
ρ0, u0, P0, e0ρ, u, P, e

xs(t)

ρ0u0

ρu

1 2

generic:

(Au)1 - (Au)2 + (FA)1 - (FA)2 =        A dx

A = mass

A = momentum

A = kinetic energy + internal energy

2

1

“forces” 

dxs(t)/dt = D

FIG. 1: A shock at xs(t) as seen in the lab frame. Surfaces 1 and 2 are fixed in the lab frame.
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Shocks. In study of the traffic problem we found a shock feature, defined as a discontinuity

in the traffic density (see the I-680 data), that moved with a speed related to the density

environment in which it was embedded. In Fig. 1 we show a generalization from this

particular example. Consider a piece of material characterized by (a) thermodynamic

variables ρ, P and e and (b) the velocity u with which the material is moving in the lab

frame. We use subscript 0 for the condition of the material to the right of a shock feature

that is moving through the material from left to right. We can form 3 equations that

relate the properties of the material to the left of the shock feature to the properties of the

1



material to the right of the shock feature by considering the conservation laws for mass,

momentum and energy, the usual suspects. These equations necessarily involve something

about the shock feature.

1. Hugoniot Relations.

1. Mass. Mass flows in from the left at rate (ρu)1 and flows out from the right at rate

(ρu)2. [A factor of the cross sectional area, common to all flow rates, is dropped from

each term.] The difference between these two flow rates is the rate at which the mass

between 1 and 2 changes with time. We write

(ρu)1 − (ρu)2 =
d

dt

∫ 2

1
dx ρ(x). (1)

We break the integral into two parts 1 to xs(t)
− and xs(t)

+ to 2. The time dependence

of the integral arises from the motion of the limit xs(t) so we have

d

dt

∫ 2

1
dx ρ(x) = ρ(xs(t)

−)D − ρ(xs(t)
+)D = ρD − ρ0D, (2)

where D = ẋs(t). As points 1 and 2 are adjacent to the shock feature we have

ρ(D − u) = ρ0(D − u0). (3)

This is the first of the Hugoniot relations (sometimes Rankine-Hugoniot relations).

2. Momentum. The derivation of the momentum conservation relation is the same as that

for the mass with the added feature that momentum can be created by net forces, here

the pressures. We write

(ρuu)1 − (ρuu)2 + P1 − P2 =
d

dt

∫ 2

1
dx ρ(x)u(x). (4)

Handling the integral in the same way as for the mass we have

ρu2 + P − ρ0u
2
0 − P0 = ρuD − ρ0u0D. (5)

This can be re-arranged to read

P − P0 = ρ0(D − u0)(u− u0). (6)

We will call this re-arrangement the second Hugoniot relation.

3. Energy. The derivation of the energy conservation relation is the same as above except

(a) the quantity being carried in/out is the kinetic energy plus the internal energy and

the ”force” is the rate at which the pressure is doing work, creating energy. We write

2



[(
1

2
ρu2 + e)u]1− [(

1

2
ρu2 + e)u]2 + (Pu)1− (Pu)2 =

d

dt

∫ 2

1
dx [

1

2
ρ(x)u(x)2 + e(x)]. (7)

Handling the integral in the same way as above we have

(
1

2
ρu2 + e + P )u− (

1

2
ρ0u

2
0 + e0 + P0)u0] = (

1

2
ρu2 + e)D − (

1

2
ρ0u

2
0 + e0)D. (8)

We will undertake a judicious re-arrangement of this equation below. For the moment

we call this equation the third Hugoniot relation.

The point of view we will take about the Hugoniot relations is that they make it possible

for us to learn the thermodynamic state of the material on the left of the shock feature. For

this to be the case we assume that we know the thermodynamic state and the velocity of

the material on the right of the shock feature, i.e., ρ0, P0, e0 and u0. Looking among the 3

Hugoniot relations, Eqs. (3), (6) and (8), we see that there are 5 unknown variables, ρ, P ,

e, u and D. Two must be measured. Let’s agree to measure D and u, the velocity of the

shock and the velocity of the material (called the particle velocity) and have ρ, P and e be

the dependent variables.

2. Some useful Algebra and E − E0.

Let’s make some re-arrangements of the basic equations that exposes some of their basic

content.

