

Optical absorbance of graphene

Ambipolar field effect

Band structure in graphene. **Conduction** band Dirac point Valence band Fermi level.

Graphene flake examples

A few layer flake,optical interference microscopy.

20 µm

Single layer graphene flake. AFM image.

Free-standing graphene film. TEM image.

Surface electron structure

(b)

0.1 nm

Graphite. STM image.

(a)

Mechanically exfoliated single-layer graphene.

0.1 nm

Thickness measurement using Raman spectroscopy

Raman spectra of graphene flakes with varied thickness produced by mechanical exfoliation.

Uses of graphene

High speed logic devices Thermally and electrically conductive composites Sensors Transparent electrodes

Electron mobility

SEM image of a suspended sheet.

Field-effect measurements indicate mobility greater than 200,000 cm2/(V s).

Graphene transistors

(a) Single graphene sheet on SiO2. SEM image.
(b) Construction of a top-contact, back-gated device.
(c) working device with a channel length of 7 μm.
Photograph, optical, and SEM image.

Etched ribbons

Lithographically created nanoribbons. I_{on}/I_{off} ratio up to 10^4

Chemically derived nanoribbons

(a) ribbon stabilized in solution by π-stacking polymer agents.
(b) Spin-coated surface with ribbon widths 10 nm and up. AFM image.
(c) I /I ratios up to 10⁶

Graphene gas sensors

Resistance response of chemically derived p-type graphene to electron withdrawers (NO2) and electron donors (NH3).

Single molecule adsorption sensor

electrons

holes

Production of graphene

Mechanical exfoliation slow, low yield Chemical exfoliation in solution - modifies 2D crystal structure Bottom-up synthesis from organic precursors - small fragments only Growth on a substrate - polycrystallinity, uneven thickness

Mechanical exfoliation process of graphite pillars

Using AFM probe: (a)

Using tipless cantilever:

SEM images.

Graphite intercalation

Intercalation and exfoliation of graphite using K⁺ and alcohols.

Resulting thickness: 30 layers.

Chemically derived graphene

Conversion of graphite to graphene.

Ground-up synthesis

Chemical structure of a polyacyclic aromatic hydrocarbon

Synthesized nanoribbon. Length 12 nm. TEM image.

Chemical Vapour Deposition

(a) the nickel catalyst(b) graphene film.Optical microscopy.

Nucleation of (c) one, (d) three, or (e) four layers. TEM images.

Epitaxial silicon carbide derived graphene

(a) Small hexagonal crystallites. SEM image.(b) Long-range order and a low density of defects.STM image.

M. J. Allen, V. C. Tung, R. B. Kaner, *Chem. Rev.* **110**, 132-145 (2010) http://dx.doi.org/10.1021/cr900070d