1. We can re-arrange Eq. (3) to find the particle velocity difference

u− u0 = (D − u0)

(
1− ρ0

ρ

)
= ρ0(D − u0)(V0 − V ), (9)

where V = 1/ρ is the specific volume, i.e., the volume per unit mass.

2. Use Eq. (9) for u− u0 in Eq. (6) to write

P − P0

V0 − V
= ρ2

0(D − u0)
2 (10)

and Eq. (9) a second time (ρ0(D − u0) = · · ·) to express u− u0 in terms of P and V

(u− u0)
2 = (P − P0)(V0 − V ) (11)

or

u = u0 +
√

(P − P0)(V0 − V ). (12)
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3. Finally use Eq. (10) to find D

(D − u0)
2 =

1

ρ0

P − P0

V0 − V
= V 2

0

P − P0

V0 − V
(13)

or

D = u0 + V0

√
P − P0

V0 − V
. (14)

4. In the energy equation, Eq. (8) use the specific energy defined by e = ρE to write

ρ0(D − u0)

(
E − E0 +

u2

2
− u2

0

2

)
= Pu− Pu0 (15)

and re-arrange to find E

E − E0 =
Pu− Pu0

ρ0(D − u0)
−
(

u2

2
− u2

0

2

)
(16)

(a) for ρ0(D − u0) use Eq. (10),

(b) use u from Eq. (12) to express Pu− P0u0 in the form

Pu− P0u0 = u0(P − P0) + P
√

(P − P0))V0 − V ), (17)

(c) use u from Eq. (12) to express the kinetic energy difference in the form(
u2

2
− u2

0

2

)
=

1

2
(P − P0)(V0 − V ) + u0

√
(P − P0)(V0 − V ). (18)

When these pieces are assembled the result is

E − E0 =
P + P0

2
(V0 − V ) . (19)

The three quantities in this equation are the derived variables that describe the thermody-

namic state of the material to the left of the shock feature. What this equations says is that

the Hugoniot relations imply a sensible connection between the change in internal energy

and some average work done on the material by the pressures adjacent to the shock.

3. P − V Space.

For convenience choose u0 = 0. Consider P − V space shown in Fig. 2. The two points

(V0, P0) and (P, V ) on opposite sides of the shock feature can be placed in this space. Join

the points by the line

P = P0 +

(
dP

dV

)
D

(V − V0) = P0 + Dρ2
0(D − u0)

2(V0 − V ) (20)

from Eq. (10). This line is called the Rayleigh line.
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P(V0-V)
(1/2)(P-P0)(V0-V)

KE = (1/2)u2

KE + E - E0

E - E0

ES - E0

Q

P

V

(V0,P0)

(V,P) u0 = 0

(V,P0)

PA

FIG. 2: P-V space and various pieces of it.

1. From Eq. (11), with u0 = 0 we have

u2

2
=

1

2
(P − P0)(V0 − V ), (21)

i.e., the kinetic energy is the area within the triangle (V0, P0) → (P, V ) → (P0, V ) →

(V0, P0).

2. Combine Eq. (21) with Eq. (19) and find

u2

2
+ E − E0 = P (V0 − V ). (22)

The area of the rectangle (crosshatch in Fig. 2) is the energy difference between the

material to the left and right of the shock feature.

3. The difference in internal energy between the material to the left and right of the

shock feature = rectangle − triangle.
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4. Suppose compression from V0 to V were undertaken adiabatically (by some means).

The final pressure point PA and trajectory in P − V space might be that shown by

the curved line from P0 to PA. The change in internal energy of the material on the

left of the shock feature is ES − E0 associated with the area shown in the lower right

of Fig. 2.

5. The difference between E and ES is due to energy flow, Q, into the system as the shock

feature propagates. Thus the change in the energy of the material due to heating is

represented by the dark area to the right in Fig. 2.

These interpretations are quantitative when the quantities necessay to calculate the areas in

the P − V space are available. For the most part the variables used in this discussion have

been the dependent variables in the description. Some of these are found from D and u and

the properties of the material to the right of the shock feature. Other are found by modeling

the material. Regardless of the quantitative use of these P − V area identifications, their

qualitative behavior can aid in understanding.
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